PhenStat: statistical analysis of phenotypic data

Natalja Kurbatova, Natasha Karp, Jeremy Mason
Modified: 08 September, 2014. Compiled: October 9, 2014

PhenStat is a package that provides statistical methods for the identification of abnormal
phenotypes. The package contains dataset checks and cleaning in preparation for the analysis.
For continuous data, an iterative fitting process is used to fit a regression model that is the
most appropriate for the data, whilst for categorical data, a Fisher Exact Test is implemented.
In addition, Reference Range Plus method has been implemented for a quick, simple analysis of
the continuous data. It can be used in cases when regression model doesn’t fit or isn’t appropriate.

Depending on the user needs, the output can either be interactive where the user can view the
graphical output and analysis summary or for a database implementation the output consists of
a vector of output and saved graphical files. PhenStat has been tested and demonstrated with an
application of 420 lines of historic mouse phenotyping data.

The full PhenStat User’s Guide with case studies and statistical analysis explanations is avail-
able as part of the online documentation, in "doc” section of the package and also through the
github repository at http://goo.gl/mK1X99

Project github repository including dev version of the package: http://goo.gl/YKo54J

Here we provide examples of functions usage. The package consists of three stages:

1. Dataset processing: includes checking, cleaning and terminology unification procedures and
is completed by function PhenList which creates a PhenList object.

2. Statistical analysis: is managed by function testDataset and consists of Mixed Model or
Fisher Exact framework implementations. The results are stored in PhenTestResult object.

3. Results Output: depending on user needs there are two functions for the test results out-
put: summaryQOutput and vectorOutput that present data from PhenTestResult object in a
particular format.

1 Data Processing

PhenList function performs data processing and creates a PhenList object. As input, PhenlList
function requires dataset of phenotypic data that can be presented as data frame. For instance, it
can be dataset stored in csv or txt file.

> library(PhenStat)
> datasetl <- system.file("extdata", "testl.csv", package="PhenStat")
> dataset2 <- system.file("extdata", "testl.txt", package="PhenStat")

Data is organised with a row for a sample and each column provides information such as meta
data (strain, genotype, etc.) and the variable of interest.
The main tasks performed by the PhenStat package’s function PhenlList are:

e terminology unification,
e filtering out undesirable records (when the argument dataset.clean is set to TRUE),
e and checking if the dataset can be used for the statistical analysis.

All tasks are accompanied by error messages, warnings and/or other information: error messages
explain why function stopped, warning messages require user’s attention (for instance, user is noti-
fied that column was renamed in the dataset), and information messages provide other details (for
example, the values that are set in the Genotype column). If messages are not desirable PhenList
function’s argument outputMessages can be set to FALSE meaning there will be no essages.

Here is an example when the user sets out-messages to FALSE:

Default behaviour with messages

library(PhenStat)

datasetl <- system.file("extdata", "testl.csv", package="PhenStat")

test <- PhenList(dataset=read.csv(datasetl),
testGenotype="Sparc/Sparc")

Out-messages are switched off

test <- PhenList(dataset=read.csv(datasetl),
testGenotype="Sparc/Sparc",
outputMessages=FALSE)

+ + VV+VVVYyV

We define "terminology unification” as the terminology used to describe data (variables) that are
essential for the analysis. The PhenStat package uses the following nomenclature for the names
of columns: ”Sex”, "Genotype”, "Batch” or ”Assay.Date” and "Weight”. In addition, expected sex
values are "Male” and "Female” and missing value is NA.

In the example below dataset’s values for females and males are 1 and 2 accordingly. Those
values are changed to "Female” and "Male”.

> library(PhenStat)

> datasetl <- system.file("extdata", "test3.csv", package="PhenStat")
> test <- Phenlist(dataset=read.csv(datasetl),

+ dataset.clean=TRUE,

dataset.values.female=1,

dataset.values.male=2,

testGenotype="Mysml1/+")

+ + +

Filtering is required, as the statistical analysis requires there to be only two genotype groups for
comparison (e.g. wild-type versus knockout). Thus the function PhenList requires users to de-
fine the reference genotype (mandatory argument refGenotype with default value 74/4”) and test
genotype (mandatory argument testGenotype). If the PhenList function argument dataset.clean
is set to TRUE then all records with genotype values others than reference or test genotype are
filtered out. The user may also specify hemizygotes genotype value (argument hemiGenotype)
when hemizygotes are treated as the test genotype. This is necessary to manage sex linked genes,
where the genotype will be described differently depending on the sex.

With hemiGenotype argument of the PhenList function defined as "KO/Y?”, the actions of the
function are: "KO/Y” genotypes are relabelled to "KO/KO” for males; females "+ /KO” heterozy-
gous are filtered out.

