Pairwise Sequence Alignments

Patrick Aboyoun
Gentleman Lab
Fred Hutchinson Cancer Research Center
Seattle, WA

December 11, 2014

Contents

(1 _Introduction|

[2 Pairwise Sequence Alignment Problems|

|3 Main Pairwise Sequence Alignment Function|

|4 Pairwise Sequence Alignment Classes|
4.1 Exercise 2| L. e

[Pairwise Sequence Alignment Helper Functions|
D1 Exercise 3l e

7 Application: Using Evolutionary Models in Protein Alignments|
71 FExercise Bl o e

I8 Application: Removing Adapters from Sequence Reads|
BRI FExercise Ol o o e e e

[9 Application: Quality Assurance in Sequencing Experiments|

0.1 Exercise 7 e

{10 Computation Profiling|
10.1 Exercise 8 e e

11
12

12
12

13
17

17
20

20
23

23

12,6 Fxercise 6f L 26

2T EXETASE T o o v o oo oo e e e e e e 30
MO8 EXEIGSE Rl -« o o o oo e e e e e 31
Session Tof . 33

1 Introduction

In this document we illustrate how to perform pairwise sequence alignments using the Biostrings package
through the use of the pairwiseAlignment function. This function aligns a set of pattern strings to a subject
string in a global, local, or overlap (ends-free) fashion with or without affine gaps using either a fixed or
quality-based substitution scoring scheme. This function’s computation time is proportional to the product
of the two string lengths being aligned.

2 Pairwise Sequence Alignment Problems

The (Needleman-Wunsch) global, the (Smith-Waterman) local, and (ends-free) overlap pairwise sequence
alignment problems are described as follows. Let string S; have n; characters c(; ;) with j € {1,...,n;}. A
pairwise sequence alignment is a mapping of strings S; and Sa to gapped substrings S’; and S’y that are
defined by

S = 9(a)C(Lar) 961 CL1) I(1,b1+1)
S = 92,a2)C2a2) " I(2.02)C(2,55)9(2,bs+1)

where
a;,b; € {1, .. .,ni} with a; < b;
9¢i,5) = 0 or more gaps at the specified position j for aligned string ¢
length(S'1) = length(S’s)

Each of these pairwise sequence alignment problems is solved by maximizing the alignment score. An
alignment score is determined by the type of pairwise sequence alignment (global, local, overlap), which sets
the [a;, b;] ranges for the substrings; the substitution scoring scheme, which sets the distance between aligned
characters; and the gap penalties, which is divided into opening and extension components. The optimal
pairwise sequence alignment is the pairwise sequence alignment with the largest score for the specified
alignment type, substitution scoring scheme, and gap penalties. The pairwise sequence alignment types,
substitution scoring schemes, and gap penalties influence alignment scores in the following manner:

Pairwise Sequence Alignment Types: The type of pairwise sequence alignment determines the substring
ranges to apply the substitution scoring and gap penalty schemes. For the three primary (global, local,
overlap) and two derivative (subject overlap, pattern overlap) pairwise sequence alignment types, the
resulting substring ranges are as follows:

Global - [a1,b1] = [1,n1] and [az, ba] = [1,n2)

Local - [a1,b1] and [ag, bo)

OVerlap - {[alabl] - [alvnl]) [GQ,bQ] - [1ab2]} or {[aflvbl] - [17b1]a [a27b2] - [CLQ,TLQ]}
Subject Overlap - [a1,b1] = [1,n1] and [az, bo]
Pattern Overlap - [a1,b1] and [ag, b2] = [1, n2]

Substitution Scoring Schemes: The substitution scoring scheme sets the values for the aligned character
pairings within the substring ranges determined by the type of pairwise sequence alignment. This scor-
ing scheme can be fixed for character pairings or quality-dependent for character pairings. (Characters
that align with a gap are penalized according to the “Gap Penalty” framework.)

Fixed substitution scoring - Fixed substitution scoring schemes associate each aligned character
pairing with a value. These schemes are very common and include awarding one value for a match
and another for a mismatch, Point Accepted Mutation (PAM) matrices, and Block Substitution
Matrix (BLOSUM) matrices.

Quality-based substitution scoring - Quality-based substitution scoring schemes derive the value for
the aligned character pairing based on the probabilities of character recording errors [3]. Let ¢;
be the probability of a character recording error. Assuming independence within and between
recordings and a uniform background frequency of the different characters, the combined error
probability of a mismatch when the underlying characters do match is €, = €1 +ea—(n/(n—1))*ep *
€2, where n is the number of characters in the underlying alphabet (e.g. in DNA and RNA n = 4).
Using ¢, the substitution score is given by bxlogy(V(z,y) * (1 —€c) *n+ (1 =Y (ay)) *€c* (n/(n—1))),
where b is the bit-scaling for the scoring and 7, ,) is the probability that characters z and y
represents the same underlying letters (e.g. using IUPAC, v(4,4) = 1 and y(4,n) = 1/4).

Gap Penalties: Gap penalties are the values associated with the gaps within the substring ranges deter-
mined by the type of pairwise sequence alignment. These penalties are divided into gap opening and
gap extension components, where the gap opening penalty is the cost for adding a new gap and the
gap extension penalty is the incremental cost incurred along the length of the gap. A constant gap
penalty occurs when there is a cost associated with opening a gap, but no cost for the length of a gap
(i.e. gap extension is zero). A linear gap penalty occurs when there is no cost associated for opening
a gap (i.e. gap opening is zero), but there is a cost for the length of the gap. An affine gap penalty
occurs when both the gap opening and gap extension have a non-zero associated cost.

3 Main Pairwise Sequence Alignment Function

The pairwiseAlignment function solves the pairwise sequence alignment problems mentioned above. It
aligns one or more strings specified in the pattern argument with a single string specified in the subject
argument.

> library(Biostrings)
> pairwiseAlignment (pattern = c("succeed", "precede"), subject = "supersede")

Global PairwiseAlignmentsSingleSubject (1 of 2)
pattern: [1] succ--eed

subject: [1] supersede

score: —-33.99738

The type of pairwise sequence alignment is set by specifying the type argument to be one of "global",
"local", "overlap", "global-local", and "local-global".

> pairwiseAlignment (pattern = c("succeed", "precede"), subject = "supersede",
+ type = "local")

Local PairwiseAlignmentsSingleSubject (1 of 2)
pattern: [1] su
subject: [1] su
score: 5.578203

The gap penalties are regulated by the gapOpening and gapFExtension arguments.

> pairwiseAlignment (pattern = c("succeed", "precede"), subject = "supersede",
+ gapOpening = 0, gapExtension = -1)

Global PairwiseAlignmentsSingleSubject (1 of 2)
pattern: [1] su-cce--ed

subject: [1] sup--ersed

score: 7.945507

The substitution scoring scheme is set using three arguments, two of which are quality-based related
(patternQuality, subjectQuality) and one is fixed substitution related (substitutionMatriz). When the sub-
stitution scores are fixed by character pairing, the substituionMatriz argument takes a matrix with the
appropriate alphabets as dimension names. The nucleotideSubstitutionMatrix function tranlates simple
match and mismatch scores to the full spectrum of IUPAC nucleotide codes.

> submat <-
+ matrix(-1, nrow = 26, ncol = 26, dimnames = list(letters, letters))
> diag(submat) <- 0

> pairwiseAlignment (pattern = c("succeed", "precede"), subject = "supersede",
+ substitutionMatrix = submat,
+ gapOpening = 0, gapExtension = -1)

Global PairwiseAlignmentsSingleSubject (1 of 2)
pattern: [1] succe-ed

subject: [1] supersed

score: -5

When the substitution scores are quality-based, the patternQuality and subjectQuality arguments repre-
sent the equivalent of [x — 99] numeric quality values for the respective strings, and the optional fuzzyMatriz
argument represents how the closely two characters match on a [0, 1] scale. The patternQuality and sub-
jectQuality arguments accept quality measures in either a PhredQuality, SolexaQuality, or IlluminaQuality
scaling. For PhredQuality and IlluminaQuality measures @ € [0,99], the probability of an error in the base
read is given by 10~%/10 and for SolezaQuality measures Q € [—5,99], they are given by 1 —1/(1+10~%/10),
The qualitySubstitutionMatrices function maps the patternQuality and subjectQuality scores to match
and mismatch penalties. These three arguments will be demonstrated in later sections.

The final argument, scoreOnly, to the pairwiseAlignment function accepts a logical value to specify
whether or not to return just the pairwise sequence alignment score. If scoreOnly is FALSE, the pairwise
alignment with the maximum alignment score is returned. If more than one pairwise alignment has the
maximum alignment score exists, the first alignment along the subject is returned. If there are multiple
pairwise alignments with the maximum alignment score at the chosen subject location, then at each location
along the alignment mismatches are given preference to insertions/deletions. For example, pattern: [1]
ATTA; subject: [1] AT-Aischosen above pattern: [1] ATTA; subject: [1] A-TAif they both have
the maximum alignment score.

