
An Introduction to Rsamtools

Martin Morgan

Modified: 18 March, 2010. Compiled: March 2, 2015

Contents

1 Introduction 1

2 Input 2
2.1 Large bam files . 4

3 Views 4
3.1 Assembling a BamViews instance . 5
3.2 Using BamViews instances . 6

4 Directions 8

A Assembling a BamViews instance 10
A.1 Genomic ranges of interest . 10
A.2 BAM files . 10

> library(Rsamtools)

1 Introduction

The Rsamtools package provides an interface to BAM files. BAM files are produced by samtools and other software, and
represent a flexible format for storing ‘short’ reads aligned to reference genomes. BAM files typically contain sequence and
base qualities, and alignment coordinates and quality measures. BAM files are appealing for several reasons. The format
is flexible enough to represent reads generated and aligned using diverse technologies. The files are binary so that file
access is relatively efficient. BAM files can be indexed, allowing ready access to localized chromosomal regions. BAM files
can be accessed remotely, provided the remote hosting site supports such access and a local index is available. This
means that specific regions of remote files can be accessed without retrieving the entire (large!) file. A full description
is available in the BAM format specification (http://samtools.sourceforge.net/SAM1.pdf)

The main purpose of the Rsamtools package is to import BAM files into R. Rsamtools also provides some facility for file
access such as record counting, index file creation, and filtering to create new files containing subsets of the original. An
important use case for Rsamtools is as a starting point for creating R objects suitable for a diversity of work flows, e.g.,
AlignedRead objects in the ShortRead package (for quality assessment and read manipulation), or GAlignments objects
in GenomicAlignments package (for RNA-seq and other applications). Those desiring more functionality are encouraged
to explore samtools and related software efforts.

1

http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://samtools.sourceforge.net/SAM1.pdf
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html

An Introduction to Rsamtools 2

2 Input

The essential capability provided by Rsamtools is BAM input. This is accomplished with the scanBam function. scanBam

takes as input the name of the BAM file to be parsed. In addition, the param argument determines which genomic coordi-
nates of the BAM file, and what components of each record, will be input. Rparam is an instance of the ScanBamParam
class. To create a param object, call ScanBamParam. Here we create a param object to extract reads aligned to three
distinct ranges (one on seq1, two on seq2). From each of read in those ranges, we specify that we would like to extract
the reference name (rname, e.g., seq1), strand, alignment position, query (i.e., read) width, and query sequence:

> which <- RangesList(seq1=IRanges(1000, 2000),

+ seq2=IRanges(c(100, 1000), c(1000, 2000)))

> what <- c("rname", "strand", "pos", "qwidth", "seq")

> param <- ScanBamParam(which=which, what=what)

Additional information can be found on the help page for ScanBamParam. Reading the relevant records from the BAM file
is accomplished with

> bamFile <-

+ system.file("extdata", "ex1.bam", package="Rsamtools")

> bam <- scanBam(bamFile, param=param)

Like scan, scanBam returns a list of values. Each element of the list corresponds to a range specified by the which

argument to ScanBamParam.

> class(bam)

[1] "list"

> names(bam)

[1] "seq1:1000-2000" "seq2:100-1000" "seq2:1000-2000"

Each element is itself a list, containing the elements specified by the what and tag arguments to ScanBamParam.

> class(bam[[1]])

[1] "list"

> names(bam[[1]])

[1] "rname" "strand" "pos" "qwidth" "seq"

The elements are either basic R or IRanges data types

> sapply(bam[[1]], class)

rname strand pos qwidth

"factor" "factor" "integer" "integer"

seq

"DNAStringSet"

A paradigm for collapsing the list-of-lists into a single list is

> .unlist <- function (x)

+ {

+ ## do.call(c, ...) coerces factor to integer, which is undesired

+ x1 <- x[[1L]]

+ if (is.factor(x1)) {

+ structure(unlist(x), class = "factor", levels = levels(x1))

+ } else {

+ do.call(c, x)

+ }

+ }

http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html

An Introduction to Rsamtools 3

> bam <- unname(bam) # names not useful in unlisted result

> elts <- setNames(bamWhat(param), bamWhat(param))

> lst <- lapply(elts, function(elt) .unlist(lapply(bam, "[[", elt)))

This might be further transformed, e.g., to a DataFrame, with

> head(do.call("DataFrame", lst))

