
Simulating ChIP-seq experiments

Peter Humburg

October 13, 2014

1 Introduction

This document provides a brief introduction to the use of ChIPsim in form of a worked example.
The main purpose of this package is to provide a framework for the simulation of ChIP-seq ex-
periments. The simulation of nucleosome positioning experiments is implemented as part of the
package, see ‘Extending ChIPsim’ for a discussion of how other types of ChIP-seq experiments
can be implemented with the help of this package.

The simulation of ChIP-seq experiments can be a powerful tool to get a better understanding
of ChIP-seq data and the challenges of analysing it. A first step into this direction was taken
by Zhang et al. [1]. They developed a simulation of a transcription factor binding ChIP-seq ex-
periment and used this do derive an appropriate background model. The simulation framework
provided by ChIPsim goes one step further. It simulates the location of various genomic features,
such as nucleosome positions or transcription factor binding sites, and the resulting sequence
reads. This can then be used to test entire analysis pipelines, from read mapping to feature
identification. We may be interested in testing a specific part of the pipeline, e.g., investigate
the performance of different read mapping tools or different peak calling algorithms. While
this can be very useful we may gain further insights into the performance of our pipeline by
testing different combinations of tools to capture interactions between them. Once an analysis
pipeline is established we can use the simulation to help us plan new experiments by providing
an estimate of how much sequencing will be required to obtain the desired outcomes.

In the next section we will discuss the general structure of the simulation to get a better
idea of how it works and where we might intervene to change its behaviour. This is followed by
an example to demonstrate the simulation of a nucleosome positioning experiment on a small
genome. This includes examples to show how the parameters of the simulation can be adjusted
but does not cover extensions to different experiment types. Such extensions are discussed at
the end of this document where a more complex example demonstrates how we could implement
the simulation of a transcription factor binding simulation.

2 Overview

The simulation is divided into six stages that are illustrated below for the example of a nucle-
osome positioning experiment. The general structure is the same, regardless of experiment but
the details are adjusted to suit the problem under consideration.

Generate feature sequence A Markov chain is used to generate a sequence of features, e.g.
nucleosomes of different stability, to cover the supplied genome. Each state of the Markov
chain represents a different feature type and generates a set of associated parameters.

Compute nucleosome density Each feature type is associated with a feature generating
function that translates the feature sequence into a feature density, i.e., for each position

1

in the genome covered by the feature it computes the probability that a nucleosome is
centred there.

Compute read density Using information about the length distribution of DNA fragments
and the distribution of binding sites within them, the feature density is translated into
a read density for each strand. The read density at a given position on a given DNA
strand is proportional to the probability that a sequence read starting at that position is
produced during the sequencing process.

Sample read start sites Based on the read densities computed in the previous step the lo-
cation for the desired number of reads is generated.

Create read names A name is assigned to each read.

Obtain read sequence and quality Read positions are translated into the corresponding
DNA sequence, qualities are assigned to each read and used to introduce errors into the
read sequence.

All six stages of the simulation are carried out by the function simChIP. It is possible to provide
intermediate results to skip some of these steps. For example, if we already have a feature
density we could use that instead of generating a new one. The read sequences and qualities
generated by the simulation can be exported in FASTQ format. In the default configuration
of simChIP this is done automatically if an output file name is provided. Each stage of the
simulation is carried out by a different function that is called by simChIP with the appropriate
arguments. Individual functions can be replaced to make substantial changes to the behaviour
of the simulation in cases where simply adjusting some of the function’s arguments is not enough
to achieve the desired result.

3 Using the nucleosome positioning simulation

With that general structure in mind we will now take a look at how we might use the ChIPsim
package for a simple nucleosome positioning simulation. This section focuses on the build in
simulation of a nucleosome positioning experiment. While we will see how this can be modified
to adapt the simulation to a specific experiment this example mostly relies on the default settings
to keep things simple.

3.1 Setup

We start by loading the ChIPsim package. To ensure that the results of the simulation are
reproducible the random number generator is initialised with a fixed seed.

