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1 Chromosome bands

Typically, in higher organisms, each chromosome has a centromere and two arms. The short
arm is called the p arm and the longer arm the q arm. Chromosome bands (see Figure 1) are
identified by differential staining, usually with Giemsa-based stains, and many disease-related
defects have been mapped to these bands; such mappings have played an important role in
classical cytogenetics. With the availability of complete sequences for several genomes, there
have been efforts to link these bands with specific sequence locations (Furey and Haussler,
2003). The estimated location of the bands in the reference genomes can be obtained from
the UCSC genome browser, and data linking genes to particular bands can be obtained from
a variety of sources such as the NCBI. This vignette demonstrates tools that allow the use of
categories derived from chromosome bands, that is, the relevant categories are determined a
priori by a mapping of genes to chromosome bands.

Figure 1 shows an ideogram of human chromosome 12, with the band 12q21 shaded. As
shown in the figure, 12q21 can be divided into more granular levels 12q21.1, 12q21.2, and
12q21.3. 12q21.3 can itself be divided at an even finer level of resolution into 12q21.31,
12q21.32, and 12q21.33. Moving towards less granular bands, 12q21 is a part of 12q2 which is
again a part of 12q. We take advantage of this nested structure of the bands in our analysis.

> library("Category")

> library("ALL")

> library("hgu95av2.db")

> library("annotate")

> library("genefilter")

> library("SNPchip")

> library("geneplotter")

> library("limma")

> library("lattice")

> library("graph")

2 Data Preparation

For illustration, we use a microarray dataset (Chiaretti et al., 2005) from a clinical trial in
acute lymphoblastic leukemia (ALL). The data are described in Chapter 2 of Hahne et al.
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Figure 1: Ideogram for human chromosome 12. The p arm is on the left, the q arm is on the
right, and the centromere is indicated by a notch. The shaded bands together represent 12q21.
This band is composed of three sub-bands: 12q21.1, 12q21.2, and 12q21.3. The last of these is
composed of sub-sub-bands 12q21.31, 12q21.32, and 12q21.33.

(2008). For the analysis presented here, we consider the comparison of two subsets: patients
identified as having a BCR/ABL gene fusion present, typically as a result of a translocation
of chromosomes 9 and 22 (labeled BCR/ABL), and those that have no observed cytogenetic
abnormalities (labeled NEG). The full dataset is available in the ALL package, and the relevant
subset of the data can be obtained by

> data(ALL, package="ALL")

> subsetType <- "BCR/ABL"

> Bcell <- grep("^B", as.character(ALL$BT))

> bcrAblOrNegIdx <- which(as.character(ALL$mol.biol) %in% c("NEG", subsetType))

> bcrAblOrNeg <- ALL[, intersect(Bcell, bcrAblOrNegIdx)]

> bcrAblOrNeg$mol.biol <- factor(bcrAblOrNeg$mol.biol)

We also create relevant annotation maps to go from feature names to Entrez ID, gene symbol,
and chromosome band.

> annType <- c("db", "env")

> entrezMap <- getAnnMap("ENTREZID", annotation(bcrAblOrNeg),

+ type=annType, load=TRUE)

> symbolMap <- getAnnMap("SYMBOL", annotation(bcrAblOrNeg),

+ type=annType, load=TRUE)

> bandMap <- getAnnMap("MAP", annotation(bcrAblOrNeg),

+ type=annType, load=TRUE)

We applied a non-specific filter to the dataset to remove probesets lacking the desired
annotation as well as those with an interquartile range (IQR) below the median IQR, as
probesets with little variation across samples are uninformative. We also ensured that each
Entrez Gene identifier maps to exactly one probeset by selecting the probeset with the largest
IQR when two or more probesets map to the same Entrez Gene ID.