DataFrame with 6 rows and 5 columns

rname strand pos qwidth

<factor> <factor> <integer> <integer>

1 seq1 + 970 35

2 seq1 + 971 35

3 seq1 + 972 35

4 seq1 + 973 35

5 seq1 + 974 35

6 seq1 - 975 35

seq

<DNAStringSet>

1 TATTAGGAAATGCTTTACTGTCATAACTATGAAGA

2 ATTAGGAAATGCTTTACTGTCATAACTATGAAGAG

3 TTAGGAAATGCTTTACTGTCATAACTATGAAGAGA

4 TAGGAAATGCTTTACTGTCATAACTATGAAGAGAC

5 AGGAAATGCTTTACTGTCATAACTATGAAGAGACT

6 GGAAATGCTTTACTGTCATAACTATGAAGAGACTA

Often, an alternative is to use a ScanBamParam object with desired fields specified in what as an argument to Genomi-

cAlignments::readGAlignments; the specified fields are added as columns to the returned GAlignments.

The BAM file in the previous example includes an index, represented by a separate file with extension .bai:

> list.files(dirname(bamFile), pattern="ex1.bam(.bai)?")

[1] "ex1.bam" "ex1.bam.bai"

Indexing provides two significant benefits. First, an index allows a BAM file to be efficiently accessed by range. A corollary
is that providing a which argument to ScanBamParam requires an index. Second, coordinates for extracting information
from a BAM file can be derived from the index, so a portion of a remote BAM file can be retrieved with local access only
to the index. For instance, provided an index file exists on the local computer, it is possible to retrieve a small portion of
a BAM file residing on the 1000 genomes HTTP server. The url ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/
pilot_data/data/NA19240/alignment/NA19240.chrom6.SLX.maq.SRP000032.2009_07.bam points to the BAM file
corresponding to individual NA19240 chromosome 6 Solexa (Illumina) sequences aligned using MAQ. The remote file is
very large (about 10 GB), but the corresponding index file is small (about 500 KB). With na19240url set to the above
address, the following retrieves just those reads in the specified range

> which <- RangesList("6"=IRanges(100000L, 110000L))

> param <- ScanBamParam(which=which, what=scanBamWhat())

> na19240bam <- scanBam(na19240url, param=param)

Invoking scanBam without an index file, as above, first retrieves the index file from the remote location, and then
queries the remote file using the index; for repeated queries, it is more efficient to retrieve the index file first (e.g., with
download.file) and then use the local index as an argument to scanBam. Many BAM files were created in a way that
causes scanBam to report that the “EOF marker is absent”; this message can safely be ignored.

BAM files may be read by functions in packages other than Rsamtools. In ShortRead, readAligned invoked with
type="bam" will read BAM files in to an AlignedRead object. This function takes a param argument, just as scanBam, so
the user can control which portions of the file are input. Similar input facilities are available through the readGAlignments
function in GenomicAlignments.

http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/pilot_data/data/NA19240/alignment/NA19240.chrom6.SLX.maq.SRP000032.2009_07.bam
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/pilot_data/data/NA19240/alignment/NA19240.chrom6.SLX.maq.SRP000032.2009_07.bam
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html

An Introduction to Rsamtools 4

Additional ways of interacting with BAM files include scanBamHeader (to extract header information) and countBam (to
count records matching param). filterBam filters reads from the source file according to the criteria of the ScanBam-
Param parameter, writing reads passing the filter to a new file. The function sortBam sorts a previously unsorted BAM,
while The function indexBam creates an index file from a sorted BAM file.

readPileup reads a pileup file created by samtools, importing SNP, indel, or all variants into a GRanges object.

2.1 Large bam files

BAM files can be large, containing more information on more genomic regions than are of immediate interest or than can fit
in memory. The first strategy for dealing with this is to select, using the what and which arguments to ScanBamParam,
just those portions of the BAM file that are essential to the current analysis, e.g., specifying what=c(‘rname’, ’qname’,

’pos’) when wishing to calculate coverage of ungapped reads.

When selective input of BAM files is still too memory-intensive, the file can be processed in chunks, with each chunk
distilled to the derived information of interest. Chromosomes will often be the natural chunk to process. For instance,
here we write a summary function that takes a single sequence name (chromosome) as input, reads in specific information
from the BAM file, and calculates coverage over that sequence.

> summaryFunction <-

+ function(seqname, bamFile, ...)