If a user would like to switch off filtering, (s)he can set PhenList function’s argument dataset.clean
to FALSE (default value is TRUE). In the following example the same dataset is processed suc-
cessfully passing the checks procedures when dataset.clean is set to TRUE and fails at checks
otherwise.

1.1 PhenList Object

The output of the PhenList function is the PhenList object that contains a cleaned dataset (Phen-
List object’s section dataset), simple statistics about dataset columns and additional information.

The example below shows how to print out the whole cleaned dataset and how to view the statis-
tics about it. PhenList object has stored many characteristics about the data: reference genotype,
test genotype, hemizygotes genotype, original column names, etc.

An example is given below.

> library(PhenStat)

> dataset2 <- system.file("extdata", "test2.csv", package="PhenStat")
> test2 <- PhenList(dataset=read.csv(dataset2),

+ testGenotype="Arid4a/Arid4a",

+ dataset.colname.weight="Weight.Value")

> test2$testGenotype

> test2$refGenotype

> test2$dataset.colname.weight

2 Data Analysis

The package contains four statistical frameworks for the phenodeviants identification:

1. Mixed Models framework assumes that base line values of dependent variable are normally
distributed but batch (assay date) adds noise and models variables accordingly in order to
separate the batch and the genotype. Assume batch is normally distributed with defined
variance. This framework can be used in case when you have controls measured over multiple
batches and you ideally have knockout mice measured in multiple batches. The knockouts
do not have to be concurrent with controls.

2. Time Fixed Effect framework estimates each batch effect to separate it from genotype. This
framework can be used in case when there are up to 5 batches of the test genotype and
concurrent controls approach had been used.

3. Reference Range Plus framework identifies the normal variation form the wild-type animals,
classifies dependent variables from the genotype of interest as low, normal or high and
compare proportions. This framework requires sufficient number of controls (more than 60
records) in order to correctly identify normal variation and can be used when other methods
are not applicable or as a first simple data assessment method.

4. Fisher Exact Test is a standard framework for categorical data which compares data pro-
portions and calculates the percentage change in classification.

All analysis frameworks output a statistical significance measure, an effect size measure, model
diagnostics (when appropriate), and graphical visualisation of the genotype effect.

PhenStat’s function testDataset works as a manager for the different statistical analyses meth-
ods. It checks the dependent variable, runs the selected statistical analysis framework and returns
modelling/testing results in the PhenTestResult object.

The testDataset function’s argument phenList defines the dataset stored in PhenList object.

The testDataset function’s argument dep Variable defines the dependent variable.

The testDataset function’s argument method defines which statistical analysis framework to use.

The default value is "MM?” which stands for mixed model framework. To perform Time as Fixed
Effect method the argument method is set to "TF”. To perform Fisher Exact Test, the argument
method is set to "FE”. For the Reference Range Plus framework method is set to "RR”.

Function’s argument dataPointsThreshold defines the required number of data points in a group
(subsets per genotype and sex combinations) for a successful analysis within "MM”. The default
value is 4. The minimal value is 2.

There are two more arguments specific for the "RR” framework:

e RR naturalVariation for the variation ranges in the RR framework with default value set to
95 and minimal value set to 60;

e RR_controlPointsThreshold for the number of control data points in the RR framework with
default value 60 and minimal value set to 40.

The testDataset function performs basic checks which ensure the statistical analysis would be ap-
propriate and successful: dep Variable column is present in the dataset; thresholds value are set
and do not exceed minimal values.

After the basic checks the testDataset function performs framework specific checks:

e Mixed Model (MM) and Time as Fixed Effect (TF) framework checks:

1.
2.

dep Variable column values are numeric.

Variability check 1 (whole column): dep Variable column values are variable enough (the
ratio of different values to all values in the column > 0.5%);

. Variability check 2 (variability within a group): there are enough data points in subsets

per genotype/sex combinations. The number of values from dep Variable column should
exceed dataPointsThreshold in all subsets.

Variability check 3 (variability for "Weigth” column) applied only when equation ar-
gument value is set to "withWeight”: there are enough weight records in subsets per
genotype/sex combinations. The number of values from "Weight” column should exceed
dataPointsThreshold in all subsets, otherwise equation "withoutWeight” is used;

e Additional Time as Fixed Effect (TF) framework’s checks:

1.
2.

Number of batches: there are from 2 to 5 batches (assay dates) in the dataset.

Control points: there are concurrent controls data in the dataset, meaning the presence
of data points for at least one sex in all genotype/batch level combinations.

e Reference Range Plus (RR) framework’s checks:

1.
2.

dep Variable column values are numeric.

There are data: the number of levels in dep Variable column after filtering out of null
values exceeds zero.

Control points: there are enough data points in subsets per reference genotype/sex com-
binations. The number of values from dep Variable column should exceed RR_controlPoints Threshold
in all subsets.

e Fisher Exact Test (FE) framework’s checks:

1.