> filterAns <- nsFilter(bcrAblOrNeg,

+ require.entrez = TRUE,
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+ remove.dupEntrez = TRUE,

+ var.func = IQR, var.cutoff = 0.5)

> nsFiltered <- filterAns$eset

We also remove probesets with no gene symbol, as well as those with no mapping to a chro-
mosome band.

> hasSYM <- sapply(mget(featureNames(nsFiltered), symbolMap, ifnotfound=NA),

+ function(x) length(x) > 0 && !is.na(x[1]))

> hasMAP <- sapply(mget(featureNames(nsFiltered), bandMap, ifnotfound=NA),

+ function(x) length(x) > 0 && !is.na(x[1]))

> nsFiltered <- nsFiltered[hasSYM & hasMAP, ]

We define the gene universe to be the subset of genes that remain after this filtering.

> affyUniverse <- featureNames(nsFiltered)

> entrezUniverse <- unlist(mget(affyUniverse, entrezMap))

> names(affyUniverse) <- entrezUniverse

> if (any(duplicated(entrezUniverse)))

+ stop("error in gene universe: can't have duplicate Entrez Gene Ids")

We assessed differential expression between the BCR/ABL and NEG groups using an em-
pirical Bayes approach, as implemented in the software package limma (Smyth, 2005), yielding
an attenuated t-statistic for each gene.

> design <- model.matrix(~ 0 + nsFiltered$mol.biol)

> colnames(design) <- c("BCR/ABL", "NEG")

> contr <- c(1, -1) ## NOTE: we thus have BCR/ABL w.r.t NEG

> fm1 <- lmFit(nsFiltered, design)

> fm2 <- contrasts.fit(fm1, contr)

> fm3 <- eBayes(fm2)

> ttestLimma <- topTable(fm3, number = nrow(fm3), adjust.method = "none")

> ttestLimma <- ttestLimma[featureNames(nsFiltered), ]

> tstats <- ttestLimma$t

> names(tstats) <- entrezUniverse[rownames(ttestLimma)]

> ##

We used a p-value cutoff of 0.01 to identify a list of potentially differentially expressed genes.

> ttestCutoff <- 0.01

> smPV <- ttestLimma$P.Value < ttestCutoff

> pvalFiltered <- nsFiltered[smPV, ]

> selectedEntrezIds <- unlist(mget(featureNames(pvalFiltered), entrezMap))

> ##

3 Methods

There are two important features of gene sets based on chromosome bands: (1) the bands are
nested hierarchically, and (2) they almost form a partition (for most species almost all genes
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appear in only one location in the genome). This naturally leads to two different dichotomies in
approaches to testing: one is a top-down versus a bottom-up approach, and the other contrasts
local tests with global tests. We use human chromosome 12 as an example to describe these
approaches. Users will need to identify which of the approaches best align with their objectives
and then make use of the software appropriately.

Conceptually one can start a sequential testing approach either at the most coarse level of
organization (probably the level of the arm: p or q), or the most specific level (that of sub-
sub-bands). In the top-down approach, one first tests the hypothesis of interest on a coarse
level of organization, and if rejected, the next level of organization is considered. For example,
we might first consider the band 12q21, and if that hypothesis is rejected, test each of the
sub-bands 12q21.1, 12q21.2, and 12q21.3. If the hypothesis for 12q21.3 is rejected, then we
may subsequently examine each of 12q21.31, 12q21.32, and 12q21.33.

The bottom-up approach differs in that we begin at the most granular level and move
upward, amalgamating adjacent bands at each level. The bottom-up approach is easier to
put into a conditional hypothesis testing framework. Our initial null hypotheses involve the
smallest, or most granular bands, and if there is evidence that these are unusual (i.e., we
reject the null hypothesis) then moving to a larger, or less granular, band requires additional
information to declare it significant, over and above what we have used to identify the smaller
band. In our example, we would first test 12q21.31, 12q21.32, and 12q21.33, and then move
up and test 12q21.3. If one or more of the three sub-bands had been declared significant, we
would exclude the evidence from genes annotated in those sub-bands when testing the coarser
band.