> library(ChIPsim)

> set.seed(1)

If we just want to run the nucleosome positioning simulation with default settings no further
preparations are necessary in practice. The remainder of this section is only required because
we want to run the example without relying on additional files. It also serves as an example of
how the defaults can be adjusted to fit the needs of a particular experiment.

The later stages of the simulation require a reference genome to generate read sequences.
For the purpose of these examples we will use a very simple (and relatively short) simulated
genome sequence. The variable chrLen gives the length (and number) of chromosomes, we could
easily generate a different genome size by changing these numbers.

2

> chrLen <- c(2e5, 1e5)

> chromosomes <- sapply(chrLen, function(n) paste(sample(DNA_BASES, n, replace = TRUE), collapse = ""))

> names(chromosomes) <- paste("CHR", seq_along(chromosomes), sep="")

> genome <- DNAStringSet(chromosomes)

To read the genome sequence from a (FASTA formatted) file we would simply use the name of
the fasta file instead of the generated sequence above.

Since the output of the simulation is a FASTQ formatted file we will also need read qualities.
By default the simulation uses read quality scores from a real sequencing experiment for this
purpose. Since that is not very practical for this example we will provide a function to generate
read qualities instead. This will also help to demonstrate how aspects of the simulation can be
adjusted for specific needs.

> randomQuality <- function(read, ...){

+ paste(sample(unlist(strsplit(rawToChar(as.raw(64:104)),"")),

+ nchar(read), replace = TRUE), collapse="")

+ }

The randomQuality function will produce read quality scores in Illumina 1.3 format. Apart
from the encoding the quality scores will not be very similar to real read qualities but this is
sufficient for the purpose of this example.

Another aspect of the simulation we may want to change for this example is how output is
produced. By default the simulation writes the read sequences and qualities to a FASTQ file.
Instead, we would like to produce a data frame that holds this information. To achieve this we
have to provide a function that accepts read positions together with some other parameters and
returns the data.frame we want.

> dfReads <- function(readPos, readNames, sequence, readLen, ...){

+

+ ## create vector to hold read sequences and qualities

+ readSeq <- character(sum(sapply(readPos, sapply, length)))

+ readQual <- character(sum(sapply(readPos, sapply, length)))

+

+ idx <- 1

+ ## process read positions for each chromosome and strand

+ for(k in length(readPos)){ ## chromosome

+ for(i in 1:2){ ## strand

+ for(j in 1:length(readPos[[k]][[i]])){

+ ## get (true) sequence

+ readSeq[idx] <- as.character(readSequence(readPos[[k]][[i]][j], sequence[[k]],

+ strand=ifelse(i==1, 1, -1), readLen=readLen))

+ ## get quality

+ readQual[idx] <- randomQuality(readSeq[idx])

+ ## introduce sequencing errors

+ readSeq[idx] <- readError(readSeq[idx], decodeQuality(readQual[idx]))

+ idx <- idx + 1

+ }

+ }

+ }

+ data.frame(name=unlist(readNames), sequence=readSeq, quality=readQual,

+ stringsAsFactors = FALSE)

+ }

3

3.2 Simulation

Now that we have a reference genome and a way to generate read qualities we can simply call
simChIP to simulate sequencing data. The first argument of simChIP is the number of reads we
would like to generate, the second is the reference genome. In this case we will use the genome
sequence we generated above, we could simply pass the name of a FASTA formatted file that
contains the reference sequence instead. The third argument is the prefix we would like to use
for the output files. For this example we will prevent file creation by setting file = "". Usually
it is a good idea to write results to a file, which will produce a FASTQ formatted file with the
sequences of all simulated reads. Using file output will also generate additional files containing
intermediate results like the underlying feature sequence or resulting read densities for later
reuse. The control argument allows us to change the parameters of the simulation. The entire
simulation process is divided into six stages and parameters for each can be set separately by
providing named entries in the list passed as control argument. As explained above, the six
stages of the simulation are:

features Generate feature sequence (for each chromosome);

bindDensity Compute binding site density;

readDensity Compute read density for both strands;

sampleReads sample from read density to determine read start sites;

readNames Create read names;

readSequence Obtain read sequence and quality.

These parameters are then passed to a function that carries out that step of the simulation.
Which function is used can be controlled through the functions argument.

