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1 Capabilities

The packages required for this vignette are

> library(bsseq)

Introduction

This R package is the reference implementation of the BSmooth algorithm for analyzing
whole-genome bisulfite sequencing (WGBS) data. This package does not contain alignment
software, which is available from http://rafalab.jhsph.edu/bsmooth. This package is not
intended for analysis of single-loci bisulfite sequencing (typically Sanger bisulfite sequencing
or pyro bisulfite sequencing).

The package has been used to analyze capture bisulfite sequencing data. For this type of
data, the most useful parts of the package is its data-handling functions. The BSmooth
algorithm itself may not be useful for a standard capture bisulfite sequencing experiment,
since it relies heavily on smoothing, which again requires that we have measured methylation
in bigger regions of the genome.

The BSmooth algorithm is described in detail in [1]. It was applied to human cancer data
in [2] and we have also used it to analyze data from Rhesus Macaque [3]. Specifically, the
algorithm uses smoothing to get reliable semi-local methylation estimates from low-coverage
bisulfite sequencing. After smoothing it uses biological replicates to estimate biological
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variation and identify differentially methylated regions (DMRs). The smoothing portion
could be used even on a single sample, but we believe that variation between individuals is
an important aspect of DNA methylation and needs to be accounted for, see also [4] for a
relevant discussion.

The main focus for our development has been the analysis of CpG methylation in humans,
and we have successfully used it in other primates [3]. It is highly likely that the approach will
work in non-human organisms, but care must be taken: the smoothing parameters (which we
have selected based on human data) should be evaluated carefully. Furthermore, it may not
be suitable at all for organisms with vastly different (from humans) methylation structures.

With respect to non-CpG methylation, the situation is mixed. We have never used the algo-
rithm to analyze non-CpG methylation, but it should be straightforward to do so. However,
the data structures used in the current code might not conveniently scale from the 28.2M
CpGs in the human genome to the roughly 2x585M Cs (it may well be possible to do an
separate analysis for each chromosome). This should be less of an issue for organisms with
smaller genomes. We are considering changing these underlying data structures to allow for
easier analysis of non-CpG methylation in humans.

System Requirements

The package requires that all the data is loaded into system memory. By “data” we do not
mean the individual reads (which is big for a whole-genome experiment). Instead, what we
need are summarized data given us the number of reads supporting methylation as well as
the total number of reads at each loci. Focusing on human data, we need to work with
objects with a maximum of 28.2 million entries, per sample (since there are roughly 28.2
millions CpGs in the human genome). This provides us with an upper limit on the data
object.

Based on this, the 8 samples from [2] including the smoothed values, take up roughly 1.2GB
of RAM, meaning an analysis can easily be done with 8GB of RAM. In order to improve
speed, the package allows for easy parallel processing of samples/chromosomes. This will
require multiple copies of the data object for each core used, increasing the memory us-
age substantially to perhaps even 32GB. This can be avoided by processing the samples
sequentially at the cost of speed.

On a 64GB node, the 8 samples from [2] takes roughly one hour to process in parallel using
8 cores (using much less than 64GB of RAM in total). This does not including parsing the
data from the alignment output files.
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Some terminology

Because not all methylation happens at CpG sites, we have tried to use the term“methylation
loci” instead of CpG. We use this term to refer to a single-base methylation site.

Some standard terms from the DNA methylation field: differentially methylated region
(DMR), hyper methylation (methylation that is higher in one condition/sample than in
another), hypo methylation (methylation that is lower in one condition/sample than in an-
other), and finally differentially methylated position (DMP) referring to a single loci.

Citation

If you use this package, please cite our BSmooth paper:

Hansen, D. K, Langmead, Benjamin, Irizarry and A. R (2012). “BSmooth: from whole
genome bisulfite sequencing reads to differentially methylated regions.” Genome Biology,
13, pp. R83.

2 Overview

The package assumes that the following data has been extracted from alignments:

1. genomic positions, including chromosome and location, for methylation loci.

2. a (matrix) of M (Methylation) values, describing the number of read supporting methy-
lation covering a single loci. Each row in this matrix is a methylation loci and each
column is a sample.

3. a (matrix) of Cov (Coverage) values, describing the number of read supporting methy-
lation covering a single loci. Each row in this matrix is a methylation loci and each
column is a sample.

We can have a look at some data from [5], specifically chromosome 22 from the IMR90 cell
line.