It is important to note that the top-down versus bottom-up approaches represent a fun-
damental trade-off between false positive and false negative errors. The bottom-up approach
necessarily involves performing a larger number of tests, yielding a correspondingly larger ab-
solute number of false positives for a given false positive rate at which each individual test
is controlled. The top-down approach cuts down on the number of false positives by starting
with fewer top-level tests, and performing further tests at sublevels only when a top-level test
is rejected. The disadvantage to this approach is loss of power to detect real departures that
are localized to a sub-level, a phenomenon commonly illustrated using Simpson’s paradox (see,
e.g., Wagner, 1982).

Whether a test is local or global is a different question, orthogonal to that of top-down or
bottom-up. There are two distinct but potentially relevant questions that may be of interest.
The first is whether genes in a particular gene set are “different” relative to all other genes
under consideration. For a Hypergeometric test, this question may be formalized as whether
the proportion of interesting genes in 12q21 is different from the proportion of interesting
genes in the rest of the genome, or equivalently, whether membership in 12q21 is independent
of being selected. Such tests are global in the sense that all genes in the gene universe are used
to determine whether or not genes at a location are unusual or not. An alternative is to ask
whether genes in a genomic location are different relative to other genes in some meaningfully
defined neighbourhood. Such a test can be performed simply by restricting the gene universe
to a suitable subset; for example, when testing 12q21, we may only consider genes in 12q.
A more natural approach is to use a 2 × 3 contingency table to test the hypothesis that the
proportion of interesting genes is the same in 12q21, 12q22, and 12q23. Both these tests are
local in the sense that only nearby genes are used.
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Contingency table tests are inherently local and although they do not naturally extend to
conditional testing, we can use a top-down approach to test at various resolutions. Such tests
can be performed by the cb_contingency() function, which we do not discuss in this vignette.
Instead, we focus on the bottom-up approach, which allows for conditional testing.

4 Utility functions

We first define a few utility functions that we subsequently use in presentation. The chrSor-

tOrder() function reorders rows of data frame for display in a natural order.

> chrSortOrder <- function(df) {

+ chrs <- sub("([^pq]+).*$", "\\1", rownames(df))

+ xyIdx <- chrs %in% c("X", "Y")

+ xydf <- NULL

+ if (any(xyIdx)) {

+ chrs <- chrs[!xyIdx]

+ xydf <- df[xyIdx, ]

+ df <- df[!xyIdx, ]

+ }

+ ord <- order(as.integer(chrs), rownames(df))

+ df <- df[ord, ]

+ if (!is.null(xydf))

+ df <- rbind(df, xydf)

+ df

+ }

The gseaTstatStripplot() function creates a comparative strip plot of the t-statistics for
specified bands.

> gseaTstatStripplot <- function(bands, g, ..., include.all = FALSE)

+ {

+ chroms <- c(1:22, "X", "Y")

+ chromArms <- c(paste(chroms, "p", sep=""), paste(chroms, "q", sep=""))

+ egid <- lapply(nodeData(g, bands), "[[", "geneIds")

+ if (include.all) {

+ egid$All <-

+ unique(unlist(lapply(nodeData(g)[chromArms], "[[", "geneIds")))

+ }

+ tdf <- do.call(make.groups, lapply(egid, function(x) tstats[x]))

+ stripplot(which ~ data, tdf, jitter = TRUE, ...)