> submat <-
+ matrix(-1, nrow = 26, ncol = 26, dimnames = list(letters, letters))
> diag(submat) <- 0

> pairwiseAlignment (pattern = c("succeed", "precede"), subject = "supersede",
+ substitutionMatrix = submat,

+ gapOpening = 0, gapExtension = -1, scoreOnly = TRUE)

[1] -5 -5

3.1 Exercise 1

1. Using pairwiseAlignment, fit the global, local, and overlap pairwise sequence alignment of the strings
"syzygy" and "zyzzyx" using the default settings.

2. Do any of the alignments change if the gapFExtension argument is set to —Inf?

[Answers provided in section [12.1]]

4 Pairwise Sequence Alignment Classes

Following the design principles of Bioconductor and R, the pairwise sequence alignment functionality in

the Biostrings package keeps the end-user close to their data through the use of five specialty classes: Pair-
wiseAlignments, PairwiseAlignmentsSingleSubject, PairwiseAlignmentsSingleSubjectSummary, Aligned X StringSet,
and QualityAligned X StringSet. The PairwiseAlignmentsSingleSubject class inherits from the PairwiseAlign-
ments class and they both hold the results of a fit from the pairwiseAlignment function, with the former

class being used to represent all patterns aligning to a single subject and the latter being used to represent
elementwise alignments between a set of patterns and a set of subjects.

> psal <- pairwiseAlignment (pattern = c("succeed", "precede"), subject = "supersede")
> class(psal)

[1] "PairwiseAlignmentsSingleSubject"
attr(, "package")
[1] "Biostrings"

and the pairwiseAlignmentSummary function holds the results of a summarized pairwise sequence align-
ment.

> summary (psal)

Global Single Subject Pairwise Alignments
Number of Alignments: 2

Scores:
Min. 1st Qu. Median Mean 3rd Qu. Max.
-34.00 -31.78 -29.56 -29.56 -27.34 -25.12

Number of matches:
Min. 1st Qu. Median Mean 3rd Qu. Max.
3.00 3.25 3.50 3.50 3.75 4.00

Top 7 Mismatch Counts:
SubjectPosition Subject Pattern Count Probability

1 3 p c 1 0.5
2 4 e c 1 0.5
3 4 e r 1 0.5
4 5 r e 1 0.5
5 6 s c 1 0.5
6 8 d e 1 0.5
7 9 e d 1 0.5

> class(summary(psal))

[1] "PairwiseAlignmentsSingleSubjectSummary"
attr(, "package")
[1] "Biostrings"

The AlignedXStringSet and QualityAlignedXStringSet classes hold the “gapped” S’; substrings with the
former class holding the results when the pairwise sequence alignment is performed with a fixed substitution
scoring scheme and the latter class a quality-based scoring scheme.

> class(pattern(psal))

[1] "QualityAlignedXStringSet"
attr(, "package")
[1] "Biostrings"

> submat <-
+ matrix(-1, nrow = 26, ncol = 26, dimnames = list(letters, letters))
> diag(submat) <- 0

> psa2 <-

+ pairwiseAlignment (pattern = c("succeed", "precede"), subject = "supersede",
+ substitutionMatrix = submat,

+ gapOpening = 0, gapExtension = -1)

> class(pattern(psa2))

[1] "AlignedXStringSet"
attr(, "package")
[1] "Biostrings"

4.1 Exercise 2

1. What is the primary benefit of formal summary classes like PairwiseAlignmentsSingleSubjectSummary
and summary.lm to end-users?

[Answer provided in section [12.2]]

5 Pairwise Sequence Alignment Helper Functions

Tables and [3] show functions that interact with objects of class PairwiseAlignments, PairwiseAlign-
mentsSingleSubject, and AlignedXStringSet. These functions should be used in preference to direct slot
extraction from the alignment objects.

The score, nedit, nmatch, nmismatch, and nchar functions return numeric vectors containing informa-
tion on the pairwise sequence alignment score, number of matches, number of mismatches, and number of
aligned characters respectively.

> submat <-
+ matrix(-1, nrow = 26, ncol = 26, dimnames = list(letters, letters))
> diag(submat) <- 0

> psa2 <-

+ pairwiseAlignment (pattern = c("succeed", "precede"), subject = "supersede",
+ substitutionMatrix = submat,

+ gapOpening = 0, gapExtension = -1)

> score(psa2)

[1] -5 -5

Function

Description

[

alphabet
compareStrings
deletion
length
mismatchTable
nchar

nedit

indel
insertion
nindel

nmatch
nmismatch
pattern, subject
pid

rep

score

type

Extracts the specified elements of the alignment object

Extracts the allowable characters in the original strings

Creates character string mashups of the alignments

Extracts the locations of the gaps inserted into the pattern for the alignments
Extracts the number of patterns aligned

Creates a table for the mismatching positions

Computes the length of “gapped” substrings

Computes the Levenshtein edit distance of the alignments

Extracts the locations of the insertion & deletion gaps in the alignments
Extracts the locations of the gaps inserted into the subject for the alignments
Computes the number of insertions & deletions in the alignments

Computes the number of matching characters in the alignments

Computes the number of mismatching characters in the alignments

Extracts the aligned pattern/subject

Computes the percent sequence identity

Replicates the elements of the alignment object

Extracts the pairwise sequence alignment scores

Extracts the type of pairwise sequence alignment

Table 1: Functions for PairwiseAlignments and PairwiseAlignmentsSingleSubject objects.

> nedit (psa2)

(1]

45

> nmatch(psa2)

(1]

4 4

> nmismatch(psa2)

(1]

33

> nchar(psa2)

(1]

89

> aligned(psa2)

A BStringSet instance of length 2

(1]
(2]

> as.character(psa2)

(1]

width seq
9 succe-ed-
9 pr-ec-ede

"succe-ed-" "pr-ec-ede"

> as.matrix(psa2)

(1,]
[2,1]

(,11 [,21 [,3]
"S" llull "C"
llpll llrll n_n

(.41 [,51 [,e] [,71 [,8] [,9]
"C" llell Ilell Ildll
llell "C" Ilell lldll

n_n llell

Function

Description

aligned
as.character
as.matrix
consensusMatrix
consensusString
coverage
mismatchSummary
summary
toString

Views

Creates an XStringSet containing either “filled-with-gaps” or degapped aligned strings
Creates a character vector version of aligned

Creates an “exploded” character matrix version of aligned

Computes a consensus matrix for the alignments

Creates the string based on a 50% + 1 vote from the consensus matrix

Computes the alignment coverage along the subject

Summarizes the information of the mismatchTable

Summarizes a pairwise sequence alignment

Creates a concatenated string version of aligned

Creates an XStringViews representing the aligned region along the subject

Table 2: Additional functions for PairwiseAlignmentsSingleSubject objects.

> consensusMatrix(psa2)

(,11 [,2] [,3]1 [,4] [,5] [,6] [,7] [,8] [,9]

e n "™ o a0

sequence alignments.

>

0 0 1
0 0 1
0 0 0
0 0 0
1 0 0
0 1 0
1 0 0
0 1 0

0 0 2 0 0

O O OO+ O
O OO O+ O+
O O O O O o o
O O O O N OO
O O O O OoON O
O O OO OO =

The summary, mismatchTable, and mismatchSummary functions return various summaries of the pairwise

summary (psa2)

Global Single Subject Pairwise Alignments
Number of Alignments: 2

S

Number of matches:
Median Mean 3rd Qu. Max.

cores:
Min. 1st Qu.
-5 -5

Min. 1st Qu.
4 4

Median Mean 3rd Qu. Max.

-5 -5 -5 -5

4 4 4 4

Top 6 Mismatch Counts:
SubjectPosition Subject Pattern Count Probability

O WN -

1

OO WN

s P 0.

H K 09T e
o 0O 0 0K
N e e
O O O O O
oy o 01 O O On

> mismatchTable(psa2)

PatternId PatternStart PatternEnd PatternSubstring SubjectStart

1 1 3 3 c 3

2 1 4 4 c 4

3 1 5 5 e 5

4 2 1 1 P 1

5 2 2 2 r 2

6 2 4 4 c 5
SubjectEnd SubjectSubstring

1 3 P

2 4 e

3 5 r

4 1 s

5 2 u

6 5 r

> mismatchSummary (psa2)

$pattern
$pattern$position

Position Count Probability
1 1 1 0.5
2 2 1 0.5
3 3 1 0.5
4 4 2 1.0
5 5 1 0.5
6 6 0 0.0
7 7 0 0.0
$subject

SubjectPosition Subject Pattern Count Probability
1 1 s P 1 0.5
2 2 u r 1 0.5
3 3 P C 1 0.5
4 4 e C 1 0.5
5 5 r c 1 0.5
6 5 r e 1 0.5

The pattern and subject functions extract the aligned pattern and subject objects for further analy-
sis. Most of the actions that can be performed on PairwiseAlignments objects can also be performed on
Aligned X StringSet and QualityAligned X StringSet objects as well as operations including start, end, and
width that extracts the start, end, and width of the alignment ranges.