Here we will mostly use the defaults but we need to change the way read sequences and
qualities are generated. We can use defaultFunctions to obtain the default list of functions
and simply replace the one for the final step of the simulation. Instead of completely replacing
a part of the simulation we sometimes just want to adjust the default behaviour slightly. In
many cases that is possible by changing a parameter value. We will illustrate the process by
changing the mean fragment length to 150bp (the default is 160bp).

> myFunctions <- defaultFunctions()

> myFunctions$readSequence <- dfReads

> nReads <- 1000

> simulated <- simChIP(nReads, genome, file = "", functions = myFunctions,

+ control = defaultControl(readDensity=list(meanLength = 150)))

Generating features...(0.03551483 secs)

Computing binding site density... (3.452402 secs)

Computing read density... (2.115892 secs)

Sampling reads... (0.2459819 secs)

Generating read names... (0.001935244 secs)

Determining read sequence and quality... (1.398335 secs)

Total time: 7.251902 secs

Note the use of defaultControl. This allows us to maintain the default values for all parameters
except the ones we list explicitly. The defaultControl function uses the same argument names

4

as functions. Each argument is expected to be a named list with the names corresponding to
the names of arguments of the target function.

We now have a data frame with 1000 simulated read sequences together with the location in
the genome they originated from, the read densities that were used determine read positions as
well as the underlying nucleosome densities and feature sequence. The list returned by simChIP

contains all of this information in different components. Their names should give some idea of
what they are:

> names(simulated)

[1] "features" "bindDensity" "readDensity" "readPosition" "readSequence"

[6] "readNames"

Of course we can also look at individual components in more detail. Here are the first few reads:

> head(simulated$readSequence)

name sequence

1 read_1 CCTGTCAATGTGGCCGTCCGAACGTTCGGGACTCAA

2 read_2 TGGGCGACTCAAATTGAGGCTCTCGTGGCGCTTCGC

3 read_3 TTGCCACTAGACCAGCCATGAATTCTGCCAGACGTC

4 read_4 GCGTCCGACGCGGTCTAGTCGTAACGTTGAGATATT

5 read_5 TTTCCTACGGAGGCTACAAAAGGTACGCAGAGTGCT

6 read_6 GGGATGTACCGAACCAGGCGGCACCGAGAATTGTCA

quality

1 KgRh]XIcBdL[cWHfRBKbBcTMZLTMIYaTA]NA

2 BGSfhN`OBSSK\\fMLQ\\QP`NR^ZLPUT][]HM\\[

3 ^`]W_LFYILZQZd^Lghg_eSfKGY[`U]S_gbOR

4 YdESNThRSRS\\TeJFAYZ^IKgb`[LbhLfg\\TD@

5 hI]SBabUDXFdMbQRNIRP`f_AEF^LTg_hL\\ab

6 IX^EcXcBX`LNcOQXXacIcZQZ@`MDa`aGLDUK

We can also examine some of the nucleosome and read densities. Figure 1 shows the nucleosome
and read densities surrounding the first stable nucleosome in the feature sequence. The stable
nucleosome in the centre is flanked by two phased regions.

> feat <- simulated$features[[1]]

> stableIdx <- which(sapply(feat, inherits, "StableFeature"))

> start <- feat[[stableIdx[1]]]$start

> plot((start-2000):(start+500), simulated$bindDensity[[1]][(start-2000):(start+500)], xlab="Chromosome 1",

+ ylab="Density", type='l')

> lines((start-2000):(start+500), simulated$readDensity[[1]][(start-2000):(start+500),1], col=4)

> lines((start-2000):(start+500), simulated$readDensity[[1]][(start-2000):(start+500),2], col=2)

> legend("topright", legend=c("Nucleosome density", "Read density (+)", "Read density (-)"), col=c(1,4,2), lwd=1)

Once the simulation is completed we can use the read sequences and qualities as input for an
analysis pipeline. Typically the first step is to map the reads back to the genome (preferably
using the read qualities in the process), followed by the application of a peak-finding algorithm
to identify peaks in the read counts. The performance of both parts of the analysis can be
assessed with the help of data generated by this simulation. This may prove useful to compare
and improve analysis pipelines for a variety of ChIP-seq experiments. Once a pipeline is estab-
lished the simulation can also be used to estimate the amount of sequencing, i.e. the coverage,
necessary for a given experiment.