> data(BS.chr22)

> BS.chr22
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An object of type 'BSseq' with

494728 methylation loci

2 samples

has not been smoothed

The genomic positions are stored as a GRanges object GRanges are general genomic regions;
we represent a single base methylation loci as an interval of width 1 (which may seem a bit
strange, but there are good reasons for this). For example, the first 4 loci in the Lister data
are

> head(granges(BS.chr22), n = 4)

GRanges object with 4 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr22 [14430632, 14430632] *

[2] chr22 [14430677, 14430677] *

[3] chr22 [14430687, 14430687] *

[4] chr22 [14430702, 14430702] *

-------

seqinfo: 1 sequence from an unspecified genome; no seqlengths

We also have the M and Cov matrices

> head(getCoverage(BS.chr22, type = "M"), n = 4)

[,1] [,2]

[1,] 17 20

[2,] 4 20

[3,] 6 19

[4,] 2 4

> head(getCoverage(BS.chr22), n = 4)

[,1] [,2]

[1,] 18 23

[2,] 11 28

[3,] 10 25

[4,] 8 21
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Since CpG methylation is symmetric on the two strands of a chromosome, we aggregated
reads on the forward and reverse strand to form a single value, and we assume the genomic
position points to the C of the CpG. It is not crucial in any way to do this, one may
easily analyze each strand separately, but CpG methylation is symmetric and this halves the
number of loci.

How to input your methylation data into this data structure (called a BSseq object) is
described in a section below. We also have a section on how to operate on these types of
objects.

An analysis typically consists of the following steps.

1. Smoothing, using the function BSmooth.

2. Compute t-statistics, using the function BSmooth.tstat. This converts the BSseq

object into a BSseqTstat object.

3. Threshold these t-statistics to identify DMRs, using the function dmrFinder, returning
a simple data.frame.

It is usually a good idea to look at the smoothed data either before or after identifying
DMRs. This can be done using the functions plotRegion and plotManyRegions.

We also have functions for assessing goodness of fit for binomial and poison models; this is
like to be of marginal interest to most users. See the man page for binomialGoodnessOfFit.

We also allow for easy computation of Fisher’s exact test for each loci, using the function
fisherTests.

3 Using objects of class BSseq

Basic operations

Objects of class BSseq contains a GRanges object with the genomic locations. This GRanges
object can be obtained by granges. A number of standard GRanges methods works directly
on the R.codeBSseq object, such as start, end, seqnames (chromosome names) etc.

These objects also contains a phenoData object for sample pheno data. Useful methods are
sampleNames, pData.
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Finally, we have methods such as dim, ncol (number of columns; number of samples), nrow
(number of rows; number of methylation loci).

Objects can be subsetted using two indicies BSseq[i,j] with the first index being methy-
lation loci and the second index being samples. Another very useful way of subsetting the
object is by using the method subsetByOverlaps. This selects all methylation loci inside a
set of genomic intervals (there is a difference between first and second argument and either
can be BSseq or GRanges).

Examples:

> head(start(BS.chr22), n = 4)

[1] 14430632 14430677 14430687 14430702

> head(seqnames(BS.chr22), n = 4)

factor-Rle of length 4 with 1 run

Lengths: 4

Values : chr22

Levels(1): chr22

> sampleNames(BS.chr22)

[1] "r1" "r2"

> pData(BS.chr22)

DataFrame with 2 rows and 1 column

Rep

<character>

r1 replicate1

r2 replicate2

> dim(BS.chr22)
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[1] 494728 2

> BS.chr22[1:6,1]

An object of type 'BSseq' with

6 methylation loci

1 samples

has not been smoothed

> subsetByOverlaps(BS.chr22,

+ GRanges(seqnames = "chr22",

+ ranges = IRanges(start = 1, end = 2*10^7)))

An object of type 'BSseq' with

67082 methylation loci

2 samples

has not been smoothed

Data handling

We have a number of functions for manipulating one or more BSseq objects.

BSseq instantiates an object of class BSseq. Genomic locations are passed in, either as a
GRanges object (argument gr) or as chromosome and location vectors (arguments chr and
pos). The arguments M and Cov accepts matrices, and it is possible to directly give it a
phenoData object.

> M <- matrix(0:8, 3, 3)

> Cov <- matrix(1:9, 3, 3)

> BStmp <- BSseq(chr = c("chr1", "chrX", "chr1"), pos = 1:3,

+ M = M, Cov = Cov, sampleNames = c("A1","A2", "B"))

A BSseq object may be ordered by orderBSseq. This ensures that data from a single chro-
mosome appears in an ordered, contiguous block. There is also the possibility for specifying
the chromosome order (this is less important). The smoothing functions assumes that the
underlying BSseq has been ordered.
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> granges(BStmp)

GRanges object with 3 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr1 [1, 1] *

[2] chr1 [3, 3] *

[3] chrX [2, 2] *

-------

seqinfo: 2 sequences from an unspecified genome; no seqlengths

> BStmp <- orderBSseq(BStmp, seqOrder = c("chr1", "chrX"))

> granges(BStmp)

GRanges object with 3 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr1 [1, 1] *

[2] chr1 [3, 3] *

[3] chrX [2, 2] *

-------

seqinfo: 2 sequences from an unspecified genome; no seqlengths

chrSelectBSseq performs the often useful task of selecting one or more chromosomes and
can also order the output. In case order = TRUE, the output is ordered according to the
order of the seqnames argument.