> class(pattern(psa2))

[1] "AlignedXStringSet"
attr(, "package")
[1] "Biostrings"

> aligned(pattern(psa2))

A BStringSet instance of length 2
width seq

(1]
(2]

Function

Description

L

aligned, unaligned
alphabet
as.character, toString
coverage

end

indel

length

mismatch
mismatchSummary
mismatchTable
nchar

nindel

nmismatch

rep

start

toString

width

Extracts the specified elements of the alignment object
Extracts the aligned/unaligned strings

Extracts the allowable characters in the original strings
Converts the alignments to character strings

Computes the alignment coverage

Extracts the ending index of the aligned range

Extracts the insertion/deletion locations

Extracts the number of patterns aligned

Extracts the position of the mismatches

Summarizes the information of the mismatchTable

Creates a table for the mismatching positions

Computes the length of “gapped” substrings

Computes the number of insertions/deletions in the alignments
Computes the number of mismatching characters in the alignments
Replicates the elements of the alignment object

Extracts the starting index of the aligned range

Creates a concatenated string containing the alignments
Extracts the width of the aligned range

Table 3: Functions for AlignedXString and QualityAlignedXString objects.

8 succe-ed
9 pr-ec-ede

> nindel (pattern(psa2))

(1,1
(2,]

Length WidthSum
1 1
2 2

> start(subject (psa2))

[1] 11

> end(subject (psa2))
(1] 8 9

5.1

For the overlap pairwise sequence alignment of the strings "syzygy" and "zyzzyx" with the pairwiseAlign-

Exercise 3

ment default settings, perform the following operations:

1.

2
3.
4

Use nmatch and nmismath to extract the number of matches and mismatches respectively.

. Use the compareStrings function to get the symbolic representation of the alignment.

Use the as.character function to the get the character string versions of the alignments.

. Use the pattern function to extract the aligned pattern and apply the mismatch function to it to find

the locations of the mismatches.

Use the subject function to extract the aligned subject and apply the aligned function to it to get

the aligned strings.

[Answers provided in section [12.3]]

10

6 Edit Distances

One of the earliest uses of pairwise sequence alignment is in the area of text analysis. In 1965 Vladimir
Levenshtein considered a metric, now called the Levenshtein edit distance, that measures the similarity
between two strings. This distance metric is equivalent to the negative of the score of a pairwise sequence
alignment with a match cost of 0, a mismatch cost of -1, a gap opening penalty of 0, and a gap extension
cost of -1.

The stringDist uses the internals of the pairwiseAlignment function to calculate the Levenshtein edit
distance matrix for a set of strings.

There is also an implementation of approximate string matching using Levenshtein edit distance in the
agrep (approximate grep) function of the base R package. As the following example shows, it is possible to
replicate the agrep function using the pairwiseAlignment function. Since the agrep function is vectorized
in z rather than pattern, these arguments are flipped in the call to pairwiseAlignment.

> agrepBioC <-
+ function(pattern, x, ignore.case = FALSE, value = FALSE, max.distance = 0.1)
+ {
if (!is.character(pattern)) pattern <- as.character(pattern)
if (!is.character(x)) x <- as.character(x)
if (max.distance < 1)
max.distance <- ceiling(max.distance / nchar(pattern))
characters <- unique(unlist(strsplit(c(pattern, x), "", fixed = TRUE)))
if (ignore.case)
substitutionMatrix <-
outer (tolower (characters), tolower(characters), function(x,y) -as.numeric(x!=y))
else
substitutionMatrix <-
outer (characters, characters, function(x,y) -as.numeric(x!=y))
dimnames (substitutionMatrix) <- list(characters, characters)
distance <-
- pairwiseAlignment (pattern = x, subject = pattern,
substitutionMatrix = substitutionMatrix,
type = "local-global",
gapUpening = 0, gapExtension = -1,
scoreOnly = TRUE)
whichClose <- which(distance <= max.distance)
if (value)
whichClose <- x[whichClose]
whichClose
}
cbind(base = agrep("laysy", c("1 lazy", "1", "1 LAZY"), max = 2, value = TRUE),
bioc = agrepBioC("laysy", c("1 lazy", "1", "1 LAZY"), max = 2, value = TRUE))

+ V+ 4+ ++ A+t FE R FEEF A+

base bioc
[1,] "1 lazy" "1 lazy"

> cbind(base = agrep("laysy", c("1 lazy", "1", "1 LAZY"), max = 2, ignore.case = TRUE),
+ bioc = agrepBioC("laysy", c("1 lazy", "1", "1 LAZY"), max = 2, ignore.case = TRUE))

base bioc
[1,] 1 1
[2,] 3 3

11

6.1 Exercise 4

1. Use the pairwiseAlignment function to find the Levenshtein edit distance between "syzygy" and
"zyzzyx".

2. Use the stringDist function to find the Levenshtein edit distance for the vector c ("zyzzyx", "syzygy",
"succeed", "precede", "supersede").

[Answers provided in section [12.4]]

7 Application: Using Evolutionary Models in Protein Alignments

When proteins are believed to descend from a common ancestor, evolutionary models can be used as a
guide in pairwise sequence alignments. The two most common families evolutionary models of proteins
used in pairwise sequence alignments are Point Accepted Mutation (PAM) matrices, which are based on
explicit evolutionary models, and Block Substitution Matrix (BLOSUM) matrices, which are based on data-
derived evolution models. The Biostrings package contains 5 PAM and 5 BLOSUM matrices (PAM30 PAM40,
PAM70, PAM120, PAM250, BLOSUM45, BLOSUM50, BLOSUM62, BLOSUM80, and BLOSUM100) that can be used in the
substitutionMatriz argument to the pairwiseAlignment function.

Here is an example pairwise sequence alignment of amino acids from Durbin, Eddy et al being fit by the
pairwiseAlignment function using the BLOSUM50 matrix:

> data (BLOSUM50)
> BLOSUM50[1:4,1:4]

A R N D
A 5-2-1-2
R-2 7-1-2
N-1-1 7 2
D-2-2 2 8
> nwdemo <-
+ pairwiseAlignment (AAString ("PAWHEAE"), AAString("HEAGAWGHEE"), substitutionMatrix = BLOSUM50,
+ gapOpening = 0, gapExtension = -8)
> nwdemo

Global PairwiseAlignmentsSingleSubject (1 of 1)
pattern: [1] PA--W-HEAE

subject: [2] EAGAWGHE-E

score: 1

> compareStrings (nwdemo)
[1] "?A--W-HE+E"

> pid(nwdemo)

[1] 50

7.1 Exercise 5

1. Repeat the alignment exercise above using BLOSUM62, a gap opening penalty of -12, and a gap extension
penalty of -4.

2. Explore to find out what caused the alignment to change.

[Answers provided in section [12.5]]

12

8 Application: Removing Adapters from Sequence Reads

Finding and removing uninteresting experiment process-related fragments like adapters is a common problem
in genetic sequencing, and pairwise sequence alignment is well-suited to address this issue. When adapters
are used to anchor or extend a sequence during the experiment process, they either intentionally or unin-
tentionally become sequenced during the read process. The following code simulates what sequences with
adapter fragments at either end could look like during an experiment.

>

+ function(N, adapter, experiment, substitutionRate = 0.01, gapRate

+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
>
>
>
>
+
>

+

simulateReads <-

chars <- strsplit(as.character(adapter), "")[[1]]
sapply(seq_len(N), function(i, experiment, substitutionRate, gapRate) {

width <- experiment[["width"]][i]
side <- experiment[["side"]][i]
randomLetters <-

function(n) sample(DNA_ALPHABET[1:4],
randomLettersWithEmpty <-

function(n)

n, replace = TRUE)

sample(c("", DNA_ALPHABET[1:4]), n, replace = TRUE,
prob = c(1 - gapRate, rep(gapRate/4, 4)))

nChars <- length(chars)
value <-

= 0.001) {

paste(ifelse(rbinom(nChars, 1,substitutionRate), randomLetters(nChars), chars),

randomLettersWithEmpty (nChars),

paste(c(randomLetters (36 - width), substring(value, 1, width)),

sep = "", collapse = "")
if (side)
value <-
sep = "", collapse = "")
else
value <-

paste(c(substring(value, 37 - width, 36), randomLetters(36 - width)),

sep = "", collapse = "")
value

}, experiment = experiment, substitutionRate = substitutionRate, gapRate = gapRate)

}

adapter <- DNAString("GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAA")

set.seed(123)
N <- 1000
experiment <-

list(side = rbinom(N, 1, 0.5), width = sample(0:36, N, replace
table(experiment[["side"]], experiment[["width"]])

0 1 2 3 4 5 6 7 8 910 11 12 13
01310 8 7 11 18 9 15 15 18 16 10 11 9
115 21 21 12 17 14 8 11 12 10 14 16 7 14

22 23 24 25 26 27 28 29 30 31 32 33 34 35
019 19 12 6 15 18 12 15 16 17 19 6 13 18
113 11 9 11 15 10 10 16 156 15 11 7 12 7

adapterStrings <-

13

14 15 16 17 18
13 13 18 18 14
19 14 14 16 14

36
15
14

simulateReads (N, adapter, experiment, substitutionRate =

19 20
9 19
16 16

0.01,

TRUE))

21
13
16

gapRate = 0.001)

> adapterStrings <- DNAStringSet (adapterStrings)

These simulated strings above have 0 to 36 characters from the adapters attached to either end. We can
use completely random strings as a baseline for any pairwise sequence alignment methodology we develop to

remove the adapter characters.