2.

There are data: the number of levels in dep Variable column after filtering out of null
values exceeds zero.

Number of levels: number of dep Variable levels is less than 10.

If issues are identified, clear guidance is returned to the user. After the checking procedures,
testDataset function runs the selected framework to analyse dependent variable.

library (PhenStat)

datasetl <- system.file("extdata", "testl.csv", package="PhenStat")

test <- PhenList(dataset=read.csv(datasetl),
testGenotype="Sparc/Sparc",
outputMessages=FALSE)

Default behaviour

result <- testDataset (test,
depVariable="Bone.Area",
equation="withoutWeight")

Perform each step of the MM framework separatly

result <- testDataset (test,
depVariable="Bone.Area",
equation="withoutWeight",callAl11=FALSE)

Estimated model effects

result$model.effect.batch

result$model.effect.variance

result$model.effect.weight

result$model.effect.sex

result$model.effect.interaction

result$numberSexes

Change the effect values: interaction effect will stay in the model

result <- testDataset (test,
depVariable="Bone.Area",
equation="withoutWeight",
keepList=c (TRUE, TRUE, FALSE, TRUE, TRUE) ,
callAl1=FALSE)

result <- finalModel (result)

summaryQutput (result)

VV++++VVVVVVVVYV+ +VYV ++YV YV + + YV VYV

There are two functions we’ve implemented for the diagnostics and classification of MM frame-
work results: testFinalModel and classificationTag.

> testFinalModel (result)
> classificationTag(result)

Example of Time Fixed Effect framework:

> file <- system.file("extdata", "test7_TFE.csv", package="PhenStat")
> test <- PhenList(dataset=read.csv(file),
+ testGenotype="het",
refGenotype = "WT",
dataset.colname.sex="sex",
dataset.colname.genotype="Genotype",
dataset.values.female="f",
dataset.values.male= "m",
dataset.colname.weight="body.weight",
dataset.colname.batch="Date_of_procedure_start")
TFDataset function creates cleaned dataset - concurrent controls dataset
test_TF <- TFDataset(test,depVariable="Cholesterol")
TF method is called
result <- testDataset(test_TF,
depVariable="Cholesterol",

+VVVV+ 4+ 4+ + + + 4+

+ method="TF")
> summaryQOutput (result)

Example of Reference Range Plus framework:

> library(PhenStat)

> file <- system.file("extdata", "testl.csv", package="PhenStat")
> test <- PhenList(dataset=read.csv(file),

+ testGenotype="Sparc/Sparc")

> # RR method is called

> result <- testDataset(test,

+ depVariable="Lean.Mass",

+ method="RR")

> summaryOutput (result)

Example of Fisher Exact Test framework:

library(PhenStat)
dataset_cat <- system.file("extdata", "test_categorical.csv",
package="PhenStat")

test_cat <- PhenList(read.csv(dataset_cat),testGenotype="Aff3/Aff3")

result_cat <- testDataset(test_cat,
depVariable="Thoracic.Processes",
method="FE")

result_cat$depVariable

result_cat$method

result_cat$numberSexes

Chi squared table for all data

result_cat$model.output$count_matrix_all

Chi squared table for males only records

result_cat$model.output$count_matrix_male

Percentage matrix for all data

result_cat$model.output$percentage_matrix_all

Percentage matrix for females only records

result_cat$model . output$percentage_matrix_female

Matrix statistics for all data

result_cat$model.output$stat_all

Matrix statistics for males only records

result_cat$model.output$stat_male

Effect size for all data

result_cat$model . output$ES

Effect size for females only records

result_cat$model.output$ES_female

Fisher Exact Test results for all data

result_cat$model.output$all

p-value for all data

result_cat$model.output$all$p.value

VVVVVVVVVVVVVVVVVVVVVVYV+ + VYV + VYV

3 Output of Results

The PhenStat package stores the results of statistical analyses in the PhenTestResult object. For
numeric summary of the analysis, there are two functions to present PhenTestResult object data to
the user: summaryQOutput that provides a printed summary output and vectorOutput that creates
a vector form output. These output forms were generated for differing users needs.

The summaryOutput function supports interactive analysis of the data and prints results on the
screen.

The following is an example of summary output of MM framework:

library(PhenStat)
datasetl <- system.file("extdata", "testl.csv", package="PhenStat")
MM framework
test <- PhenList(dataset=read.csv(datasetl),
testGenotype="Sparc/Sparc",outputMessages=FALSE)
result <- testDataset(test,
depVariable="Lean.Mass",
outputMessages=FALSE)
summaryQutput (result)

VvV + + VvV + VvV VVvy

For the "FE” framework results summaryOutput function’s output includes count matrices,
statistics and effect size measures.

