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1 Introduction

The use of meta-analysis tools and strategies for combining data from microarray experiments
seems to be a good and practical idea. (Choi et al.[(2003)) is among the first authors to address
these issues. Of great importance in working with these data is the realization that different
experiments typically have been designed to address different questions. In general, it will
only make sense to combine data sets if the questions are the same, or, if some aspects of
the experiments are sufficiently similar that one can hope to make better inference from the
whole than from the experiments separately. Just because two experiments were run on the
same microarray platform is not sufficient justification for combining them.

In GeneMeta we have implemented many of the tools described by (Choi et al., 2003). They
focused on the combination of datasets based on two sample comparisons. Hence, their
procedures are largely based on the t-test. It is not clear whether improvements would
eventuate if some of the more popular adjustments to these tests were used instead.
Consider the situation where data from k trials is available and we want to estimate the
mean difference in expression, for each gene, between two commonly measured phenotypes
(here we use the term phenotype loosely). The setting considered by Choi et al was that of
a tumor versus normal comparison.

The general model for this setting, is as follows. Let p denote the parameter of interest (the
true difference in mean, say). Let y; denote the measure effect for study i, with i =1,... k.
Then the hierarchical model is:

yi = 0;+¢, e ~ N(0,07)
0; = pu+9;, 52‘NN(077'2>

where 72 represents the between study variability and ¢? denotes the within study variability.
The analysis is different depending on whether a fixed effect model (FEM) is deemed appro-
priate, or a random effects model (REM) is deemed appropriate. Under a FEM, the basic
presumption is that 7 = 0. If this does not hold then a REM will need to be fit. The
estimates of the overall effect, u, are different depending on which model is used.

Choi et al. (2003) suggest using an estimator due to DerSimonian and Laird for the REM
model. This estimator is computed using the function tau2.DL, and its variance via var . tau2



Simple Usage

In this vignette we want to show how these methods can be used to combine data sets.
Typically matching of identifiers is an important component. We don’t want to address the
problem here and so just do the following: we split a data set and then combine these two
splits. We show that the combination of the splits is as nearly good as the original set. So in
this paper we also do not address the problem, that is mentioned above, i.e. to combine only
things that are measuring the same thing. In this example we know that the same thing has
be measured.

Getting the data

We first load a data sets that were reported by |West et al| (2001)) and were collected on pa-
tients with breast cancer. Nevins includes data from 46 hybridizations on hu6800 Affymetrix
chips.

> library(GeneMeta)

> library(RColorBrewer)

> #load("~/Bioconductor/Projects/GraphCombine/MetaBreast/data/Nevins.RData")
> data(Nevins)

We want to look at the estrogen receptor status and find genes that have a high ’t-statistic’
for the difference between estrogen receptor positive and negative patients. Actually we
don’t use the t statistic itself but
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Here t is the 'usual’ t-statistic and ny and ny are the number of elements in the two groups.
We create two data sets from the original set by splitting. We make sure that the same
fraction of ER positive cases is in each group.

> set.seed(1609)

> thestatus <- pData(Nevins)[,"ER.status"]

> groupl <- which(thestatus=="pos")

> group2 <- which(thestatus=="neg")

> rrr <- c(sample(groupl, floor(length(groupl)/2)),
+ sample (group2, ceiling (length(group2)/2)))
> Spliti <- Nevins/[,rrr]

> Split2 <- Nevins[,-rrr]

For each data set (Splitl and Split2) we extract the estrogen receptor (ER) status and code
it as a 0-1 vector.



#obtain classes
Splitl.ER<-pData(Split1)[,"ER.status"]
levels(Splitl.ER) <- c(0,1)

Splitl.ER<- as.numeric(as.character(Split1.ER))
Split2.ER<-pData(Split2) [, "ER.status"]
levels(Split2.ER) <- c¢(0,1)

Split2.ER<- as.numeric(as.character(Split2.ER))
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Combining the data

Next we compute the unbiased estimates of the effect (d.adj.Splitl and d.adj.Split2) and
its variance (var.d.adj.Splitl and var.d.adj.Split2). Our goal is to compute Cochran’s
Q statistic to determine whether we should be considering a fixed effects or a random effects
model for the data.

#calculate d for Splitl

d.Split1 <- getdF(Split1, Splitl.ER)

#adjust d value

d.adj.Split1 <- dstar(d.Splitl, length(Split1.ER))

var.d.adj.Splil <- sigmad(d.adj.Splitl, sum(Splitl.ER==0), sum(Splitl.ER==1))
#calculate d for Split2

d.Split2 <- getdF(Split2, Split2.ER)

#adjust d value

d.adj.Split2 <- dstar(d.Split2, length(Split2.ER))

var.d.adj.Split2 <- sigmad(d.adj.Split2, sum(Split2.ER==0), sum(Split2.ER==1))
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Now, with those in hand we can compute Q and then create and display a qqg-plot for
comparing the observed values to a x? random variable (since we have two experiments).