M <- 5000
randomStrings <-
apply(matrix(sample (DNA_ALPHABET[1:4], 36 * M, replace = TRUE),
nrow = M), 1, paste, collapse = "")
randomStrings <- DNAStringSet (randomStrings)

vV + + Vv Vv

Since edit distances are easy to explain, it serves as a good place to start for developing a adapter removal
methodology. Unfortunately given that it is based on a global alignment, it only is useful for filtering out

sequences that are derived primarily from the adapter.

Method 1: Use edit distance with an FDR of 1e-03
submatl <- nucleotideSubstitutionMatrix(match = O, mismatch = -1, baseOnly = TRUE)
randomScoresl <-
pairwiseAlignment (randomStrings, adapter, substitutionMatrix = submatl,
gapOpening = 0, gapExtension = -1, scoreOnly = TRUE)
quantile(randomScoresl, seq(0.99, 1, by = 0.001))

vV + + Vv vV

99% 99.1% 99.2% 99.3% 99.4), 99.5% 99.6% 99.7% 99.8%

-16.990 -16.000 -16.000 -16.000 -16.000 -16.000 -16.000 -16.000 -15.998
99.9% 100%
-15.000 -14.000

> adapterAlignsl <-

+ pairwiseAlignment (adapterStrings, adapter, substitutionMatrix = submatl,

+ gapOpening = 0, gapExtension = -1)

> table(score(adapterAlignsl) > quantile(randomScoresl, 0.999), experiment[["width"]])

0 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20
FALSE 28 31 29 19 28 32 17 26 27 28 30 26 18 23 32 27 32 34 28 25 35
TRE 0 0 0 0 0 0O 0O OO O OO OOOOO0OO0O O0O O0O0

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
FALSE 29 32 30 21 17302822 7 0 0 O O O O O
TRUE O O O O O O O 0 24 31 32 30 13 25 25 29

One improvement to removing adapters is to look at consecutive matches anywhere within the sequence.
This is more versatile than the edit distance method, but it requires a relatively large number of consecutive

matches and is susceptible to issues related to error related substitutions and insertions/deletions.

Method 2: Use consecutive matches anywhere in string with an FDR of 1e-03
submat2 <- nucleotideSubstitutionMatrix(match = 1, mismatch = -Inf, baseOnly = TRUE)
randomScores2 <-
pairwiseAlignment (randomStrings, adapter, substitutionMatrix = submat2,
type = "local", gapOpening = 0, gapExtension = -Inf,
scoreOnly = TRUE)
quantile(randomScores2, seq(0.99, 1, by = 0.001))

vV + + + Vv VvV

14

99% 99.1% 99.2% 99.3% 99.4% 99.5% 99.6% 99.7% 99.8% 99.9% 100%
7 8 8 8 8 8 8 8 9 9 11

adapterAligns2 <-
pairwiseAlignment (adapterStrings, adapter, substitutionMatrix = submat2,
type = "local", gapOpening = O, gapExtension = -Inf)
table(score(adapterAligns2) > quantile(randomScores2, 0.999), experiment[["width"]])

vV + + V

01 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20
FALSE 28 31 291928 3217262728 5 1 3 1 1 1 1 2 1 1 O
TROE O 0 0 O O O O O O 0 25 25 15 22 31 26 31 32 27 24 35

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
FALSE 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O
TRUE 29 32 30 21 17 30 28 22 31 31 32 30 13 25 25 29

> # Determine if the correct end was chosen
table (start (pattern(adapterAligns2)) > 37 - end(pattern(adapterAligns2)),
+ experiment [["side"]])

v

0 1
FALSE 469 53
TRUE 38 440

Limiting consecutive matches to the ends provides better results, but it doesn’t resolve the issues related
to substitutions and insertions/deletions errors.

Method 3: Use consecutive matches on the ends with an FDR of 1e-03
submat3 <- nucleotideSubstitutionMatrix(match = 1, mismatch = -Inf, baseOnly = TRUE)
randomScores3 <-
pairwiseAlignment (randomStrings, adapter, substitutionMatrix = submat3,
type = "overlap", gapOpening = 0, gapExtension = -Inf,
scoreOnly = TRUE)
quantile(randomScores3, seq(0.99, 1, by = 0.001))

vV + + + Vv VvV

99% 99.1% 99.2% 99.3% 99.4% 99.5% 99.6% 99.7% 99.8% 99.9% 100%
4 4 4 4 4 4 4 4 5 6 7

adapterAligns3 <-
pairwiseAlignment (adapterStrings, adapter, substitutionMatrix = submat3,
type = "overlap", gapOpening = 0, gapExtension = -Inf)
table (score(adapterAligns3) > quantile(randomScores3, 0.999), experiment[["width"]])

vV + + V

01 2 3 4 5 6 7
FALSE 28 31 29 19 28 32 17 1
TRUE O 0 0 O O O O 25

10 11 12 13 14 15 16 17 18 19 20
1 4 2 2 2 65 7 4 3 3

8 9

2 5 6

25 23 24 25 14 21 30 25 27 27 24 22 32
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

FALSE 6 2 4 6 2 8 6 8 712 7 8 2 7 7 5

TRUE 23 30 26 15 15 22 22 14 24 19 25 22 11 18 18 24

> # Determine if the correct end was chosen
> table(end(pattern(adapterAligns3)) == 36, experiment[["side"]])

15

0 1
FALSE 466 71
TRUE 41 422

Allowing for substitutions and insertions/deletions errors in the pairwise sequence alignments provides
much better results for finding adapter fragments.

> ## Method 4: Allow mismatches and indels on the ends with an FDR of 1e-03

> randomScores4 <-

+ pairwiseAlignment (randomStrings, adapter, type = "overlap", scoreOnly = TRUE)
> quantile(randomScores4, seq(0.99, 1, by = 0.001))

99% 99.1% 99.2% 99.3% 99.47% 99.5% 99.6%
7.927024 7.927024 7.927024 7.927024 7.927024 7.927024 7.927024
99.7% 99.8% 99.9% 100%

9.908780 9.908872 11.890536 13.872293

> adapterAligns4 <-
+ pairwiseAlignment (adapterStrings, adapter, type = "overlap")
> table(score(adapterAligns4) > quantile(randomScores4, 0.999), experiment[["width"]])

01 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20
FALSE 28 31 2919283217 1 2 5 1 0 1 0 1 0 1 O O O O
TRUE O O O O O O O 25 25 23 29 26 17 23 31 27 31 34 28 25 35

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
FALSE 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O
TRUE 29 32 30 21 17 30 28 22 31 31 32 30 13 25 25 29

> # Determine if the correct end was chosen
> table(end(pattern(adapterAligns4)) == 36, experiment[["side"]])

0 1
FALSE 484 17
TRUE 23 476

Using the results that allow for substitutions and insertions/deletions errors, the cleaned sequence frag-
ments can be generated as follows:

Method 4 continued: Remove adapter fragments
fragmentFound <-
score(adapterAligns4) > quantile(randomScores4, 0.999)
fragmentFoundAt1 <-
fragmentFound & (start(pattern(adapterAligns4)) == 1)
fragmentFoundAt36 <-
fragmentFound & (end(pattern(adapterAligns4)) == 36)
cleanedStrings <- as.character(adapterStrings)
cleanedStrings[fragmentFoundAt1] <-
as.character (narrow(adapterStrings[fragmentFoundAt1], end = 36,
width = 36 - end(pattern(adapterAligns4[fragmentFoundAt1]))))
cleanedStrings [fragmentFoundAt36] <-
as.character (narrow(adapterStrings[fragmentFoundAt36], start = 1,
width = start(pattern(adapterAligns4[fragmentFoundAt36])) - 1))
cleanedStrings <- DNAStringSet (cleanedStrings)
cleanedStrings

VV+ +V++ VYV +YV + YV + VYV

16

A DNAStringSet instance of length 1000

width
[1] 26
[2] 15
[3] 36
[4] 5
[5] 5
[996] 3
[997] 25
[998] 9
[999] 22
[1000] 20

seq
TTGCACGATAGTTGCATATGCTACAA
ATTTCTCCTTCTCAG
TGAAACCGGGTCACCATCATCATCTAGTAGGACCTT
GCGTT

GCTTA

TAA

TTGTTTGGGAAGGCTTCAACCAAAC

CAGCTAATA

CGGATGGGAGCCGAGCATGACT
TCGCTATCTGAAGTCTGTTT

8.1 Exercise 6

1. Rerun the simulation time using the simulateReads function with a substitutionRate of 0.005 and
gapRate of 0.0005. How do the different pairwise sequence alignment methods compare?