> library(PhenStat)

> dataset_cat <- system.file("extdata", "test_categorical.csv",
+ package="PhenStat")

> test2 <- Phenlist(dataset=read.csv(dataset_cat),

+ testGenotype="Aff3/Aff3", outputMessages=FALSE)

> result2 <- testDataset (test2,

+ depVariable="Thoracic.Processes",

+ method="FE", outputMessages=FALSE)

> summaryQutput (result2)

vectorQutput function was developed for large scale application where automatic implementa-
tion would be required.

> library(PhenStat)

> dataset_cat <- system.file("extdata", "test_categorical.csv",
+ package="PhenStat")

> test_cat <- Phenlist(dataset=read.csv(dataset_cat),

+ testGenotype="Aff3/Aff3", outputMessages=FALSE)

> result_cat <- testDataset (test_cat,

+ depVariable="Thoracic.Processes",

+ method="FE", outputMessages=FALSE)

> vectorOutput (result_cat)

There is an additional function to support the FE framework: wvectorOutputMatrices. This
function returns values from count matrices in the vector format.

> library(PhenStat)

> dataset_cat <- system.file("extdata", "test_categorical.csv",
+ package="PhenStat")

> test_cat <- Phenlist(dataset=read.csv(dataset_cat),

+ testGenotype="Aff3/Aff3", outputMessages=FALSE)

> result_cat <- testDataset (test_cat,

+ depVariable="Thoracic.Processes",

+ method="FE", outputMessages=FALSE)

> vectorOutputMatrices (result_cat)

4 Graphics

For graphical output of the analysis, multiple graphical functions have been generated and these
can be called by a user individually or alternatively, generateGraphs generates all relevant graphs
for an analysis and stores the graphs in the defined directory.

There is only one graphical output for FE framework: categorical bar plots. This graph allows
a visual representation of the count data, comparing observed proportions between reference and
test genotypes.

> library(PhenStat)

> dataset_cat <- system.file("extdata", "test_categorical.csv",
+ package="PhenStat")

> test_cat <- PhenList(dataset=read.csv(dataset_cat),

+ testGenotype="Aff3/Aff3", outputMessages=FALSE)

> result_cat <- testDataset(test_cat,

+ depVariable="Thoracic.Processes",

+ method="FE", outputMessages=FALSE)

> categoricalBarplot (result_cat)

There are many graphic functions for the regression frameworks’ results. Though some are
specific to MM. Those graphic functions can be divided into two types: dataset based graphs and
results based graphs. There are three functions in the dataset based graphs category:

o boxplotSexGenotype creates a box plot split by sex and genotype.

o scatterplotSexGenotypeBatch creates a scatter plot split by sex, genotype and batch if batch
data present in the dataset. Please note the batches are not ordered with time but allow
assessment of how the treatment groups lie relative to the normal control variation.

o scatterplotGenotype Weight creates a scatter plot body weight versus dependent variable.
Both a regression line and a loess line (locally weighted line) is fitted for each genotype.

> library(PhenStat)

> datasetl <- system.file("extdata", "testl.csv", package="PhenStat")
> # MM framework

> test <- PhenList(dataset=read.csv(datasetl),

+ testGenotype="Sparc/Sparc", outputMessages=FALSE)
> result <- testDataset(test,

+ depVariable="Lean.Mass",

+ outputMessages=FALSE)

> boxplotSexGenotype (test,

+ depVariable="Lean.Mass",

+ graphingName="Lean Mass")

> scatterplotSexGenotypeBatch (test,

+ depVariable="Lean.Mass",

+ graphingName="Lean Mass")

> scatterplotGenotypeWeight (test,

+ depVariable="Bone.Mineral.Content",

+ graphingName="BMC")

There are five functions in the results based graphs category:
e qqplotGenotype creates a Q-Q plot of residuals for each genotype.

e qqplotRandomEffects creates a Q-Q plot of blups (best linear unbiased predictions). MM
specific.

VVVVV+ +V +VYVIVYV

e qqplotRotatedResiduals creates a Q-Q plot of “rotated” residuals. MM specific.
e plotResidualPredicted creates predicted versus residual values plots split by genotype.

o bozxplotResidualBatch creates a box plot with residue versus batch split by genotype.

library (PhenStat)
datasetl <- system.file("extdata", "testl.csv", package="PhenStat")
MM framework
test <- PhenList(dataset=read.csv(datasetl),
testGenotype="Sparc/Sparc", outputMessages=FALSE)
result <- testDataset(test,
depVariable="Lean.Mass",
outputMessages=FALSE)
qqplotGenotype (result)
qqplotRandomEffects (result)
qgqplotRotatedResiduals (result)
plotResidualPredicted(result)
boxplotResidualBatch(result)