+ {

+ param <- ScanBamParam(what=c('pos', 'qwidth'),

+ which=GRanges(seqname, IRanges(1, 1e7)),

+ flag=scanBamFlag(isUnmappedQuery=FALSE))

+ x <- scanBam(bamFile, ..., param=param)[[1]]

+ coverage(IRanges(x[["pos"]], width=x[["qwidth"]]))

+ }

This might be used as follows; it is an ideal candidate for evaluation in parallel, e.g., using the parallel package and
srapply function in ShortRead.

> seqnames <- paste("seq", 1:2, sep="")

> cvg <- lapply(seqnames, summaryFunction, bamFile)

> names(cvg) <- seqnames

> cvg

$seq1

integer-Rle of length 1569 with 1054 runs

Lengths: 2 2 1 3 4 2 3 4 ... 1 1 1 1 1 1 1

Values : 1 2 3 4 5 7 8 9 ... 9 7 6 5 3 2 1

$seq2

integer-Rle of length 1567 with 1092 runs

Lengths: 1 3 1 1 1 3 1 4 ... 1 1 2 1 4 4 1

Values : 3 4 5 8 12 14 15 16 ... 10 8 7 6 3 2 1

The result of the function (a coverage vector, in this case) will often be much smaller than the input.

3 Views

The functions described in the previous section import data in to R. However, sequence data can be very large, and it
does not always make sense to read the data in immediately. Instead, it can be useful to marshal references to the data
into a container and then act on components of the container. The BamViews class provides a mechanism for creating

http://bioconductor.org/packages/release/bioc/html/Rsamtools.html

An Introduction to Rsamtools 5

‘views’ into a set of BAM files. The view itself is light-weight, containing references to the relevant BAM files and metadata
about the view (e.g., the phenotypic samples corresponding to each BAM file).

One way of understanding a BamViews instance is as a rectangular data structure. The columns represent BAM files (e.g.,
distinct samples). The rows represent ranges (i.e., genomic coordinates). For instance, a ChIP-seq experiment might
identify a number of peaks of high read counts.

3.1 Assembling a BamViews instance

To illustrate, suppose we have an interest in caffeine metabolism in humans. The ‘rows’ contain coordinates of genomic
regions associated with genes in a KEGG caffeine metabolism pathway. The ‘columns’ represent individuals in the 1000
genomes project.

To create the ‘rows’, we identify possible genes that KEGG associates with caffeine metabolism:

> library(KEGG.db)

> kid <- revmap(KEGGPATHID2NAME)[["Caffeine metabolism"]]

> egid <- KEGGPATHID2EXTID[[sprintf("hsa%s", kid)]]

Then we use the appropriate TxDb package to translate Entrez identifiers to obtain ranges of interest (one could
also use biomaRt to retrieve coordinates for non-model organisms, perhaps making a TxDb object as outlined in the
GenomicFeatures vignette). We’ll find that the names used for chromosomes in the alignments differ from those used at
Ensembl, so seqlevels<- is used to map between naming schemes and to drop unused levels.

> library(TxDb.Hsapiens.UCSC.hg18.knownGene)

> bamRanges <- transcripts(TxDb.Hsapiens.UCSC.hg18.knownGene,

+ vals=list(gene_id=egid))

> seqlevels(bamRanges) <- # translate seqlevels

+ sub("chr", "", seqlevels(bamRanges))

> lvls <- seqlevels(bamRanges) # drop unused levels

> seqlevels(bamRanges) <- lvls[lvls %in% as.character(seqnames(bamRanges))]

Note that bamRanges ‘knows’ the genome for which the ranges are defined

> unique(genome(bamRanges))

[1] "hg18"

The details of creating the ‘columns’ of BAM files. Here we retrieve a vector of BAM file URLs (slxMaq09) from the
package.

> slxMaq09 <- local({

+ fl <- system.file("extdata", "slxMaq09_urls.txt",

+ package="Rsamtools")

+ readLines(fl)

+ })

We now assemble the BamViews instance from these objects; we also provide information to annotated the BAM files
(with the bamSamples function argument, which is a DataFrame instance with each row corresponding to a BAM file)
and the instance as a whole (with bamExperiment, a simple named list containing information structured as the user
sees fit).