2. (Advanced) Modify the simulateReads function to accept different equal length adapters on either
side (left & right) of the reads. How would the methods for trimming the reads change?

[Answers provided in section [12.6]]

9 Application: Quality Assurance in Sequencing Experiments

Due to its flexibility, the pairwiseAlignment function is able to diagnose sequence matching-related issues
that arise when matchPDict and its related functions don’t find a match. This section contains an example
involving a short read Solexa sequencing experiment of bacteriophage ¢ X174 DNA produced by New England
BioLabs (NEB). This experiment contains slightly less than 5000 unique short reads in srPhiX174, with
quality measures in quPhiX174, and frequency for those short reads in wtPhiX174.

In order to demonstrate how to find sequence differences in the target, these short reads will be compared
against the bacteriophage ¢ X174 genome NC_001422 from the GenBank database.

> data(phiX174Phage)
> genBankPhage <- phiX174Phage[[1]]
> nchar (genBankPhage)

[1] 5386

> data(srPhiX174)

> srPhiX174

A DNAStringSet instance of length 1113

width
[1] 35
[2] 35
[3] 35
[4] 35
[5] 35

[1109] 35

seq
GTTATTATACCGTCAAGGACTGTGTGACTATTGAC
GGTGGTTATTATACCGTCAAGGACTGTGTGACTAT
TACCGTCAAGGACTGTGTGACTATTGACGTCCTTC
GTACGCCGGGCAATAATGTTTATGTTGGTTTCATG
GGTTTCATGGTTTGGTCTAACTTTACCGCTACTAA

ATAATGTTTATGTTGGTTTCATGGTTTGTTCTATC

17

[1110] 35 GGGCAATAATGTTTATGTTGGTTTCATTTTTTTTIT
[1111] 35 CAATAATGTTTATGTTGGTTTCATGGTTTGTTTTA
[1112] 35 GACGTCCTTCCTCGTACGCCGGGCAATGATGTTTA
[1113] 35 ACGCCGGGCAATAATGTTTATGTTGTTTTCATTGT

> quPhiX174

A BStringSet instance of length 1113
width seq
[1] 35 ZYZZZZZZZZZYYZZYYYYYYYYYYYYYYYYYQYY
[2] 35 ZZYZZYZZZZYYYYYYYYYYYYYYYYYYYVYYYTY
[3] 35 ZZZYZYYZYYZYYZYYYYYYYYYYYYYYVYYYYYY
[4] 35 ZZYZZZZZZZZZYZTYYYYYYYYYYYYYYYYYNYT
[5] 35 ZZZZZZNZYYZZZYYYYYYYYYYYYYYYYYSYYSY

[1109] 35 ZZZZZNZZZYZYZZVYYYYVYYYQYYYQCYQYQCT
[1110] 35 YYYYTYYYYYTYYYYYYYYTIJTTYOAYITIYYYGAY
[1111] 35 ZZYZZZZZZZZZZVZYYVYYYYYYVQYYYIQYAYW
[1112] 35 YZYZZYYYZYYYYYYVYYVYYYYWWVYYYYYWYYV
[1113] 35 ZZYYZYYYYYYZYVZYYYYYYVYYJAYYYIGYCJY

> summary (wtPhiX174)

Min. 1st Qu. Median Mean 3rd Qu. Max.
2.00 2.00 3.00 48.34 6.00 965.00

> fullShortReads <- rep(srPhiX174, wtPhiX174)
> srPDict <- PDict(fullShortReads)
> table(countPDict (srPDict, genBankPhage))

0 1
37018 16784

For these short reads, the pairwiseAlignment function finds that the small number of perfect matches
is due to two locations on the bacteriophage ¢X174 genome.

Unlike the countPDict function, the pairwiseAlignment function works off of the original strings, rather
than PDict processed strings, and to be computationally efficient it is recommended that the unique sequences
are supplied to the pairwiseAlignment function, and the frequencies of those sequences are supplied to the
weight argument of functions like summary, mismatchSummary, and coverage. For the purposes of this
exercise, a substring of the GenBank bacteriophage ¢ X174 genome is supplied to the subject argument of
the pairwiseAlignment function to reduce the computation time.

> genBankSubstring <- substring(genBankPhage, 2793-34, 2811+34)
> genBankAlign <-

+ pairwiseAlignment (srPhiX174, genBankSubstring,

+ patternQuality = SolexaQuality(quPhiX174),
+ subjectQuality = SolexaQuality(99L),

+ type = "global-local")

> summary(genBankAlign, weight = wtPhiX174)

Global-Local Single Subject Pairwise Alignments
Number of Alignments: 53802

18

Scores:
Min. 1st Qu. Median
-45.08 35.81 50.07

Number of matches:
Min. 1st Qu. Median
21.00 31.00 33.00

Top 10 Mismatch Counts:

Mean 3rd Qu.
41.24 59.50

Mean 3rd Qu.
31.46 34.00

6

3

Max.
7.35

Max.
5.00

SubjectPosition Subject Pattern Count Probability

53
35
76
69
79
58
72
63
67
81

© 00 ~NO O WN -

[
o

> revisedPhage <-

+ replaceLetterAt(genBankPhage, c(2793, 2811), "TT")
> table(countPDict (srPDict, revisedPhage))

0 1
6768 47034

C

=HQ QP QP QQ

T 22965
T 22849
T 1985
1296
1289
1153
1130
1130
1130
1103

Q Q== QA4

0

O O O O OO O oo

.955636234
.99969373
.10062351
.05654697
.07289899
.04783637
.05248978
.04767731
.04721514
.06672313

The following plot shows the coverage of the aligned short reads along the substring of the bacteriophage
¢ X174 genome. Applying the slice function to the coverage shows the entire substring is covered by aligned

short reads.

> genBankCoverage <- coverage (genBankAlign, weight =

wtPhiX174)

> plot((2793-34):(2811+34), as.integer (genBankCoverage), xlab = "Position", ylab = "Coverage",

+ type = "1“)

> nchar (genBankSubstring)

(1] 87

> slice(genBankCoverage, lower = 1)

Views on a 87-length Rle subject

views:
start end width

[1] 1 87 87 [8899 9698 10484 11228 11951 12995 13547 ..

19

-]

20000
l

Coverage

15000
l

10000
l

I I I I I
2760 2780 2800 2820 2840

Position

9.1 Exercise 7

1. Rerun the global-local alignment of the short reads against the entire genome. (This may take a few
minutes.)

2. Plot the coverage of these alignments and use the slice function to find the ranges of alignment. Are
there any alignments outside of the substring region that was used above?

3. Use the reverseComplement function on the bacteriophage ¢ X174 genome. Do any short reads have
a higher alignment score on this new sequence than on the original sequence?

[Answers provided in section [12.7]]

10 Computation Profiling

The pairwiseAlignment function uses a dynamic programming algorithm based on the Needleman-Wunsch
and Smith-Waterman algorithms for global and local pairwise sequence alignments respectively. The algo-
rithm consumes memory and computation time proportional to the product of the length of the two strings
being aligned.

20

> N <- as.integer(seq(500, 5000, by = 500))

> timings <- rep(0, length(N))

> names (timings) <- as.character(N)

> for (i in seq_len(length(N))) {

+ stringl <- DNAString(paste(sample(DNA_ALPHABET[1:4], N[i], replace = TRUE), collapse = ""))

+ string2 <- DNAString(paste(sample (DNA_ALPHABET[1:4], N[i], replace = TRUE), collapse = ""))

+ timings[i] <- system.time(pairwiseAlignment (stringl, string2, type = "global"))[["user.self"]]
+ }

> timings

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.300 0.324 0.360 0.364 0.408 0.464 0.580 0.812 0.904 1.020

> coef (summary (Im(timings ~ poly(N, 2))))

Estimate Std. Error t value Pr(>ltl)
(Intercept) 0.5536000 0.01301171 42.546292 1.034018e-09
poly(N, 2)1 0.7433707 0.04114664 18.066378 3.935506e-07
poly (N, 2)2 0.2510200 0.04114664 6.100619 4.907819e-04

> plot(N, timings, xlab = "String Size, Both Strings", ylab = "Timing (sec.)", type = "1",
+ main = "Global Pairwise Sequence Alignment Timings")

21

T

VvV + + + + VvV VvV

0.