5

14000 14500 15000 15500 16000 16500

0.
01

0.
02

0.
03

0.
04

Chromosome 1

D
en

si
ty

Nucleosome density
Read density (+)
Read density (−)

Figure 1: Nucleosome and read densities for a stable feature and flanking regions.

6

3.3 Using output files

If we had instructed simChIP to generate output files by providing a base file name to argu-
ment file the list would contain the name of the output file for each stage rather than the
data. These file names are automatically generate by appending an appropriate suffix to the
base name at each stage. This name is also used to determine whether output from a previous
run is available for re-use. For example, if we set file = "test" in the above call to simChIP

the simulation will generate several files including ‘test features.rdata’, ‘test bindDensity.rdata’
and ‘test readDensity.rdata’ for the first three stages of the simulation. If any of these files
are found in the working directory and we set load = TRUE the last file in the sequence is
loaded and used as input for the next stage, skipping all previous stages. In the above exam-
ple the names of files produced by the final three stages would be ‘test 1 readPosition.rdata’,
‘test 1 readNames.rdata’ and ‘test 1 fastq.txt’. These all relate to the reads that were sampled
from the read densities and are not loaded as intermediate results. Instead simChIP scans the
working directory for files with these names of the form ‘test n fastq.txt’ to determine which
index n to use for the current run of the simulation. This enables us to run the same simula-
tion with the same underlying feature sequence, nucleosome and read density repeatedly, each
time generating a new set of reads. This essentially simulates repeated sequencing of the same
library. Of course it is also possible to introduce some variation into the process. For example
if we wanted to study the effect of changes to the DNA fragment size distribution we could use
the same nucleosome density but recalculate the read densities with a new set of parameters.

4 Extending ChIPsim

The ChIPsim package provides a framework for the simulation of ChIP-seq experiments. While,
as we have seen above, the package includes an implementation of a nucleosome positioning
simulation the real strength of ChIPsim is its ability to accommodate a variety of different
experiments. Here we will demonstrate how ChIPsim can be extended to other types of exper-
iments. As an example we will create a simulation of transcription factor binding sites based
on the one proposed by Zhang et al. [1]. This simulation divides the genome into a number
of non-overlapping binding sites separated by background regions. The background between
binding sites is split into blocks of 1kb, each with its own sampling weight.

In the following sections we will implement a variant of this simulation using the ChIPsim

framework, demonstrating how the different stages of the simulation can be adjusted for different
types of experiments. This is followed by an alternative, more complex simulation of the same
process.

4.1 A simple model

In this section we will attempt to recreate the simulation of Zhang et al. (or at least its core
aspects). As we will see later there are some differences in the assumptions underlying the work
of Zhang et al. and ChIPsim, which means that we will not use the full extend of ChIPsim’s
capabilities. This section is followed by the description of a more complex model of transcription
factor ChIP-seq that is better suited for an implementation in ChIPsim.

4.1.1 Markov chain

At the core of the simulation is a Markov model that generates a sequence of different features.
Each state of the model corresponds to a different feature class and generates a set of param-

7

eters required to determine the sampling weight for each feature. For the transcription factor
simulation we will only need two states, representing binding sites and background respectively.

To specify the Markov model we need to define the transition probabilities between the states
and the initial state distribution. For each state we will also need a function to generate the
parameters of the corresponding features. We start by specifying the transition probabilities. To
do this we need to create a list with components corresponding to the states of the model (we will
us “Binding” and “Background”) each of which holds an (S3) object of class “StateDistribution”,
which is simply a numeric vector with the non-zero transition probabilities to other states.

> transition <- list(Binding=c(Background=1), Background=c(Binding=0.05, Background=0.95))

> transition <- lapply(transition, "class<-", "StateDistribution")

Note that we are allowing several background regions to follow each other while binding regions
always have to be followed by a background region. Also note that the transition probability
from background to binding regions determines the expected number of binding regions. Unlike
Zhang et al. we are not determining the number in advance.