+ }

>

>

The esetBWPlot() function creates box-and-whisker plots for every gene in an “Expres-
sionSet”.
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> esetBWPlot <- function(tmpSet, ..., layout=c(1, nrow(emat)))

+ {

+ emat <- exprs(tmpSet)

+ pd <- pData(tmpSet)

+ probes <- rownames(emat)

+ syms <-

+ sapply(mget(probes, hgu95av2SYMBOL, ifnotfound=NA),

+ function(x) if (all(is.na(x))) "NA" else as.character(x)[1])

+ selectedAffy <-

+ probes %in% affyUniverse[selectedEntrezIds]

+ symsSelected <- syms[selectedAffy]

+ symsWithStatus <-

+ paste(syms,

+ ifelse(selectedAffy, "*", ""),

+ sep = "")

+ pdat <-

+ cbind(exprs=as.vector(emat),

+ genes=factor(probes, levels = probes, labels = syms),

+ pd[rep(seq_len(nrow(pd)), each=nrow(emat)), ])

+ pdat <- transform(pdat, genes = reorder(genes, exprs))

+ panels.to.shade <- levels(pdat$genes) %in% symsSelected

+ bwplot(mol.biol ~ exprs | genes, data=pdat,

+ layout = layout,

+ auto.key=TRUE,

+ scales=list(x=list(log=2L)),

+ xlab="Log2 Expression",

+ panels.to.shade = panels.to.shade,

+ panel = function(..., panels.to.shade) {

+ if (panels.to.shade[packet.number()])

+ panel.fill(col = "lightgrey")

+ panel.bwplot(...)

+ },

+ strip=FALSE,

+ strip.left=TRUE, ...)

+ }

> g1 <- makeChrBandGraph(annotation(nsFiltered), univ=entrezUniverse)

> ct <- ChrBandTreeFromGraph(g1)

> subsetByBand <- function(eset, ct, band) {

+ egIDs <- unlist(nodeData(ct@toChildGraph, n=band,

+ attr="geneIds"), use.names=FALSE)

+ wantedProbes <- affyUniverse[as.character(egIDs)]

+ eset[intersect(wantedProbes, featureNames(eset)), ]

+ }

>
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5 Hypergeometric Testing

We use a method similar to that described in Falcon and Gentleman (2007) to conditionally
test for over-representation of chromosome bands in the selected gene list. A test is set up
by creating a suitable object of class “ChrMapHyperGParams”. We first create an object to
perform a standard Hypergeometric analysis, treating each chromosome band independently,
and then modify a copy to represent a conditional Hypergeometric computation.

> params <- new("ChrMapHyperGParams",

+ conditional=FALSE,

+ testDirection="over",

+ universeGeneIds=entrezUniverse,

+ geneIds=selectedEntrezIds,

+ annotation="hgu95av2",

+ pvalueCutoff=0.05)

> paramsCond <- params

> paramsCond@conditional <- TRUE

The test computations are performed by

> hgans <- hyperGTest(params)

> hgansCond <- hyperGTest(paramsCond)

The results can be summarized by

> sumUn <- summary(hgans, categorySize=1)

> chrSortOrder(sumUn)

ChrMapID Pvalue OddsRatio ExpCount Count Size

1 6p23 0.002093524 33.628895 0.3300881 3 4

2 14q22.2 0.004913731 16.810198 0.4126101 3 5

3 7p15 0.005580562 5.623932 1.2378303 5 15

4 13q31 0.006792330 Inf 0.1650440 2 2

5 12q14.1 0.006792330 Inf 0.1650440 2 2

6 13q31.1 0.006792330 Inf 0.1650440 2 2

7 7q31.2 0.006792330 Inf 0.1650440 2 2

8 14q22 0.016425077 4.013024 1.5679184 5 19

9 9q21.13 0.019261736 22.355932 0.2475661 2 3

10 6q 0.020819912 1.984357 7.7570700 14 94

11 6q2 0.021995096 2.182100 5.6114975 11 68

12 2q32 0.032157970 5.597734 0.7426982 3 9

13 4q22 0.036429948 11.175141 0.3300881 2 4

14 9q21.1 0.036429948 11.175141 0.3300881 2 4

15 12p12.3 0.036429948 11.175141 0.3300881 2 4

16 7p15.3 0.036429948 11.175141 0.3300881 2 4

17 1p36 0.042251321 2.013832 5.4464534 10 66

18 9 0.042748920 1.621450 12.5433472 19 152

7



19 12q14 0.043192180 4.796843 0.8252202 3 10

20 11p15.4 0.043192180 4.796843 0.8252202 3 10

21 22q11.23 0.043192180 4.796843 0.8252202 3 10

> sumCond <- summary(hgansCond, categorySize=1)

