
Advanced analysis using baySeq; generic distribution definitions

Thomas J. Hardcastle

October 17, 2014

1 Generic Prior Distributions

baySeq now offers complete user-specification of underlying distributions. This vignette describes using baySeq under
this protocol. Familiarity with standard (negative-binomial) baySeq is assumed; please consult the other vignettes for
a description of this approach.

Analysis is carried out through specification of a densityFunction class. The primary value in a densityFunction

object is the @density slot, a user-defined function that should take variables x, observables and parameters.
x corresponds to a row of data in a countData object. observables is a list object of observed values that may
influence the model. By default, the @libsizes and @seglens values of the countData object will be internally
appended to this list, unless objects with these names are otherwise specified by the user. parameters is a list
object of parameters to be empirically estimated from the data with the getPriors function and used to estimate
likelihoods with the getLikelihoods function. The @dist function should return a vector of log-likelihood values
(or NA for invalid parameter choices) of the same length as the input variable x.

Other required slots of the densityFunction object are initiatingValues, a vector of initiating values to be
used in optimisation of the parameters to be used in the @dist slot (and thus defining the length of the parameter
object) and equalOverReplicates, a specification of which parameters are fixed for every replicate group and which
may vary for different experimental conditions. If only one parameter is variable over experimental conditions, the
Nelder-Mead optimisation used may be unstable, and one-dimensional optimisation with user defined functionally
specified lower and upper bounds may (optionally) be provided; otherwise, Nelder-Mead will be attempted.

Optionally a function may be provided in @stratifyFunction to stratify the data and improve prior estimation in
the tails where the samplesize argument in the getPriors function is less than the row dimension of the countData

object. If this is provided, the @stratifyBreaks slot should give the number of strata to be used.

Below a model is constructed based on the normal distribution. The standard deviation is assumed to be constant
for a given row of data across all experimental condidtions, while the means (normalised by library scaling factor) are
allowed to vary across experimental conditions.

If parallelisation is available, it is useful to use it.

> if(require("parallel")) cl <- makeCluster(8) else cl <- NULL

> library(baySeq)

> normDensityFunction <- function(x, observables, parameters) {

+ if(any(sapply(parameters, function(x) any(x < 0)))) return(rep(NA, length(x)))

+ dnorm(x, mean = parameters[[2]] * observables$libsizes, sd = parameters[[1]], log = TRUE)

+ }

> normDensity <- new("densityFunction", density = normDensityFunction, initiatingValues = c(0.1, 1),

+ equalOverReplicates = c(TRUE, FALSE),

+ lower = function(x) 0, upper = function(x) 1 + max(x) * 2,

+ stratifyFunction = rowMeans, stratifyBreaks = 10)

We construct the countData object as before.

> data(simData)

> CD <- new("countData", data = simData,

+ replicates = c("simA", "simA", "simA", "simA", "simA",

+ "simB", "simB", "simB", "simB", "simB"),

1

2

+ groups = list(NDE = c(1,1,1,1,1,1,1,1,1,1),

+ DE = c(1,1,1,1,1,2,2,2,2,2))

+)

> libsizes(CD) <- getLibsizes(CD)

> densityFunction(CD) <- normDensity

We can then fit priors and calculate posterior likelihoods based on our specified distributional model. The distributional
model is specified in the ’getPriors’ function and will be automatically used in the ‘getLikelihoods’ function

> normCD <- getPriors(CD, cl = cl)

> normCD <- getLikelihoods(normCD, cl = cl)

.

Similarly, we can construct a generic version of the negative-binomial model.

> nbinomDensityFunction <- function(x, observables, parameters) {

+ if(any(sapply(parameters, function(x) any(x < 0)))) return(NA)

+ dnbinom(x, mu = parameters[[1]] * observables$libsizes * observables$seglens, size = 1 / parameters[[2]], log = TRUE)

+ }

> densityFunction(CD) <- new("densityFunction", density = nbinomDensityFunction, initiatingValues = c(0.1, 1),

+ equalOverReplicates = c(FALSE, TRUE),

+ lower = function(x) 0, upper = function(x) 1 + max(x) * 2,

+ stratifyFunction = rowMeans, stratifyBreaks = 10)

> nbCD <- getPriors(CD, cl = cl)

> nbCD <- getLikelihoods(nbCD, cl = cl)

.

We can compare this to the standard analysis of these data.

> CD <- getPriors.NB(CD, cl = cl)

> CD <- getLikelihoods(CD, cl = cl)

.

The generic negative-binomial data performs almost identically to standard baySeq. The methods differ in that the
standard baySeq uses quasi-maximum-likelihood to estimate the priors, while generic baySeq uses maximum-likelihood
(since no generic method exists for quasi-maximum-likelihood on arbitrary distributions).

2 Different Model Priors

It is now possible to use different model priors for different subsets of the countData object. If we expect a certain
class of genes (for example) to have a different prior likelihood towards differential expression than another such class,
we can separate the two sets and estimate (or set) the model priors independently.

Let us suppose that we have reason to believe that the first hundred genes in the ‘CD’ object are likely to behave
differently to the remaining genes. Then

> CDv <- getLikelihoods(nbCD, modelPriorSets = list(A = 1:100, B = 101:1000), cl = cl)

.

The model priors used are recorded in the @priorModels slot.