>

Timing (sec.)

Global Pairwise Sequence Alignment Timings

1.0

0.9

0.7

0.4

0.3
l

I I I I I
1000 2000 3000 4000 5000

String Size, Both Strings

When a problem only requires the pairwise sequence alignment score, setting the scoreOnly argument to
RUE will more than halve the computation time.

scoreOnlyTimings <- rep(0, length(N))

names (scoreOnlyTimings) <- as.character (N)

for (i in seq_len(length(N))) {
stringl <- DNAString(paste (sample (DNA_ALPHABET([1:4], N[i], replace = TRUE), collapse = ""))
string2 <- DNAString(paste (sample (DNA_ALPHABET([1:4], N[i], replace = TRUE), collapse = ""))

scoreOnlyTimings[i] <- system.time(pairwiseAlignment (stringl, string2, type = "global", scorelnly = 1T

}

scoreUnlyTimings

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
300 0.304 0.388 0.376 0.420 0.472 0.540 0.616 0.700 0.792

round ((timings - scoreOnlyTimings) / timings, 2)

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.00 0.06 -0.08 -0.03 -0.03 -0.02 0.07 0.24 0.23 0.22

22

10.1 Exercise 8

1. Rerun the first set of profiling code, but this time fix the number of characters in stringl to 35 and
have the number of characters in string2 range from 5000, 50000, by increments of 5000. What is the
computational order of this simulation exercise?

2. Rerun the second set of profiling code using the simulations from the previous exercise with scoreOnly
argument set to TRUE. Is is still twice as fast?

[Answers provided in section [12.8]]

11 Computing alignment consensus matrices

The consensusMatrix function is provided for computing a consensus matrix for a set of equal-length strings
assumed to be aligned. To illustrate, the following application assumes the ORF data to be aligned for the
first 10 positions (patently false):

> file <- system.file("extdata", "someORF.fa", package="Biostrings")
> orf <- readDNAStringSet(file)
> orf

A DNAStringSet instance of length 7

width seq names
[1] 5573 ACTTGTAAATATATCTTTT...TCGACCTTATTGTTGATAT YALOO1C TFC3 SGDI...
[2] 5825 TTCCAAGGCCGATGAATTC. ..AATTTTTTTCTATTCTCTT YALOO2W VPS8 SGDI...
[3] 2987 CTTCATGTCAGCCTGCACT...ACTCATGTAGCTGCCTCAT YALOO3W EFB1 SGDI...
[4] 3929 CACTCATATCGGGGGTCTT...CCGAAACACGAAAAAGTAC YALOOS5C SSA1 SGDI...
[6] 2648 AGAGAAAGAGTTTCACTTC. ..AATTTATGTGTGAACATAG YALOO7C ERP2 SGDI...
[6] 2597 GTGTCCGGGCCTCGCAGGC. ..TTTGGCAGAATGTACTTTT YALOO8W FUN14 SGD...
[7] 2780 CAAGATAATGTCAAAGTTA...AGGAAGAAAAAAAAATCAC YALOOSW SPO7 SGDI...
> orf10 <- DNAStringSet (orf, end=10)
> consensusMatrix(orf10, as.prob=TRUE, baseOnly=TRUE)
[,1] [,2] [,3] [,4] [,5] [,6]
A 0.2857143 0.2857143 0.2857143 0.0000000 0.5714286 0.4285714
C 0.4285714 0.1428571 0.2857143 0.2857143 0.2857143 0.1428571
G 0.1428571 0.1428571 0.1428571 0.2857143 0.1428571 0.0000000
T 0.1428571 0.4285714 0.2857143 0.4285714 0.0000000 0.4285714
other 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
[,7] [,8] [,9] [,10]
A 0.4285714 0.4285714 0.2857143 0.1428571
C 0.0000000 0.0000000 0.2857143 0.4285714
G 0.4285714 0.4285714 0.1428571 0.2857143
T 0.1428571 0.1428571 0.2857143 0.1428571
other 0.0000000 0.0000000 0.0000000 0.0000000
The information content as defined by Hertz and Stormo 1995 is computed as follows:
> informationContent <- function(Lmers) {
+ zlog <- function(x) ifelse(x==0,0,log(x))
+ co <- consensusMatrix(Lmers, as.prob=TRUE)
+ lets <- rownames(co)

23

+
+
+
+
>

fr <- alphabetFrequency(Lmers, collapse=TRUE) [lets]
fr <- fr / sum(fr)
sum(co*zlog(co/fr), na.rm=TRUE)

informationContent (orf10)

[1] 2.167186

12 Exercise Answers

12.1 Exercise 1

1. Using pairwiseAlignment, fit the global, local, and overlap pairwise sequence alignment of the strings

"syzygy" and "zyzzyx" using the default settings.
> pairwiseAlignment ("zyzzyx", "syzygy")

Global PairwiseAlignmentsSingleSubject (1 of 1)
pattern: [1] zyzzyx

subject: [1] syzygy

score: -19.3607

> pairwiseAlignment ("zyzzyx", "syzygy", type = "local")

Local PairwiseAlignmentsSingleSubject (1 of 1)
pattern: [2] yz
subject: [2] yz
score: 4.607359

> pairwiseAlignment ("zyzzyx", "syzygy", type = "overlap")

Overlap PairwiseAlignmentsSingleSubject (1 of 1)
pattern: [1] "

subject: [1] ""

score: O

. Do any of the alignments change if the gapFxtension argument is set to ~Inf? Yes, the overlap pairwise

sequence alignment changes.
> pairwiseAlignment ("zyzzyx", "syzygy", type = "overlap", gapExtension = -Inf)

Overlap PairwiseAlignmentsSingleSubject (1 of 1)
pattern: [1] ""

subject: [1] ""

score: O

12.2 Exercise 2

1. What is the primary benefit of formal summary classes like PairwiseAlignmentsSingleSubjectSummary

and summary.lm to end-users? These classes allow the end-user to extract the summary output for
further operations.

> ex2 <- summary(pairwiseAlignment ("zyzzyx", "syzygy"))
> nmatch(ex2) / nmismatch(ex2)

[1] 0.5

24

12.3 Exercise 3

For the overlap pairwise sequence alignment of the strings "syzygy" and "zyzzyx" with the pairwiseAlign-
ment default settings, perform the following operations:

> ex3 <- pairwiseAlignment("zyzzyx", "syzygy", type = "overlap")
1. Use nmatch and nmismath to extract the number of matches and mismatches respectively.

> nmatch (ex3)
[11 o
> nmismatch (ex3)
[1]1 o
2. Use the compareStrings function to get the symbolic representation of the alignment.

> compareStrings (ex3)
[1] nn

3. Use the as.character function to the get the character string versions of the alignments.

> as.character(ex3)

4. Use the pattern function to extract the aligned pattern and apply the mismatch function to it to find
the locations of the mismatches.

> mismatch(pattern(ex3))

IntegerList of length 1
[[1]] integer(0)

5. Use the subject function to extract the aligned subject and apply the aligned function to it to get
the aligned strings.

> aligned(subject (ex3))

A BStringSet instance of length 1
width seq
[1] 0

12.4 Exercise 4

1. Use the pairwiseAlignment function to find the Levenshtein edit distance between "syzygy" and
"zyzzyx".

> submat <- matrix(-1, nrow = 26, ncol = 26, dimnames = list(letters, letters))
> diag(submat) <- 0

> - pairwiseAlignment ("zyzzyx", "syzygy", substitutionMatrix = submat,

+ gapOpening = 0, gapExtension = -1, scoreOnly = TRUE)

(1] 4

25

2. Use the stringDist function to find the Levenshtein edit distance for the vector ¢ ("zyzzyx", "syzygy",

"succeed", "precede", "supersede").

> stringDist (c("zyzzyx", "syzygy", "succeed", "precede", "supersede"))
1234

24

376

4775

59855

12.5 Exercise 5

1. Repeat the alignment exercise above using BLOSUM62, a gap opening penalty of -12, and a gap extension
penalty of -4.

> data(BLOSUM62)
> pairwiseAlignment (AAString ("PAWHEAE"), AAString("HEAGAWGHEE"), substitutionMatrix = BLOSUM62,
+ gapOpening = -12, gapExtension = -4)

Global PairwiseAlignmentsSingleSubject (1 of 1)
pattern: [1] P---AWHEAE

subject: [1] HEAGAWGHEE

score: -9

2. Explore to find out what caused the alignment to change. The sift in gap penalties favored infrequent
long gaps to frequent short ones.