> bamExperiment <-

+ list(description="Caffeine metabolism views on 1000 genomes samples",

+ created=date())

> bv <- BamViews(slxMaq09, bamRanges=bamRanges,

+ bamExperiment=bamExperiment)

> metadata(bamSamples(bv)) <-

http://bioconductor.org/packages/release/bioc/html/Rsamtools.html

An Introduction to Rsamtools 6

+ list(description="Solexa/MAQ samples, August 2009",

+ created="Thu Mar 25 14:08:42 2010")

3.2 Using BamViews instances

The BamViews object can be queried for its component parts, e.g.,

> bamExperiment(bv)

$description

[1] "Caffeine metabolism views on 1000 genomes samples"

$created

[1] "Mon Mar 2 18:25:52 2015"

More usefully, Methods in Rsamtools are designed to work with BamViews objects, retrieving data from all files in the
view. These operations can take substantial time and require reliable network access.

To illustrate, the following code (not evaluated when this vignette was created) downloads the index files associated with
the bv object

> bamIndexDir <- tempfile()

> indexFiles <- paste(bamPaths(bv), "bai", sep=".")

> dir.create(bamIndexDir)

> idxFiles <- mapply(download.file, indexFiles,

+ file.path(bamIndexDir, basename(indexFiles)) ,

+ MoreArgs=list(method="curl"))

and then queries the 1000 genomes project for reads overlapping our transcripts; by loading the parallel package, we
tell Rsamtools to use as many cores as are available on our machine (the parallel package does not provide parallel
functionality on Windows computers)

> library(GenomicAlignments)

> library(parallel)

> options(srapply_fapply="parallel", mc.cores=detectCores())

> olaps <- readGAlignmentsFromBam(bv)

The resulting object is about 11 MB in size. To avoid having to download this data each time the vignette is run, we
instead load it from disk

> library(GenomicAlignments)

> load(system.file("extdata", "olaps.Rda", package="Rsamtools"))

> olaps

List of length 24

names(24): NA06986.SLX.maq.SRP000031.2009_08.bam ...

> head(olaps[[1]])

GAlignments object with 6 alignments and 0 metadata columns:

seqnames strand cigar qwidth start

<Rle> <Rle> <character> <integer> <integer>

[1] 2 + 51M 51 31410650

[2] 2 + 51M 51 31410658

[3] 2 - 51M 51 31410663

[4] 2 + 51M 51 31410666

[5] 2 - 51M 51 31410676

[6] 2 + 51M 51 31410676

end width njunc

http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html

An Introduction to Rsamtools 7

<integer> <integer> <integer>

[1] 31410700 51 0

[2] 31410708 51 0

[3] 31410713 51 0

[4] 31410716 51 0

[5] 31410726 51 0

[6] 31410726 51 0

seqinfo: 114 sequences from an unspecified genome

There are 34616 reads in NA06986.SLX.maq.SRP000031.2009_08.bam overlapping at least one of our transcripts. It is
easy to explore this object, for instance discovering the range of read widths in each individual.

> head(t(sapply(olaps, function(elt) range(qwidth(elt)))))

[,1] [,2]

NA06986.SLX.maq.SRP000031.2009_08.bam 51 51

NA06994.SLX.maq.SRP000031.2009_08.bam 36 51

NA07051.SLX.maq.SRP000031.2009_08.bam 51 51

NA07346.SLX.maq.SRP000031.2009_08.bam 48 76

NA07347.SLX.maq.SRP000031.2009_08.bam 51 51

NA10847.SLX.maq.SRP000031.2009_08.bam 36 51

Suppose we were particularly interested in the first transcript, which has a transcript id uc002ayr.1. Here we extract reads
overlapping this transcript from each of our samples. As a consequence of the protocol used, reads aligning to either
strand could be derived from this transcript. For this reason, we set the strand of our range of interest to *. We use the
endoapply function, which is like lapply but returns an object of the same class (in this case, SimpleList) as its first
argument.

> rng <- bamRanges(bv)[1]

> strand(rng) <- "*"

> olap1 <- endoapply(olaps, subsetByOverlaps, rng)

> olap1 <- lapply(olap1, "seqlevels<-", value=as.character(seqnames(rng)))

> head(olap1[[24]])