> chrSortOrder(sumCond)

ChrMapID Pvalue OddsRatio ExpCount Count Size

1 6p23 0.002093524 33.628895 0.3300881 3 4

2 14q22.2 0.004913731 16.810198 0.4126101 3 5

3 12q14.1 0.006792330 Inf 0.1650440 2 2

4 13q31.1 0.006792330 Inf 0.1650440 2 2

5 7q31.2 0.006792330 Inf 0.1650440 2 2

6 9q21.13 0.019261736 22.355932 0.2475661 2 3

7 6q2 0.021995096 2.182100 5.6114975 11 68

8 2q32 0.032157970 5.597734 0.7426982 3 9

9 4q22 0.036429948 11.175141 0.3300881 2 4

10 12p12.3 0.036429948 11.175141 0.3300881 2 4

11 7p15.3 0.036429948 11.175141 0.3300881 2 4

12 1p36 0.042251321 2.013832 5.4464534 10 66

13 9 0.042748920 1.621450 12.5433472 19 152

14 11p15.4 0.043192180 4.796843 0.8252202 3 10

15 22q11.23 0.043192180 4.796843 0.8252202 3 10

For the standard test, the structure of the chromosome band graph is ignored and a Hyper-
geometric test is applied to each band independently. For the conditional test, the hierarchical
relationship among the bands as represented by the graph is used in the computation. The
highest-resolution bands (those with no children in the graph) are tested first. Testing proceeds
with the bands whose children (sub-bands) have already been tested. For these bands, the gene
annotations that are inherited from significant child nodes (children with p-value smaller than
the specified cutoff) are removed prior to testing to yield a conditional test.

The effect of the conditional test is illustrated by examining the results for 14q and its sub-
bands. In the standard test, we see that 14q22 and 14q22.2 both have a significant p-value.
In the conditional test, only 14q22.2 remains. The conclusion is that there is not enough
additional evidence beyond that provided by 14q22.2 to mark 14q22 as significant.

6 GSEA using linear models

GSEA is a popular method that can be used to assess whether or not particular gene sets are
associated with a phenotype of interest (Subramanian et al., 2005; Tian et al., 2005; Jiang
and Gentleman, 2007). Most applications of this method do not explicitly deal with structure
of the gene sets, but when analyzing chromosomal location such methods are desirable. We
present a simple approach that is similar in spirit to traditional GSEA, and generalizes nicely to
accommodate nested categories. Consider the situation where gene i has an associated measure
of differential expression yi; for example, an attenuated t-statistic derived from a differential
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Figure 2: Per-gene t-statistics, as computed by limma, for selected chromosome bands. The
points are jittered vertically to alleviate overlap. A thick grey line joins the mean value
within each group. A GSEA test would compare the genes in 12q21 with those in 12q, or the
entire gene universe, by fitting a linear model with per-gene t-statistics as the response, and a
term indicating membership in 12q21 as the predictor. If 12q21.1 is declared as significant, a
conditional GSEA test would include an additional term for 12q21.1.

expression analysis such as limma (Smyth, 2005). Given a particular category, GSEA asks
whether the distribution of yi-s restricted to the category of interest is “unusual”. Thus, in
Figure 2, we might be interested in knowing whether the distribution of yi values for genes in
12q21 is different from that of the genes in 12q (for a local test) or of all genes in the gene
universe (for a global test). Figure 2 is produced by

> gseaTstatStripplot(c("12q21.1", "12q21", "12q2", "12q"),

+ include.all = TRUE,

+ g = g1,

+ xlab = "Per-gene t-statistics",

+ panel = function(...) {

+ require(grid, quietly = TRUE)

+ grid.rect(y = unit(2, "native"),

+ height = unit(1, "native"),

+ gp =

+ gpar(fill = "lightgrey",

+ col = "transparent"))

+ panel.grid(v = -1, h = 0)

+ panel.stripplot(...)