We will not allow the sequence to start with a binding site. Therefore, again using the
“StateDistribution” class, the initial state distribution is:

> init <- c(Binding=0, Background=1)

> class(init) <- "StateDistribution"

The next step is to define functions to generate the parameters for binding and background
regions. The parameters for a region should always include ‘start’ and ‘length’, indicating the
start position and length of the region respectively. Note that ‘start’ will be determined by the
function that generates the feature sequence (see below) so that we only have to accept it as a
parameter. The only other parameter required for background regions is the sampling weight.
Following the model of Zhang et al. we use a gamma distribution to model the background
sampling weight for each region.

> backgroundFeature <- function(start, length=1000, shape=1, scale=20){

+ weight <- rgamma(1, shape=1, scale=20)

+ params <- list(start = start, length = length, weight = weight)

+ class(params) <- c("Background", "SimulatedFeature")

+

+ params

+ }

The convention used by ChIPsim is to name functions that generate parameters for the different
feature classes “stateFeature”, where state is the name of the state. These functions always
return a list of parameters. This list has classes “state” and “SimulatedFeature”. It is important
that the first class matches the name used for the state in other places.

The binding site model requires some additional parameters. Zhang et al. set the average
sampling weight w̄f for binding sites to be the average weight of background regions multiplied
by an enrichment coefficient t: w̄f = t × w̄b. They then increase the sampling weight of
binding sites as sequence reads are assigned to them, resulting in a power-law distribution of
sampling weights. Since ChIPsim separates the generation of feature densities and the sampling
of sequence reads from those densities into two distinct stages it is not easily possible to use the
same procedure here. Instead we will use a Pareto distribution with parameter r to determine
wf for each binding site. The minimum of the distribution is chosen such that its mean is w̄f

(Note that this requires r > 1).

8

> bindingFeature <- function(start, length=500, shape=1, scale=20, enrichment=5, r=1.5){

+ stopifnot(r > 1)

+

+ avgWeight <- shape * scale * enrichment

+ lowerBound <- ((r - 1) * avgWeight)

+ weight <- actuar::rpareto1(1, r, lowerBound)

+

+ params <- list(start = start, length = length, weight = weight)

+ class(params) <- c("Binding", "SimulatedFeature")

+

+ params

+ }

With this in place we can now generate a feature sequence using the ChIPsim function make-

Features. This function takes the description of a Markov model together with several other
parameters and produces a list of features for a genomic region of given length. This list is
of class “SimulatedExperiment” and usually has a more specialized class indicating the specific
type of experiment as well. We will see later how this class information is used. To generate a
feature sequence we can use something like this:

> set.seed(1)

> generator <- list(Binding=bindingFeature, Background=backgroundFeature)

> features <- ChIPsim::makeFeatures(generator, transition, init, start = 0, length = 1e6, globals=list(shape=1, scale=20),

+ experimentType="TFExperiment", lastFeat=c(Binding = FALSE, Background = TRUE))

We have already discussed the transition and init parameters of makeFeatures. The gener-
ator parameter also relates to the Markov model; it provides a list of the emission distributions
for each state. Another interesting argument of makeFeatures is globals. This allows us to
pass a list of parameters that will be passed on to all states of the model. Here we use this
mechanism to ensure that the values used by both states for shape and scale match. There is
another parameter called control that allows us to pass a list of arguments to individual states.
The feature sequence generated above contains 54 binding sites, see Figure 2 for a plot of the
resulting weight distributions of binding and background regions. Below is the first feature in
the sequence:

> features[[1]]

Object of class Background

start: 1

length: 1000

weight: 5.918505

Before we turn our attention to the conversion of this sequence into binding site densities
it is worth noting that there is another function we can use to generate a feature sequence.
Using placeFeatures provides some additional functionality. Firstly, placeFeatures makes
an effort to generate a feature sequence that fills as much of the genomic region as possible.
This is especially useful for cases where we are dealing with variable length features that may
otherwise lead to a relatively large area without any features at the end of the genomic region.
Secondly, it calls reconcileFeatures, an S3 method that dispatches on the class of the feature
sequence (i.e., the experiment type) and provides a way to post-process the feature sequence.
The nucleosome simulation uses this to ensure that some of the parameters of adjacent features

9

0 100 200 300 400

0.
00

0.
01

0.
02

0.
03

Sampling weight

D
en

si
ty

Background
Binding

Figure 2: Sampling weight distributions for background and binding regions.

are compatible. This mechanism is not needed for the simulation considered here so that
we can use the default. However, if we wanted to use it we could simply define a function
reconcileFeatures.TFExperiment(features, ...) to perform the desired post-processing.