GAlignments object with 6 alignments and 0 metadata columns:

seqnames strand cigar qwidth start

<Rle> <Rle> <character> <integer> <integer>

[1] 15 - 36M 36 72828212

[2] 15 + 36M 36 72828226

[3] 15 - 36M 36 72828237

[4] 15 - 36M 36 72828272

[5] 15 - 36M 36 72828291

[6] 15 - 36M 36 72828297

end width njunc

<integer> <integer> <integer>

[1] 72828247 36 0

[2] 72828261 36 0

[3] 72828272 36 0

[4] 72828307 36 0

[5] 72828326 36 0

[6] 72828332 36 0

seqinfo: 1 sequence from an unspecified genome

To carry the example a little further, we calculate coverage of each sample:

http://bioconductor.org/packages/release/bioc/html/Rsamtools.html

An Introduction to Rsamtools 8

> minw <- min(sapply(olap1, function(elt) min(start(elt))))

> maxw <- max(sapply(olap1, function(elt) max(end(elt))))

> cvg <- endoapply(olap1, coverage,

+ shift=-start(ranges(bamRanges[1])),

+ width=width(ranges(bamRanges[1])))

> cvg[[1]]

RleList of length 1

$`15`

integer-Rle of length 7758 with 1115 runs

Lengths: 8 1 10 31 9 11 3 5 ... 1 2 13 1 5 2 4

Values : 2 3 2 3 4 3 2 1 ... 3 2 3 4 5 6 5

Since the example includes a single region of uniform width across all samples, we can easily create a coverage matrix
with rows representing nucleotide and columns sample and, e.g., document variability between samples and nucleotides

> m <- matrix(unlist(lapply(cvg, lapply, as.vector)),

+ ncol=length(cvg))

> summary(rowSums(m))

Min. 1st Qu. Median Mean 3rd Qu. Max.

38.00 69.00 78.00 77.86 86.00 122.00

> summary(colSums(m))

Min. 1st Qu. Median Mean 3rd Qu. Max.

12070 15930 22560 25170 33080 51200

4 Directions

This vignette has summarized facilities in the Rsamtools package. Important additional packages include GenomicRanges
(for representing and manipulating gapped alignments), ShortRead for I/O and quality assessment of ungapped short
read alignments, Biostrings and BSgenome for DNA sequence and whole-genome manipulation, IRanges for range-based
manipulation, and rtracklayer for I/O related to the UCSC genome browser. Users might also find the interface to the
integrative genome browser (IGV) in SRAdb useful for visualizing BAM files.

> packageDescription("Rsamtools")

Package: Rsamtools

Type: Package

Title: Binary alignment (BAM), FASTA, variant call

(BCF), and tabix file import

Version: 1.18.3

Author: Martin Morgan, Herv\'e Pag\`es, Valerie

Obenchain, Nathaniel Hayden

Maintainer: Bioconductor Package Maintainer

<maintainer@bioconductor.org>

Description: This package provides an interface to

the 'samtools', 'bcftools', and 'tabix'

utilities (see 'LICENCE') for manipulating SAM

(Sequence Alignment / Map), FASTA, binary

variant call (BCF) and compressed indexed

tab-delimited (tabix) files.

URL:

http://bioconductor.org/packages/release/bioc/html/Rsamtools.html

License: Artistic-2.0 | file LICENSE

http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html

An Introduction to Rsamtools 9

LazyLoad: yes

Depends: methods, S4Vectors (>= 0.1.0), IRanges (>=

1.99.17), GenomeInfoDb (>= 1.1.3),

GenomicRanges (>= 1.17.19), XVector (>= 0.5.3),

Biostrings (>= 2.33.11)

Imports: utils, BiocGenerics (>= 0.1.3), zlibbioc,

bitops

Suggests: GenomicAlignments, ShortRead (>= 1.19.10),

GenomicFeatures,

TxDb.Dmelanogaster.UCSC.dm3.ensGene, KEGG.db,

TxDb.Hsapiens.UCSC.hg18.knownGene,

RNAseqData.HNRNPC.bam.chr14,

BSgenome.Hsapiens.UCSC.hg19, pasillaBamSubset,

RUnit, BiocStyle

LinkingTo: S4Vectors, IRanges, XVector, Biostrings

biocViews: DataImport, Sequencing, Coverage,

Alignment, QualityControl

Video:

https://www.youtube.com/watch?v=Rfon-DQYbWA&list=UUqaMSQd_h-2EDGsU6WDiX0Q

Built: R 3.1.2; x86_64-unknown-linux-gnu; 2015-03-03

02:24:45 UTC; unix

-- File: /tmp/RtmpLsV3w7/Rinst2f9b569f85ec/Rsamtools/Meta/package.rds

> sessionInfo()

R version 3.1.2 (2014-10-31)