+ panel.average(..., fun = mean, lwd = 3)

+ })
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We fit a factorial model to see whether the distribution of yi is associated with category
membership. Specifically, for category j, we fit the model

yi = β0 + β1aij + εi (1)

where aij = 1 if gene i belongs to category j, and 0 otherwise. The index i may range over
the full gene universe, or a subset, depending on whether one wishes to perform global or local
tests. The null hypothesis of no association is represented by H0 : β1 = 0. The model nominally
assumes that the yi-s are Normally distributed with equal variance, but in practice the results
are robust against mild deviations. The presence of an intercept term allows nonzero overall
mean, which can be important in many situations, especially for local tests. We expect the
test to be fairly insensitive to distributional assumptions on the yi-s.

We can fit (1) by least squares and test H0 : β1 = 0 to obtain a marginal test for each
category j; in this case, each chromosome band. The procedure also generalizes to incorporate
the nesting structure of chromosome bands. Specifically, if band j2 (e.g., 12q21.1) is nested
within a coarser band j1 (e.g., 12q21) and the more granular band j2 is significant, then the
effect of membership in j1 over and above the effect attributable to membership in j2 can be
tested by fitting the model

yi = β0 + β1aij1 + β2aij2 + εi (2)

and testing the null hypothesis H0 : β1 = 0. Multiple significant sub-bands and multiple levels
of nesting can be incorporated by including further terms in the model. The complete process
can be summarized as follows: Start by marginally testing each band which has no sub-bands.
For all other bands, first test all sub-bands, then test the current band using a linear model
that includes a term for each significant sub-band.

We apply this procedure to perform global tests using per-gene t-statistics as a measure
of differential expression in BCR/ABL relative to NEG samples. As with the Hypergeometric
tests, we start by creating objects of class “ChrMapLinearMParams”.

> params <- new("ChrMapLinearMParams",

+ conditional = FALSE,

+ testDirection = "up",

+ universeGeneIds = entrezUniverse,

+ geneStats = tstats,

+ annotation = "hgu95av2",

+ pvalueCutoff = 0.01,

+ minSize = 4L)

> params@graph <- makeChrBandGraph(params@annotation, params@universeGeneIds)

> params@gsc <- makeChrBandGSC(params@graph)

> paramsCond <- params

> paramsCond@conditional <- TRUE

The tests are performed, and the results summarized by

> lmans <- linearMTest(params)

> lmansCond <- linearMTest(paramsCond)

> chrSortOrder(summary(lmans))
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ChrMapID Pvalue Effect Size Conditional TestDirection