> chrSelectBSseq(BStmp, seqnames = "chr1", order = TRUE)

An object of type 'BSseq' with

2 methylation loci

3 samples

has not been smoothed

Of course, in this case the function does little, since BS.chr22 already only contains data
from chromosome 22.
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combine combines two BSseq objects in the following way: the samples for the return objects
is the union of the samples from the two objects, and the methylation loci are the union of
the two methylation loci. The two objects do not need to have measured the same loci (in
the example below, BStmp has data on chromosome 1 and X)..

> BStmp2 <- combine(BStmp, BS.chr22[1:3,])

> granges(BStmp2)

GRanges object with 6 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr1 [ 1, 1] *

[2] chr1 [ 3, 3] *

[3] chrX [ 2, 2] *

[4] chr22 [14430632, 14430632] *

[5] chr22 [14430677, 14430677] *

[6] chr22 [14430687, 14430687] *

-------

seqinfo: 3 sequences from an unspecified genome; no seqlengths

> getCoverage(BStmp2)

A1 A2 B r1 r2

[1,] 1 4 7 0 0

[2,] 3 6 9 0 0

[3,] 2 5 8 0 0

[4,] 0 0 0 18 23

[5,] 0 0 0 11 28

[6,] 0 0 0 10 25

collapseBSseq performs the often useful task of adding several columns of a BSseq object.
This is often used in the beginning of an analysis where each column may correspond to a
lane and several such columns represents the data for a single biological sample.

> collapseBSseq(BStmp, columns = c("A", "A", "B"))

An object of type 'BSseq' with

3 methylation loci

2 samples

has not been smoothed
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Obtaining coverage (methylation)

Coverage, either Cov or M values, are obtained by getCoverage, using the type argument:

> head(getCoverage(BS.chr22, type = "Cov"), n = 4)

[,1] [,2]

[1,] 18 23

[2,] 11 28

[3,] 10 25

[4,] 8 21

> head(getCoverage(BS.chr22, type = "M"), n = 4)

[,1] [,2]

[1,] 17 20

[2,] 4 20

[3,] 6 19

[4,] 2 4

This will return a – possibly very large – matrix. It is also possible to get region based cover-
age by using the regions argument to the function. This argument is either a data.frame

(with columns chr, start and end) or a GRanges object. Let us do an example

> regions <- GRanges(seqnames = c("chr22", "chr22"),

+ ranges = IRanges(start = 1.5 * 10^7 + c(0,200000),

+ width = 1000))

> getCoverage(BS.chr22, regions = regions, what = "perRegionTotal")

r1 r2

[1,] 30 38

[2,] NA NA

When what is perRegionTotal the return value is the total coverage of each region (and note
that regions without coverage return NA). Similarly, perRegionAverage yields the average
coverage in the region. However, it is often useful to get the actual values, like
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> getCoverage(BS.chr22, regions = regions, what = "perBase")

[[1]]

[,1] [,2]

[1,] 21 30

[2,] 2 8

[3,] 7 0

[[2]]

NULL

This is the default behaviour, and it returns a list where each element corresponds to a
region. Note that regions with no coverage gets a NULL.

Methylation estimates can be obtained in the same way, using the function getMeth. If
type is set to raw the function returns simple single-loci methylation estimates (which are
M/Cov). To get smoothed estimates, the BSseq object needs to have been smoothed using
Bsmooth, and type set to smooth (default). The getCoverage, getMeth has a regions

and a what argument. For getMeth the what argument can be perBase or perRegion (the
later is really the per-region average methylation). Additionally, confidence intervals can
be computed using a method taking possibly low coverage loci into account as well as loci
where the methylation percentage might be close to 0 or 1 [6]. Currently, confidence intervals
cannot be computed for region-level summary estimates. Examples

> getMeth(BS.chr22, regions, type = "raw")

[[1]]

[,1] [,2]

[1,] 0.1904762 0.1666667

[2,] 1.0000000 0.7500000

[3,] 0.1428571 NaN

[[2]]

NULL

> getMeth(BS.chr22, regions[2], type = "raw", what = "perBase")