> CDv@priorModels

$A

NDE DE

0.2 0.8

$B

NDE DE

0.97 0.03

3

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●●●
●

●●
●

●

●
●

●

●●●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●●●

●

●
●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●
●●●●●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●●●

●●

●
●

●

●

●

●

●

●

●

●

●●●
●●

●

●
●

●
● ●●

●●

●●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●●●

●
●

●
●

●

●●
●●

●

●
●●

●●

●
●●●

●

●

●
●

●

●
●

●

●

●
●

●●
●

●

●

●

●●

●

●

●●●
●

●●●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●●●
●●

●

●●

●

●
●

●

●

●●●
●●

●

●
●

●

●●●●

●

●
●

●●●
●

●

●●
●

●
●

●
●

●
●●

●

●●
●

●●●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●
●●●●
●
●

●

●

●

●

●

●

●

●
●

●

●●●

●

●
●

●

●

●

●
●

●

●
●●

●

●

●
●

●
●●●

●

●

●

●●
●

●

●

●

●

●

●●●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●●

●

●
●●

●●

●
●

●●
●●

●

●

●
●

●

●
●

●●
●

●

●

●●●●
●

●
●●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●●

●
●●●
●
●

●●●
● ●

●
●●

●●●
●

●
●

●
●

●

●●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●●
●

●●

●
●

●

●

●●
●●

●

●
●

●

●
●
●

●
●

●

●

●
●

●
●

●

●

●
●●●

●

●
●

●

●●

●●

●

●●
●

●

●

●
●

●
●●

●●

●

●

●

●●
●●●

●

●●

●

●

●

●

●

●

●●●

●

●●●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●●
●●●

●
●●

●

●

●

●

●

●●

●

●
●

●

●●

●
●●

●
●

●
●

●

●●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●●

●

●●

●

●

●
●●●

●

●
●

●
●

●

●
●

●●
●

●

●

●

●

●

●
●●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●
●

●
●

●

●

●
●●

●
●●●●

●

●

●

●

●

●●

●

●

●
●

●

●
●●

●●●

●

●●

●

●

●

●
●

●
●●●

●●●●

●
●

●

●

●

●

●

●●

●
●
●●

●

●

●●

●

●

●

●
● ●

●

●

●

●

●
●

●

●
●●●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●
●

●

●

●

●

●●●
●

●
●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●
●●

●

●

●●

●

●●
●

●●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●
●●●●
●

●

●●
●

●

●●

●
●

●●

●

●

●

●

●

●
●

●
●
●

●

●
●

●

●

●●●

●●

●●●●●
●●●

●

●
●

●

●

●

●

●●●

●

●●

●

●
●

●●

●
●

●
●

●

● ●

●
●

● ●

●
●

●

●

●

●

●

●

●●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Generic (NB−distribution) baySeq

S
ta

nd
ar

d
ba

yS
eq

Figure 1: Likelihoods of DE estimated by standard/generic baySeq”

We can see the difference in performance by computing the ROC curves as before. Using different model priors can
substantially improve performance, although obviously we have cheated here by splitting exactly those data simulated
as DE and those as none-DE. It should also be recognised that this approach may bias downstream analyses; e.g.
GO enrichment analysis.

Several pre-existing distributions are built into baySeq. Here we use a pre-developed zero-inflated negative binomial
distribution to analyse zero-inflated data.

> data(zimData)

> CD <- new("countData", data = zimData,

+ replicates = c("simA", "simA", "simA", "simA", "simA",

+ "simB", "simB", "simB", "simB", "simB"),

+ groups = list(NDE = c(1,1,1,1,1,1,1,1,1,1),

+ DE = c(1,1,1,1,1,2,2,2,2,2))

+)

> libsizes(CD) <- getLibsizes(CD)

> densityFunction(CD) <- nbinomDensity

> CD <- getPriors(CD, cl = cl)

> CD <- getLikelihoods(CD, cl = cl)

.

> CDz <- CD

> densityFunction(CDz) <- ZINBDensity

4

0 200 400 600 800

0
20

40
60

80
10

0

FPs

T
P

s

standard baySeq
Generic (NB−distribution) baySeq

Figure 2: ROC curves estimated by standard/generic baySeq”

> CDz <- getPriors(CDz, cl = cl)

> CDz <- getLikelihoods(CDz, cl = cl)

.

Finally, we shut down the cluster (assuming it was started to begin with).

> if(!is.null(cl)) stopCluster(cl)

Session Info

> sessionInfo()

R version 3.1.1 Patched (2014-09-25 r66681)

Platform: x86_64-unknown-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8

[4] LC_COLLATE=C LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C

[10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

5

0 200 400 600 800

0
20

40
60

80
10

0

FPs

T
P

s

standard
Generic (NB−distribution)
Variable model priors

Figure 3: ROC curves estimated by standard/generic/variable model priors baySeq”

attached base packages:

[1] stats4 parallel stats graphics grDevices utils datasets methods

[9] base

other attached packages:

[1] baySeq_2.0.50 abind_1.4-0 GenomicRanges_1.18.1 GenomeInfoDb_1.2.0

[5] IRanges_2.0.0 S4Vectors_0.4.0 BiocGenerics_0.12.0

loaded via a namespace (and not attached):

[1] BiocStyle_1.4.1 XVector_0.6.0 tools_3.1.1

	1 Generic Prior Distributions
	2 Different Model Priors