53 12q21 6.880695e-03 1.1357271 11 FALSE up

75 14 8.982563e-03 0.2920338 159 FALSE up

76 14q 8.982563e-03 0.2920338 159 FALSE up

80 14q2 2.647195e-04 0.6160399 75 FALSE up

82 14q22 1.060929e-04 1.2994190 19 FALSE up

110 16q1 4.973303e-03 0.8229480 23 FALSE up

132 18p 1.165917e-03 0.8811387 28 FALSE up

133 18p1 1.165917e-03 0.8811387 28 FALSE up

134 18p11 1.165917e-03 0.8811387 28 FALSE up

160 1p2 2.259325e-03 0.7942724 30 FALSE up

213 2 3.756307e-04 0.3117384 292 FALSE up

224 2q 1.190715e-04 0.4463934 164 FALSE up

225 2q1 5.966671e-03 0.6610370 34 FALSE up

234 2q3 8.122015e-03 0.3807922 95 FALSE up

240 3 6.535031e-03 0.2502859 243 FALSE up

253 3q 9.199609e-04 0.4402270 120 FALSE up

259 3q2 6.694722e-03 0.3859373 98 FALSE up

262 3q25 1.855496e-03 1.1458453 15 FALSE up

267 4 1.554677e-03 0.3658692 158 FALSE up

273 4q 3.169932e-03 0.4061720 108 FALSE up

277 4q21 7.925223e-03 0.9528781 15 FALSE up

287 5 5.104314e-04 0.3596184 204 FALSE up

293 5q 3.151809e-03 0.3227621 174 FALSE up

299 5q2 4.092325e-03 0.9283902 19 FALSE up

304 5q31 7.092957e-03 0.5877231 41 FALSE up

307 6 4.088163e-05 0.3872333 256 FALSE up

317 6q 2.685345e-06 0.7233527 94 FALSE up

321 6q2 2.996466e-06 0.8435741 68 FALSE up

384 9q21.1 9.362534e-05 2.8511066 4 FALSE up

620 14q22.2 1.794762e-04 2.4366868 5 FALSE up

916 3q28 2.449730e-03 1.7549582 6 FALSE up

980 5q31.1 9.425306e-03 0.9276824 15 FALSE up

1001 6p23 1.487763e-04 2.7611697 4 FALSE up

1066 8p22 1.268854e-03 2.0621705 5 FALSE up

> chrSortOrder(summary(lmansCond))

ChrMapID Pvalue Effect Size Conditional TestDirection

53 12q21 6.880695e-03 1.1357271 11 TRUE up

80 14q2 4.124863e-03 0.4854303 75 TRUE up

110 16q1 4.973303e-03 0.8229480 23 TRUE up

134 18p11 1.165917e-03 0.8811387 28 TRUE up

160 1p2 2.259325e-03 0.7942724 30 TRUE up

225 2q1 5.966671e-03 0.6610370 34 TRUE up

234 2q3 8.122015e-03 0.3807922 95 TRUE up
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262 3q25 1.855496e-03 1.1458453 15 TRUE up

267 4 9.750430e-03 0.3032366 158 TRUE up

277 4q21 7.925223e-03 0.9528781 15 TRUE up

299 5q2 4.092325e-03 0.9283902 19 TRUE up

321 6q2 2.996466e-06 0.8435741 68 TRUE up

384 9q21.1 9.362534e-05 2.8511066 4 TRUE up

620 14q22.2 1.794762e-04 2.4366868 5 TRUE up

916 3q28 2.449730e-03 1.7549582 6 TRUE up

980 5q31.1 9.425306e-03 0.9276824 15 TRUE up

1001 6p23 1.487763e-04 2.7611697 4 TRUE up

1066 8p22 1.268854e-03 2.0621705 5 TRUE up

>

> ##

These examples only test for consistently upregulated categories; similar calls with testDirec-

tion = "down" can be used to test for downregulation. As we see, the GSEA approach picks
out many more bands as significant, but there is some concordance with the Hypergeometric
approach. For example, 7q31, 8p22, and 14q22.2 come up in both analyses. Figure 3 shows
box-and-whisker plots of genes in one category (1p36.2) that is declared as significant by the
Hypergeometric test, but not by GSEA. It is produced by

> tmpSet <- subsetByBand(nsFiltered, ct, "1p36.2")

> esetBWPlot(tmpSet, ylab="1p36.2", layout = c(2, 8),

+ par.strip.text = list(cex = 0.8))
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Figure 3: Expression values for the BCR/ABL and NEG samples for the genes located within
1p36.2, which is declared as significant by the Hypergeometric test, but not by GSEA. Genes in
the selected list are highlighted with a shaded background. For these genes, The NEG samples,
those with no known cytogenetic abnormalities, have significantly lower expression than the
BCR/ABL samples. However, the direction is reversed (albeit mildly) for many of the other
genes.
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