[[1]]

NULL
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4 Reading data

Alignment output from the BSmooth alignment suite

It is straightforward to read output files (summarized evidence) from the BSmooth alignment
suite, using read.bsmooth. This function takes as argument a number of directories, usually
corresponding to samples, with the alignment output. Sometimes, one might want to read
only certain chromosomes, which can be accomplished by the seqnames argument. Also,
the default values of qualityCutoff = 20 ensures that we do not use methylation evidence
with a base quality strictly lower than 20 (since we may not be confident whether the read
really supports methylation or not). The function read.bsmooth allows for both gzipped
and non-gzipped input files. It is faster to read gzipped files, so we recommend gzipping
post-alignment.

During the development of BSmooth we experimented with a number of different output
formats. These legacy formats can be read with read.umtab and read.umtab2.

Alignment output from other aligners

We are interested in adding additional parsers to the package; if your favorite alignment
software is not supported, feel free to get in touch.

In general, we need summarized methylation evidence. In short, for each methylation loci,
we need to know how many reads cover the loci and how many of those reads support
methylation.

As an example, consider the Lister data. The files posted online looks like

> head mc_imr90_r1_22

assembly position strand class mc h

22 14430632 + CG 9 10

22 14430633 - CG 8 8

22 14430677 + CG 1 1

22 14430678 - CG 3 10

22 14430688 - CG 6 10

22 14430703 - CG 2 8

22 14431244 + CG 5 10

22 14431245 - CG 5 11
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For these files, the evidence is split by strand. It is often easiest to read in one sample at a
time, instantiate a BSseq object and the use combine and collapseBSseq to combine the
samples, since these functions deal objects that have different sets of CpGs. In the Lister
data, note that the position is the position of the“C”, so basically, if you want to combine the
evidence from both strands, CpGs on the “-” strand needs to have 1 subtracted from their
position. A full script showing how these files are used to create BS.chr22 can be found in
inst/scripts/get_BS.chr22.R in the bsseq package. The path of this file may be found
by

> system.file("scripts", "get_BS.chr22.R", package = "bsseq")

[1] "/tmp/RtmpuGwhfx/Rinst94c16e0c72/bsseq/scripts/get_BS.chr22.R"

Analysis

Computing smoothed methylation levels is simple. We subset BS.chr22 so we only smooth
1 sample, for run-time purpose

> BS.chr22.1 <- BSmooth(BS.chr22[,"r1"], verbose = TRUE)

[BSmooth] preprocessing ... done in 1.4 sec

[BSmooth] smoothing by 'sample' (mc.cores = 1, mc.preschedule = FALSE)

[BSmooth] sample r1 (out of 1), done in 50.5 sec

[BSmooth] smoothing done in 50.6 sec

> BS.chr22.1

An object of type 'BSseq' with

494728 methylation loci

1 samples

has been smoothed with

BSmooth (ns = 70, h = 1000, maxGap = 100000000)

A number of arguments pertains to using multiple cores. This is useful if you have multiple
samples or chromosomes. mc.cores tells BSmooth how many cores to use and parallelBy
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describes whether the parallelization is over samples or chromosomes. If the parallelization
is over samples, each core will compute the smoothing of the entire genome. And if it
is over samples, each cores will smooth all samples for one or more chromosomes. The
appropriate choice depends on the number of samples and cpu cores available. If you have
the exact same number of samples as cores, the fastest is parallelBy = "sample". If you
have less samples than cores, the fastest is parallelBy = "chromosome". The argument
mc.preshedule should not need to be changed (unless perhaps if a small value of maxGap

is uses); see the man page for parallel::mclapply. Note that setting mc.cores to a value
greater than 1 is not support on MS Windows due to a limitation of the operating system.

For a more detailed discussion of the analysis tools, read the companion vignette “Analyzing
WGBS with the bsseq package”, which also finding DMRs and plotting them.

Fisher’s exact tests may be efficiently computed using the function fisherTests.

Binomial and poisson goodness of fit tests statistics may be computed using binomialGoodnessOfFit

and poissonGoodnessOfFit.
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utils

� Other packages: BiocGenerics 0.12.0, GenomeInfoDb 1.2.0, GenomicRanges 1.18.0,
IRanges 2.0.0, S4Vectors 0.4.0, bsseq 1.2.0, matrixStats 0.10.0

� Loaded via a namespace (and not attached): Biobase 2.26.0, R.methodsS3 1.6.1,
Rcpp 0.11.3, XVector 0.6.0, colorspace 1.2-4, grid 3.1.1, lattice 0.20-29, locfit 1.5-9.1,
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