Platform: x86_64-unknown-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] parallel stats4 stats graphics grDevices

[6] utils datasets methods base

other attached packages:

[1] GenomicAlignments_1.2.2

[2] TxDb.Hsapiens.UCSC.hg18.knownGene_3.0.0

[3] GenomicFeatures_1.18.3

[4] KEGG.db_3.0.0

[5] RSQLite_1.0.0

[6] DBI_0.3.1

[7] AnnotationDbi_1.28.1

[8] Biobase_2.26.0

[9] Rsamtools_1.18.3

[10] Biostrings_2.34.1

[11] XVector_0.6.0

[12] GenomicRanges_1.18.4

[13] GenomeInfoDb_1.2.4

http://bioconductor.org/packages/release/bioc/html/Rsamtools.html

An Introduction to Rsamtools 10

[14] IRanges_2.0.1

[15] S4Vectors_0.4.0

[16] BiocGenerics_0.12.1

loaded via a namespace (and not attached):

[1] BBmisc_1.9 BatchJobs_1.5

[3] BiocParallel_1.0.3 BiocStyle_1.4.1

[5] RCurl_1.95-4.5 XML_3.98-1.1

[7] base64enc_0.1-2 biomaRt_2.22.0

[9] bitops_1.0-6 brew_1.0-6

[11] checkmate_1.5.1 codetools_0.2-10

[13] digest_0.6.8 fail_1.2

[15] foreach_1.4.2 iterators_1.0.7

[17] rtracklayer_1.26.2 sendmailR_1.2-1

[19] stringr_0.6.2 tools_3.1.2

[21] zlibbioc_1.12.0

A Assembling a BamViews instance

A.1 Genomic ranges of interest

A.2 BAM files

Note: The following operations were performed at the time the vignette was written; location of on-line resources, in
particular the organization of the 1000 genomes BAM files, may have changed.

We are interested in collecting the URLs of a number of BAM files from the 1000 genomes project. Our first goal is to
identify files that might make for an interesting comparison. First, let’s visit the 1000 genomes FTP site and discover
available files. We’ll use the RCurl package to retrieve the names of all files in an appropriate directory

> library(RCurl)

> ftpBase <-

+ "ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/pilot_data/data/"

> indivDirs <-

+ strsplit(getURL(ftpBase, ftplistonly=TRUE), "\n")[[1]]

> alnDirs <-

+ paste(ftpBase, indivDirs, "/alignment/", sep="")

> urls0 <-

+ strsplit(getURL(alnDirs, dirlistonly=TRUE), "\n")

From these, we exclude directories without any files in them, select only the BAM index (extension .bai) files, and choose
those files that exactly six ’.’ characters in their name.

> urls <- urls[sapply(urls0, length) != 0]

> fls0 <- unlist(unname(urls0))

> fls1 <- fls0[grepl("bai$", fls0)]

> fls <- fls1[sapply(strsplit(fls1, "\\."), length)==7]

After a little exploration, we focus on those files obtained form Solexa sequencing, aligned using MAQ, and archived in
August, 2009; we remove the .bai extension, so that the URL refers to the underlying file rather than index. There are
24 files.

> urls1 <-

+ Filter(function(x) length(x) != 0,

+ lapply(urls,

http://bioconductor.org/packages/release/bioc/html/Rsamtools.html

An Introduction to Rsamtools 11

+ function(x) x[grepl("SLX.maq.*2009_08.*bai$", x)]))

> slxMaq09.bai <-

+ mapply(paste, names(urls1), urls1, sep="", USE.NAMES=FALSE)

> slxMaq09 <- sub(".bai$", "", slxMaq09.bai) #$

As a final step to prepare for using a BamViews file, we create local copies of the index files. The index files are relatively
small (about 190 Mb total).

> bamIndexDir <- tempfile()

> dir.create(bamIndexDir)

> idxFiles <- mapply(download.file, slxMaq09.bai,

+ file.path(bamIndexDir, basename(slxMaq09.bai)) ,

+ MoreArgs=list(method="curl"))

http://bioconductor.org/packages/release/bioc/html/Rsamtools.html

	1 Introduction
	2 Input
	2.1 Large bam files

	3 Views
	3.1 Assembling a BamViews instance
	3.2 Using BamViews instances

	4 Directions
	A Assembling a BamViews instance
	A.1 Genomic ranges of interest
	A.2 BAM files