> set.seed(1)

> features <- ChIPsim::placeFeatures(generator, transition, init, start = 0, length = 1e6, globals=list(shape=1, scale=20),

+ experimentType="TFExperiment", lastFeat=c(Binding = FALSE, Background = TRUE))

This results in the same feature sequence but a closer look reveals that the default post-
processing step has introduced an additional parameter for each feature:

> features[[1]]

Object of class Background (reconciled)

start: 1

length: 1000

weight: 5.918505

overlap: 0

The overlap between adjacent features defaults to 0, which is what we want here. In some cases
it may be desirable to have overlapping features. The nucleosome simulation uses this to ensure
smooth transitions between features.

10

4.1.2 Binding site density

Once the feature sequence is determined it has to be translated into a binding site density.
This task is carried out through a call to featureDensity which is dispatched on the feature
class. This means that we have to provide implementations for featureDensity.Binding and
featureDensity.Background. In this case both functions are simply constant and produce
output of a given length.

> constRegion <- function(weight, length) rep(weight, length)

> featureDensity.Binding <- function(feature, ...) constRegion(feature$weight, feature$length)

> featureDensity.Background <- function(feature, ...) constRegion(feature$weight, feature$length)

A binding site density for the entire genomic region is generated by a call to feat2dens.

> dens <- ChIPsim::feat2dens(features)

The resulting density for a region containing the first binding site in the sequence is shown
in Figure 3. Since the simulation of Zhang et al. does not distinguish between reads on the
forward and reverse strand we could simply use this binding site density to sample the location
of (extended) reads.

> readLoc <- sample(44000:64000, 1e3, prob=dens[44000:64000], replace=TRUE)

Here we are assuming that sampled read positions correspond to the fragment centre and extend
reads into both directions. Figure 3 shows counts of reads that were extended to 200bp, the
average fragment length.

We now have a (simple) simulation of transcription factor ChIP-seq based on the work by
Zhang et al. This does not incorporate all aspects of their simulation, e.g. the intra-site weight
profile is missing from this version, but demonstrates the principle. In the next section we
will build on this to create a simulation that takes information about binding site and DNA
fragment length into account to generate strand specific read densities.

4.2 Advanced model

This extended version of the transcription factor ChIP-seq simulation builds on the model from
the previous section. We will use the same Markov chain as above with the same emission
distributions; but unlike before we will not use blocks of 500bp to represent binding sites.
Instead the length of a binding site will be defined as the stretch of DNA protected by the
transcription factor. What will change is the binding site density for the “Binding” state. We
will use a single spike at the centre of the binding site rather than a uniform distribution across
the binding site. This will allow us to compute strand specific read densities later. This requires
some adjustment to the background density as well.

4.2.1 Post-processing the feature sequence

Since we plan to change the binding site density such that a transcription factor binding site
is represented by a single spike at the centre of the binding site, we have to reduce the back-
ground density accordingly. It would be straightforward to incorporate this change into fea-

tureDensity.Background but for the purpose of this example we will do this as part of the
post-processing step that was mentioned but not illustrated before. We will assume that all
binding sites have the same length. That should be a reasonable assumption if we only deal
with one transcription factor per experiment.

11

0
20

40
60

80
10

0

S
am

pl
in

g
w

ei
gh

t

45000 50000 55000 60000

0
20

40
60

80

Position in genomic region

R
ea

d
co

un
t

Figure 3: Binding site density for a transcription factor binding site (between the dashed lines)
and surrounding background (top). Resulting counts of overlapping extended reads are shown
below.