#calculate @

mymns <- cbind(d.adj.Splitl, d.adj.Split2)
myvars <- cbind(var.d.adj.Splil,var.d.adj.Split2)
my.Q  <- f.Q(mymns, myvars)

mean (my . Q)
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[1] 0.9963985

> hist(my.Q,breaks=50,col="red")
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We can see immediately from the histogram and the mean of the () values that the hypothesis
that these values come from a x? random variable seems to be valid.
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num.studies<-2

#quantiles of the chisq distribution

chisqq <- qchisq(seq(0, .9999, .001), df=num.studies-1)

tmp<-quantile(my.Q, seq(0, .9999, .001))

qqplot (chisqq, tmp, ylab="Quantiles of Sample',pch="*",
xlab="Quantiles of Chi square", main="QQ Plot")

lines(chisqq, chisqq, lty="dotted",col="red")
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Given that we need to fit a FEM model we next compute the estimated effect sizes. Each
effect size is a weighted average of the effects for the individual experiments divided by its
standard error. The weights are the reciprocal of the estimated variances.

> muFEM = mu.tau2(mymns, myvars)
> sdFEM = var.tau2(myvars)
> ZFEM = muFEM/sqrt (sdFEM)

Plotting the quantiles of the effects we can see that the presumption of approximate Nor-
mality seems to be appropriate.

> qqnorm(ZFEM,pch="%")
> qqline(ZFEM,col="red")



Normal Q-Q Plot
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If instead we would have to fit a REM model we would compute the estimated effect sizes
using the DerSimonian and Laird estimator. Therefore, we must first estimate the variance
7 of the '’between experiments’ random variable.

my.tau2.DL<-tau2.DL(my.(Q, num.studies, my.weights=1/myvars)
#obtain new variances s 2+tau”2

myvarsDL <- myvars + my.tau2.DL

#compute

muREM <- mu.tau2(mymns, myvarsDL)

#cumpute mu(tau)

varREM <- var.tau2(myvarsDL)

ZREM <- muREM/sqrt(varREM)
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We can easily compare the two different estimates,

> plot (muFEM, muREM, pch=".")
> abline(0,1,col="red")
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We do not see much difference here. This is because in the REM model for most of the genes
the variance 7 is estimated as zero.

> hist(my.tau2.DL,col="red",breaks=50,main="Histogram of tau")
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The procedure described above is also implemented in the function zScores (part of this
package) and meta.summaries from the package rmeta. While meta.summaries do the
calculation for arbitrary effects and their variances, zScores exactly follows the calculation
from (Choi et al.| (2003). The arguments of this function are a list of expression sets and a
list of classes. We include our two splits and also the original data set. By default zScores
would combine all expression sets in the list, but we only want the combine the first two. So
we have to set an additional parameter.

esets <- list(Split1,Split2,Nevins)

data.ER  <-pData(Nevins) [, "ER.status"]

levels(data.ER) <- c(0,1)

data.ER<- as.numeric(as.character(data.ER))

classes  <- list(Splitl.ER,Split2.ER,data.ER)

theScores <- zScores(esets,classes,useREM=FALSE,CombineExp=1:2)
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We get a matrix in the following form.

> theScores[1:2,]



zSco_Ex_1 zSco_Ex_2 zSco_Ex_3 zSco MUvals MUsds

A28102_at -0.9743807 0.08904902 -0.5794422 -0.6221276 -0.1845920 0.2967108

AB000114_at -0.7422704 -0.17093358 -0.6361189 -0.6445773 -0.1908581 0.2960982
Qvals df Qpvalues Chisq Effect_Ex_1 Effect_Ex_2
A28102_at 0.5703048 1 0.4501378 0.5338580 -0.4109929 0.03717436
AB000114_at 0.1647038 1 0.6848623 0.5192012 -0.3117136 -0.07137438
Effect_Ex_3 EffectVar_Ex_1 EffectVar_Ex_2 EffectVar_Ex_3
A28102_at -0.1711808 0.1779145 0.1742725 0.08727503
AB000114_at -0.1879951 0.1763547 0.1743532 0.08734068

Here Effect_Ex_1 and Effect_Ex_2 are the unbiased estimates of the effect (d.adj.Split1
and d.adj.Split2). EffectVar_Ex_1 and EffectVar_Ex_2 are the estimated variances of
the unbiased effects (var.d.adj.Splitl and var.d.adj.Split2). zSco_Ex_1 and zSco_Ex_2
are the unbiased estimates of the effects divided by their standard deviation. The same
values are also calculated the the complete data set ( Effect_Ex_3EffectVar_Ex_3, and
ZSco_Ex_3).