12.6 Exercise 6

1. Rerun the simulation time using the simulateReads function with a substitutionRate of 0.005 and
gapRate of 0.0005. How do the different pairwise sequence alignment methods compare? The different
methods are much more comprobable when the error rates are lower

adapter <- DNAString("GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAA")
set.seed(123)
N <- 1000
experiment <-

list(side = rbinom(N, 1, 0.5), width = sample(0:36, N, replace = TRUE))
table(experiment [["side"]], experiment[["width"]])

vV + VvV Vv VvV

01 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21
01310 8 7 11 18 9 15 15 18 16 10 11 9 13 13 18 18 14 9 19 13
115 21 21 12 17 14 8 11 12 10 14 16 7 14 19 14 14 16 14 16 16 16

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
019 19 12 6 15 18 12 15 16 17 19 6 13 18 15
113 11 9 11 15 10 10 16 15 156 11 7 12 7 14

ex6Strings <-

simulateReads (N, adapter, experiment, substitutionRate = 0.005, gapRate = 0.0005)
ex6Strings <- DNAStringSet (ex6Strings)
ex6Strings

vV VvV + V

26

A DNAStringSet instance of length 1000
width seq
[1] 36 CTGCTTGAAATTGCACGATAGTTGCATATGCTACAA
[2] 36 ATTTCTCCTTCTCAGGATCGGAAGAGCTCGTATGCC
[3] 36 TGAAACCGGGTCACCATCATCATCTAGTAGGACCTT
[4] 36 GCGTTGATCGGAAGAGCTCGTATGCCGTCTTCTGCT
[5] 36 GCTTAGATCGGAAGAGCTCGTATGCCGTCTTCTGCT

[996] 36 TAAGATCGGAAGAGCTCGTATGCCGTCTTCTGCTTG
[997] 36 TTGTTTGGGAAGGCTTCAACCAAACGATCGGAAGAG
[998] 36 AGCTCGTATGCCGTCTTCTGCTTGAAACAGCTAATA
[999] 36 CGGATGGGAGCCGAGCATGACTGATCGGAAGAGCTC
[1000] 36 CGTCTTCTGCTTGAAATCGCTATCTGAAGTCTGTTT

> ## Method 1: Use edit distance with an FDR of 1e-03
> submatl <- nucleotideSubstitutionMatrix(match = 0, mismatch = -1, baseOnly = TRUE)
> quantile(randomScoresl, seq(0.99, 1, by = 0.001))

99% 99.1% 99.2% 99.3% 99.4}, 99.5% 99.6% 99.7% 99.8%

-16.990 -16.000 -16.000 -16.000 -16.000 -16.000 -16.000 -16.000 -15.998
99.9% 100%
-15.000 -14.000

ex6Alignsl <-
pairwiseAlignment (ex6Strings, adapter, substitutionMatrix = submatl,
gapOpening = 0, gapExtension = -1)
table(score(ex6Aligns1) > quantile(randomScoresl, 0.999), experiment[["width"]])

vV + + V

601 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20
FALSE 28 31 29 19 28 32 17 26 27 28 30 26 18 23 32 27 32 34 28 25 35
TROE 0 0 0 0 0 0 0O O OO 0O O O OO OOO0OO0O O0O0

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
FALSE 29 32 30 21 17 302822 3 0 O O O O O O
TRUE O 0 O O O O O 0 28 31 32 30 13 25 25 29

> ## Method 2: Use consecutive matches anywhere in string with an FDR of 1e-03
submat2 <- nucleotideSubstitutionMatrix(match = 1, mismatch = -Inf, baseOnly = TRUE)
> quantile(randomScores2, seq(0.99, 1, by = 0.001))

v

99% 99.1% 99.2% 99.3% 99.4% 99.5% 99.6% 99.7% 99.8% 99.9% 100%
7 8 8 8 8 8 8 8 9 9 11

ex6Aligns2 <-
pairwiseAlignment (ex6Strings, adapter, substitutionMatrix = submat2,
type = "local", gapOpening = O, gapExtension = -Inf)
table(score(ex6Aligns2) > quantile(randomScores2, 0.999), experiment[["width"]])

vV + + V

0 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20
FALSE 28 31 29 19 28 32 17262728 4 1 3 0 1 1 0 O 1 O O
TRUE O 0 O O O O O O O 0 26 25 15 23 31 26 32 34 27 25 35

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

27

FALSE 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O
TRUE 29 32 30 21 17 30 28 22 31 31 32 30 13 25 25 29

> # Determine if the correct end was chosen
table(start (pattern(ex6Aligns2)) > 37 - end(pattern(ex6Aligns2)),
+ experiment[["side"]])

A\

0 1
FALSE 473 48
TRUE 34 445

Method 3: Use consecutive matches on the ends with an FDR of 1e-03
submat3 <- nucleotideSubstitutionMatrix(match = 1, mismatch = -Inf, baseOnly = TRUE)
ex6Aligns3 <-
pairwiseAlignment (ex6Strings, adapter, substitutionMatrix = submat3,
type = "overlap", gapOpening = 0, gapExtension = -Inf)
table(score(ex6Aligns3) > quantile(randomScores3, 0.999), experiment[["width"]])

vV + + Vv VvV

0 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20
FALSE 28 31 2919283217 0 1 2 4 1 3 1 1 2 2 3 2 2 3
TRUE O O O O O O 0 26 26 26 26 25 15 22 31 25 30 31 26 23 32

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
FALSE 56 2 3 2 1 3 5 3 3 3 2 3 2 4 4 3
TRUE 24 30 27 19 16 27 23 19 28 28 30 27 11 21 21 26

> # Determine if the correct end was chosen
> table(end(pattern(ex6Aligns3)) == 36, experiment[["side"]])

0 1
FALSE 473 42
TRUE 34 451

> ## Method 4: Allow mismatches and indels on the ends with an FDR of 1e-03
> quantile(randomScores4, seq(0.99, 1, by = 0.001))

99% 99.1% 99.2% 99.3% 99.4Y% 99.5% 99.6%
7.927024 7.927024 7.927024 7.927024 7.927024 7.927024 7.927024
99.7% 99.8% 99.9% 100%

9.908780 9.908872 11.890536 13.872293

> ex6Aligns4 <- pairwiseAlignment (ex6Strings, adapter, type = "overlap")
> table(score(ex6Aligns4) > quantile(randomScores4, 0.999), experiment[["width"]])

60 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20
FALSE 28 312919283217 0 1 2 1 0 1 0 1 O O O O O O
TRUE O O O O O O 0 26 26 26 29 26 17 23 31 27 32 34 28 25 35

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
FALSE 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O
TRUE 29 32 30 21 17 30 28 22 31 31 32 30 13 25 25 29

> # Determine if the correct end was chosen
> table(end(pattern(ex6Aligns4)) == 36, experiment[["side"]])

28

0 1
FALSE 485 17
TRUE 22 476

2. (Advanced) Modify the simulateReads function to accept different equal length adapters on either
side (left & right) of the reads. How would the methods for trimming the reads change?

> simulateReads <-
+ function(N, left, right = left, experiment, substitutionRate = 0.01, gapRate = 0.001) {
+ leftChars <- strsplit(as.character(left), "")[[1]]
rightChars <- strsplit(as.character(right), "")[[1]]
if (length(leftChars) != length(rightChars))
stop("left and right adapters must have the same number of characters")
nChars <- length(leftChars)
sapply(seq_len(N), function(i) {
width <- experiment[["width"]][i]
side <- experiment[["side"]][i]
randomLetters <-
function(n) sample (DNA_ALPHABET([1:4], n, replace = TRUE)
randomLettersWithEmpty <-
function (n)
sample(c("", DNA_ALPHABET[1:4]), n, replace = TRUE,
prob = c(1 - gapRate, rep(gapRate/4, 4)))
if (side) {
value <-
paste(ifelse(rbinom(nChars,1,substitutionRate), randomLetters(nChars), rightChars),
randomLettersWithEmpty (nChars),

sep = "", collapse = "")
value <-
paste(c(randomLetters (36 - width), substring(value, 1, width)),
sep = "", collapse = "")
} else {
value <-

paste(ifelse(rbinom(nChars, 1,substitutionRate), randomLetters(nChars), leftChars),
randomLettersWithEmpty(nChars),

sep = "", collapse = "")
value <-
paste(c(substring(value, 37 - width, 36), randomLetters(36 - width)),
sep = "", collapse = "")
}
value
»

}
leftAdapter <- adapter
rightAdapter <- reverseComplement (adapter)
ex6LeftRightStrings <- simulateReads (N, leftAdapter, rightAdapter, experiment)
ex6LeftAligns4 <-

pairwiseAlignment (ex6LeftRightStrings, leftAdapter, type = "overlap")
ex6RightAligns4 <-

pairwiseAlignment (ex6LeftRightStrings, rightAdapter, type = "overlap")
scoreCutoff <- quantile(randomScores4, 0.999)
leftAligned <-