> reconcileFeatures.TFExperiment <- function(features, ...){

+ bindIdx <- sapply(features, inherits, "Binding")

+ if(any(bindIdx))

+ bindLength <- features[[min(which(bindIdx))]]$length

+ else bindLength <- 1

+ lapply(features, function(f){

+ if(inherits(f, "Background"))

+ f$weight <- f$weight/bindLength

+ ## The next three lines (or something to this effect)

+ ## are required by all 'reconcileFeatures' implementations.

+ f$overlap <- 0

+ currentClass <- class(f)

+ class(f) <- c(currentClass[-length(currentClass)],

+ "ReconciledFeature", currentClass[length(currentClass)])

+ f

+ })

+ }

12

Now we can generate a new feature sequence.

> set.seed(1)

> features <- ChIPsim::placeFeatures(generator, transition, init, start = 0, length = 1e6, globals=list(shape=1, scale=20),

+ experimentType="TFExperiment", lastFeat=c(Binding = FALSE, Background = TRUE),

+ control=list(Binding=list(length=50)))

Note the use of the control argument to set the length of binding sites. The parameters of the
first feature have changed slightly:

> features[[1]]

Object of class Background (reconciled)

start: 1

length: 1000

weight: 0.1183701

overlap: 0

4.2.2 Revised binding site density

Here is the modified feature density for binding regions:

> featureDensity.Binding <- function(feature, ...){

+ featDens <- numeric(feature$length)

+ featDens[floor(feature$length/2)] <- feature$weight

+ featDens

+ }

Now we can generate the new binding site density, using the same call as before.

> dens <- ChIPsim::feat2dens(features, length = 1e6)

Figure 5 shows the binding site density in the same genomic region as before.

4.2.3 Strand specific read densities

The function bindDens2readDens provides us with an easy way to convert binding site densities
into read densities for both strands. All we need to do to use this function for our transcription
factor simulation is to specify a function that returns the length distribution of DNA fragments
used in the experiment. This function should accept a numeric first argument and return the
proportion of DNA fragments of that length in the sample. Further arguments the function
should accept (and may use) are the minimum and maximum fragment length as well as the
length of the binding site.

> fragLength <- function(x, minLength, maxLength, meanLength, ...){

+ sd <- (maxLength - minLength)/4

+ prob <- dnorm(minLength:maxLength, mean = meanLength, sd = sd)

+ prob <- prob/sum(prob)

+ prob[x - minLength + 1]

+ }

Here we do not use the length of the binding site but our function either needs a bind argument
or use ‘. . .’ to absorb any additional arguments.

13

> readDens <- ChIPsim::bindDens2readDens(dens, fragLength, bind = 50, minLength = 150, maxLength = 250,

+ meanLength = 200)

This produces a two column matrix with the read density for the forward strand in the first
column and the reverse strand density in the second. Figure 4 gives an impression of how the
read densities relate to the binding site density.

0
20

40
60

80
10

0

S
am

pl
in

g
w

ei
gh

t

45000 50000 55000 60000

0.
0

0.
5

1.
0

1.
5

2.
0

Position in genomic region

S
am

pl
in

g
w

ei
gh

t

forward
reverse

Figure 4: Binding site density for a transcription factor binding site and surrounding background
for the modified model (top) and resulting strand specific read densities (bottom).

4.2.4 Sampling reads

Once the read densities are computed it is straightforward to sample read positions. The
sampleReads function is provided for this purpose. It allows us to specify the number of reads
required as well as weights for each strand. Here we sample 100,000 reads from the read densities
with equally weighted strands, which is the default.

> readLoc <- ChIPsim::sampleReads(readDens, 1e5)

This produces a list with components fwd and rev giving the start positions of reads on the
respective strand. Figure 5 shows the transcription factor binding site with read densities and
read positions. Following the procedure in Zhang et al we can extend each read to the average

14

0.
0

0.
5

1.
0

1.
5

2.
0

R
ea

d
co

un
t /

 d
en

si
ty

53000 53500 54000 54500 55000

0
5

10
15

20
25

30

Position in genomic region

O
ve

rla
p

co
un

t

Figure 5: Read counts and densities for a transcription factor binding site. In the top panel
vertical light blue and red bars indicate the number of reads starting at each position on the
forward and reverse strand respectively. The underlying read densities are shown as blue and
red lines and the binding site density is shown in black. The number of overlapping extended
reads on the forward (blue) and reverse (red) strand are shown in the bottom panel.

fragment length (200bp) and count the number of overlapping reads at each position. This
results in a peak surrounding the binding site that is approximately 350bp wide.