Qvals are the Q statistics (my.Q) and df is the number of combined experiments minus
one. MUvals and MUsds are equal to muFEM and sdFEM (the overall mean effect size and its
standard deviation). zSco are the z scores (ZFEM). Qpvalues is for each gene the probability
that a chisq distribution with df degree of freedom has a higher value than its Q statistic.
And Chisq is the probability that a chisq distribution with 1 degree of freedom has a higher
value than zSco?.

We plot the z scores of original data set against the z scores of the combined data set. We
see a good correlation so the combination of the two data sets works quite well. In the next
paragraph we want to see how big the benefit of combining data sets really is.

> plot(theScores/[, "zSco_Ex_3"],theScores[, "zSco"],pch="*",xlab="original score",ylab="
> abline(0,1,col="red")
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We now will have a look at the IDR plot as it is described in (Choi et al., 2003)). For a
threshold z;h this plot shows the fraction of the genes that have a higher effect size than the

threshold for the combined effect z, but not for any of the experiment specific effects z;, e.g.
we look for genes with

z > zy and ZI ; > 2zy) = 0 for z > 0 or
z < —zp and Z[ < —zy) =0for z<0
The IDR was computed for z > 0 (blue) and z < 0 (red) separately. We can see that we get

higher z scores by combing the sets.

> IDRplot (theScores,Combine=1:2,colPos="blue", collNeg="red")
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Estimating the false discovery rate

Next (Choi et al.| (2003) discussed using a SAM (Tusher et al., [2001)) type analysis to estimate
the false discovery rate(FDR). This is implemented in the function zscoresFDR.

> ScoresFDR <- zScoreFDR(esets, classes, useREM=FALSE, nperm=50,CombineExp=1:2)
This object is a list with three slots

> names (ScoresFDR)

[1] "pos" "neg" "two.sided"

The first slot stores the results of the calculation, if the FDR is computed for the positive
scores, the second for the negative scores and the last one for the tow sided situation (i.e.
we look at the absolute values of the z scores). Each slot contains a matrix with the values
obtained by zScores and additional a FDR for each experiment and the combination of
experiments.
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> ScoresFDR$pos[1:2,]

zSco_Ex_1 FDR_Ex_1 zSco_Ex_2 FDR_Ex_2 2zSco_Ex_3 FDR_Ex_3
A28102_at -0.9743807 1.070393 0.08904902 0.9738678 -0.5794422 1.104358
AB000114_at -0.7422704 1.073673 -0.17093358 1.0073964 -0.6361189 1.108169
z3co FDR MUvals MUsds Qvals df Qpvalues
A28102_at -0.6221276 1.093313 -0.1845920 0.2967108 0.5703048 1 0.4501378
AB0O00O114_at -0.6445773 1.093046 -0.1908581 0.2960982 0.1647038 1 0.6848623
Chisq
A28102_at 0.5338580
AB000114_at 0.5192012

We plot the number of genes and the corresponding FDR. Here the result for the combined
set is red and for the result for the original set (without splitting) is blue. We extract the
FDR for the two sided situation. It can be see that the combined data set has a lower FDR
than the splits and a FDR as good as the original set.

FDRwholeSettwo <- sort(ScoresFDR$"two.sided"[,"FDR"])

experimentstwo <- list()

for(j in 1:3)1{

experimentstwo[[j]] <- sort(ScoresFDR$"two.sided"[,paste("FDR_Ex_",j,sep="")])
}

+ + Vv vV

B
# #
#two sided z values #
# #
e

plot (FDRwholeSettwo,pch="*",6col="red",ylab="FDR",xlab="Number of genes')

for(j in 1:3)

points (experimentstwo[[j]],pch="*", col=theNewC[j])

legend(4000,0.4,c("Combined set","Split 1" , "Split 2" ,"original set"), c("red",the

vV + VV VVVVVYV
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If we are more interested in the number of gene that are below a given threshold for the
FDR we can use the CountPlot. Similar to IDRplot it shows the following: for each study
(indicated by different colors) and various thresholds for the FDR (x axis) the number of
genes that are below this threshold in the given study but above in all other studies are
shown (y axis). The studies that should be considered (apart from the combined set that is
always present) can be specified with CombineExp. Here we compare the original data set
(green) against the combined data set (red). It can be seen that we do quite well.

#par (mfrow=c(2,2))

#CountPlot (ScoresFDR,Score="FDR" ,kindof="neg",cols=c("red", theNewC),

# main="Negative FDR", xlab="FDR threshold", ylab="Number of genes',CombineEx
#CountPlot (ScoresFDR,Score="FDR",cols=c("red",theNewC) ,kindof="pos",

#main="Positive FDR", xlab="FDR threshold", ylab="Number of genes',Combine=1:2)

>
>
>
>
>
> CountPlot (ScoresFDR,Score="FDR" ,kindof="two.sided",cols=c("red", theNewC) ,main="two s
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two sided FDR
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