VV+VH+HVVVYV+++++++++++++++++++++++++++++++++

29

+ start(pattern(ex6LeftAligns4)) == 1 & score(ex6LeftAligns4) > pmax(scoreCutoff, score(ex6RightAl
> rightAligned <-

+ end(pattern(ex6RightAligns4)) == 36 & score(ex6RightAligns4) > pmax(scoreCutoff, score(ex6LeftAl
> table(leftAligned, rightAligned)

rightAligned
leftAligned FALSE TRUE
FALSE 195 382
TRUE 423 0

> table(leftAligned | rightAligned, experiment[["width"]])

601 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20
FALSE 28 31 2919283217 3 3 2 0 0 1 1 0 0 O O O O 1
TRUE O O O O O O 0 23 24 26 30 26 17 22 32 27 32 34 28 25 34

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
FALSE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O
TRUE 29 32 30 21 17 30 28 22 31 31 32 30 13 25 25 29

12.7 Exercise 7

1. Rerun the global-local alignment of the short reads against the entire genome. (This may take a few
minutes.)

> genBankFullAlign <-

+ pairwiseAlignment (srPhiX174, genBankPhage,

+ patternQuality = SolexaQuality(quPhiX174),
+ subjectQuality = SolexaQuality(99L),

+ type = "global-local")

> summary (genBankFullAlign, weight = wtPhiX174)

Global-Local Single Subject Pairwise Alignments
Number of Alignments: 53802

Scores:
Min. 1st Qu. Median Mean 3rd Qu. Max.
-45.08 56.72 59.89 60.59 69.56 69.85

Number of matches:
Min. 1st Qu. Median Mean 3rd Qu. Max.
24.00 33.00 34.00 34.01 35.00 35.00

Top 10 Mismatch Counts:
SubjectPosition Subject Pattern Count Probability

1 2811 C T 22965 0.999912919
2 2793 C T 22845 0.999693681
3 2834 G T 1985 0.106800818
4 2835 G T 605 0.033570081
5 2829 G T 489 0.023314580
6 2782 G T 325 0.013882363
7 2839 A T 287 0.018648473

30

8 2807 A C 169 0.007657801
9 2827 A T 168 0.007714207
10 2837 C T 159 0.009612478

2. Plot the coverage of these alignments and use the slice function to find the ranges of alignment.
Are there any alignments outside of the substring region that was used above? Yes, there are some
alignments outside of the specified substring region.

> genBankFullCoverage <- coverage(genBankFullAlign, weight = wtPhiX174)
> plot(as.integer (genBankFullCoverage), xlab = "Position", ylab = "Coverage", type = "1")
> slice(genBankFullCoverage, lower = 1)

Views on a 5386-length Rle subject

views:

start end width
[1] 1195 1230 36 [2444444444444444444444...]
[2] 2514 2548 36 [2222222222222222222222...]
[3] 2745 2859 115 [416 946 1536 2135 2797 3374 4011 ...]
[4] 3209 3247 39 [32 54 440 1069 1130 1130 1130 1130 ...]
[6] 3964 3998 356[9999999999999999999999 ...]

3. Use the reverseComplement function on the bacteriophage ¢ X174 genome. Do any short reads have
a higher alignment score on this new sequence than on the original sequence? Yes, there are some
strings with a higher score on the new sequence.

> genBankFullAlignRevComp <-

+ pairwiseAlignment (srPhiX174, reverseComplement (genBankPhage),
+ patternQuality = SolexaQuality(quPhiX174),
+ subjectQuality = SolexaQuality(99L),

+ type = "global-local")

> table(score(genBankFullAlignRevComp) > score(genBankFullAlign))

FALSE TRUE
1112 1

12.8 Exercise 8

1. Rerun the first set of profiling code, but this time fix the number of characters in stringl to 35 and
have the number of characters in string2 range from 5000, 50000, by increments of 5000. What is the
computational order of this simulation exercise? As expected, the growth in time is now linear.

> N <- as.integer (seq(5000, 50000, by = 5000))

> newTimings <- rep(0, length(N))

> names (newTimings) <- as.character (N)

> for (i in seq_len(length(N))) {

+ stringl <- DNAString(paste(sample(DNA_ALPHABET[1:4], 35, replace = TRUE), collapse = ""))

+ string2 <- DNAString(paste (sample(DNA_ALPHABET[1:4], N[i], replace = TRUE), collapse = ""))

+ newTimings[i] <- system.time(pairwiseAlignment(stringl, string2, type = "global"))[["user.self"]
+ }

> newTimings

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
0.296 0.296 0.308 0.336 0.304 0.344 0.348 0.348 0.312 0.316

31

> coef (summary (1m(newTimings ~ poly(N, 2))))

Estimate Std. Error t value Pr(>ltl)
(Intercept) 0.32080000 0.005017131 63.940928 6.011893e-11
poly(N, 2)1 0.03126737 0.015865561 1.970770 8.938970e-02
poly(N, 2)2 -0.03586000 0.015865561 -2.260241 5.831062e-02

> plot(N, newTimings, xlab = "Larger String Size", ylab = "Timing (sec.)",
+ type = "1", main = "Global Pairwise Sequence Alignment Timings")

Global Pairwise Sequence Alignment Timings

Timing (sec.)
0.32 0.33 0.34 0.35
| | |

0.31
l

0.30
l

I I I I I
10000 20000 30000 40000 50000

Larger String Size

2. Rerun the second set of profiling code using the simulations from the previous exercise with scoreOnly
argument set to TRUE. Is is still twice as fast? Yes, it is still over twice as fast.

> newScoreOnlyTimings <- rep(0, length(N))
> names (newScoreOnlyTimings) <- as.character (N)
> for (i in seq_len(length(N))) {

+ stringl <- DNAString(paste(sample (DNA_ALPHABET[1:4], 35, replace = TRUE), collapse = ""))
+ string2 <- DNAString(paste(sample (DNA_ALPHABET[1:4], N[i], replace = TRUE), collapse = ""))
+ newScoreOnlyTimings[i] <- system.time(pairwiseAlignment (stringl, string2, type = "global", score

32

+ }

> newScoreUnlyTimings

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
0.300 0.332 0.336 0.300 0.340 0.344 0.348 0.349 0.352 0.352

> round((newTimings - newScoreOnlyTimings) / newTimings, 2)

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
-0.01 -0.12 -0.09 0.11 -0.12 0.00 0.00 0.00 -0.13 -0.11

13 Session Information
All of the output in this vignette was produced under the following conditions:
> toLatex(sessionInfo())

\begin{itemize}\raggedright
\item R version 3.1.2 (2014-10-31), \verb|x86_64-unknown-linux-gnul
\item Locale: \verb|LC_CTYPE=en_US.UTF-8|, \verb|LC_NUMERIC=C|, \verb|LC_TIME=en_US.UTF-8|, \verb|LC_CC
\item Base packages: base, datasets, grDevices, graphics,
methods, parallel, stats, stats4, utils
\item Other packages: BiocGenerics~0.12.1, Biostrings™2.34.1,
IRanges™2.0.1, S4Vectors™0.4.0, XVector™0.6.0
\item Loaded via a namespace (and not attached): tools~3.1.2,
zlibbioc™1.12.0
\end{itemize}

References

[1] Durbin, R., Eddy, S., Krogh, A., and Mitchison G. Biological Sequence Analysis. Cambridge UP 1998,
sec 2.3.

[2] Haubold, B. and Wiehe, T. Introduction to Computational Biology. Birkhauser Verlag 2006, Chapter 2.
[3] Malde, K. The effect of sequence quality on sequence alignment. Bioinformatics, 24(7):897-900, 2008.

[4] Needleman,S. and Wunsch,C. A general method applicable to the search for similarities in the amino
acid sequence of two proteins. Journal of Molecular Biology, 48, 443-453, 1970.

[56] Smith, H.; Hutchison, C.; Pfannkoch, C.; and Venter, C. Generating a synthetic genome by whole genome
assembly: {phi}X174 bacteriophage from synthetic oligonucleotides. Proceedings of the National Academy
of Sciences, 100(26): 15440-15445, 2003.

[6] Smith,T.F. and Waterman,M.S. Identification of common molecular subsequences. Journal of Molecular
Biology, 147, 195-197, 1981.

33

	Introduction
	Pairwise Sequence Alignment Problems
	Main Pairwise Sequence Alignment Function
	Exercise 1

	Pairwise Sequence Alignment Classes
	Exercise 2

	Pairwise Sequence Alignment Helper Functions
	Exercise 3

	Edit Distances
	Exercise 4

	Application: Using Evolutionary Models in Protein Alignments
	Exercise 5

	Application: Removing Adapters from Sequence Reads
	Exercise 6

	Application: Quality Assurance in Sequencing Experiments
	Exercise 7

	Computation Profiling
	Exercise 8

	Computing alignment consensus matrices
	Exercise Answers
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5
	Exercise 6
	Exercise 7
	Exercise 8

	Session Information