4.2.5 Putting it all together

After generating the desired number of read positions the resulting read sequences can be
written to a file using the infrastructure provided by ChIPsim and will not be covered here in
detail. A final point worth noting is that although we have carried out the various steps of the
simulation for demonstration purposes, it is not necessary to do this in practice. The ChIPsim

package provides the simChIP function that allows us to run the entire simulation with a single
function call. Using the output method described in “Introduction to ChIPsim” to produce read
sequences we first set up the functions to carry out the different stages of the simulation. As
we have seen above we can rely on the build-in functions for this, only the last stage needs to
be changed to accommodate the fact that we do not want to create output files.

15

> myFunctions <- ChIPsim::defaultFunctions()

> myFunctions$readSequence <- dfReads

Now we have to adjust the arguments that will be passed to these functions to enable them to
work with our transcription factor simulation.

> featureArgs <- list(generator=generator, transition=transition, init=init, start = 0,

+ length = 1e6, globals=list(shape=1, scale=20), experimentType="TFExperiment",

+ lastFeat=c(Binding = FALSE, Background = TRUE), control=list(Binding=list(length=50)))

> readDensArgs <- list(fragment=fragLength, bind = 50, minLength = 150, maxLength = 250,

+ meanLength = 200)

After generating a random reference sequence we are all set.

> genome <- Biostrings::DNAStringSet(c(CHR=paste(sample(Biostrings::DNA_BASES, 1e6, replace = TRUE), collapse = "")))

> set.seed(1)

> simulated <- ChIPsim::simChIP(1e4, genome, file = "", functions = myFunctions,

+ control = ChIPsim::defaultControl(features=featureArgs, readDensity=readDensArgs))

Generating features...(0.1029551 secs)

Computing binding site density... (0.4147041 secs)

Computing read density... (3.260687 secs)

Sampling reads... (0.3174686 secs)

Generating read names... (0.01429057 secs)

Determining read sequence and quality... (36.20769 secs)

Total time: 40.35225 secs

Note that we reduced the number of reads in this simulation to avoid generating a large number
of read sequences, which can be time consuming. Apart from this change the result is the same
as before:

> all.equal(readDens, simulated$readDensity[[1]])

[1] TRUE

5 Session info

> sessionInfo()

R version 3.1.1 Patched (2014-09-25 r66681)

Platform: x86_64-unknown-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

16

[1] stats4 parallel stats graphics grDevices utils datasets

[8] methods base

other attached packages:

[1] ChIPsim_1.20.0 Biostrings_2.34.0 XVector_0.6.0

[4] IRanges_2.0.0 S4Vectors_0.4.0 BiocGenerics_0.12.0

loaded via a namespace (and not attached):

[1] BBmisc_1.7 BatchJobs_1.4 Biobase_2.26.0

[4] BiocParallel_1.0.0 DBI_0.3.1 GenomeInfoDb_1.2.0

[7] GenomicAlignments_1.2.0 GenomicRanges_1.18.0 RColorBrewer_1.0-5

[10] RSQLite_0.11.4 Rsamtools_1.18.0 ShortRead_1.24.0

[13] actuar_1.1-6 base64enc_0.1-2 bitops_1.0-6

[16] brew_1.0-6 checkmate_1.4 codetools_0.2-9

[19] digest_0.6.4 fail_1.2 foreach_1.4.2

[22] grid_3.1.1 hwriter_1.3.2 iterators_1.0.7

[25] lattice_0.20-29 latticeExtra_0.6-26 sendmailR_1.2-1

[28] stringr_0.6.2 tools_3.1.1 zlibbioc_1.12.0

[31] zoo_1.7-11

References

[1] Zhengdong D. Zhang, Joel Rozowsky, Michael Snyder, Joseph Chang, and Mark Gerstein.
Modeling chip sequencing in silico with applications. PLoS Computational Biology, 4(8),
August 2008.

17

