Package ‘flowStats’

April 10, 2015
Type Package
Title Statistical methods for the analysis of flow cytometry data
Version 3.24.8

Author Florian Hahne, Nishant Gopalakrishnan, Alireza Hadj Khodabakhshi,
Chao-Jen Wong, Kyongryun Lee

Maintainer Greg Finak <gfinak@fhcrc.org> and Mike Jiang <wjiang2@fhcrc.org>

Description Methods and functionality to analyse flow data that is beyond the
basic infrastructure provided by the flowCore package.

Depends R (>=2.10), flowCore, fda (>= 2.2.6), mvoutlier, cluster,
flowWorkspace

Suggests xtable

Imports BiocGenerics, MASS, flowViz, flowCore, fda (>= 2.2.6),
Biobase, methods, grDevices, graphics, stats, utils,
KernSmooth, lattice ks

Enhances RBGL,ncdfFlow,graph

License Artistic-2.0

Lazyload yes

biocViews FlowCytometry, CellBasedAssays

R topics documented:

flowStats-package 2
autoGate e e 2
BackGating e 4
binByRef e 4
calcPBChiSquare 5
calcPearsonChi 6
curvlFilter-class L 7
curv2Filter-class L. 9
curvPeaks L 11
densityld e 13
gaUuSSNOIT o e 15

2 autoGate
EPASEL . . e e e 17
idFeaturesByBackgating 19
iProcrustes L 21
ITN . e 23
landmarkMatrix e 24
IlymphFilter-class e e 25
normalize-methods L 27
normQA e e e e e e e e e e 29
plotBins 30
ProBin 31
quadrantGate L e e e 33
rangeGate L e e e e e e e 34
singletGate L e e e e 37
WarpSet e e 38

Index 41

flowStats-package Statistical methods for flow cytometry data analysis

Description

Functions, methods and classes implementing algorithmns for statistical analysis of flow cytometry
data. This involves mostly data normalization and automated gating.

Details

Package: flowStats

Type: Package

Version: 1.0

License: Artistic-2.0

Lazyload: yes
Author(s)

Florian Hahne

Maintainer: Florian Hahne <fhahne @thcrc.org>

autoGate Automated gating of single populations in 2D

autoGate 3

Description

This function tries to fit a single norm2Filter based on a rough preselection of the data. This function
is considered internal. Please use the API provided by lymphGate.

Usage
autoGate(x, ..., scale = 2.5)
Arguments
X An object of class flowSet
Named arguments or a list of the ranges used for the initial rough preselection.
This gets passed on to rectangleGate, see it’s documentation for details.
scale The scale parameter that gets passed on to norm2Filter.
Details

The flowSet is first filtered using a rectangleGate and the norm2Filter is subsequently fitted to
the remaining subset.

Value

A list with items:

X The filtered flowSet.
n2gate The norm2Filter object.

n2gateResults The filterResult after applying the norm2Filter on the flowSet.

Author(s)

Florian Hahne

See Also

lymphGate, norm2Filter
Examples

data(GvHD)
flowStats: ::autoGate(GvHD[10:15], "FSC-H"=c(100,500), "SSC-H"=c(0, 400))

4 binByRef

BackGating Sample backgating results

Description

A data frame containing the sub-populations of ITN dataset corresponding to the high-density areas
on "FSC" and "SSC" channels. This dataset is yielded by backGating on channel CD3, CD8, and
CD4 of the ITN sample data.

Usage
data(BackGating)

Source

Results from executing the following code:
data(ITN)
flowStats:::backGating(ITN, xy=c("FSC", "SSC"), channels=c("CD3", "CD8", "CD4"))

binByRef Bin a test data set using bins previously created by probability binning
a control dataset

Description

The bins generated by probability binning a control data set can be applied to a test data set to
perfom statistical comparisions by methods such as the Chi-squared test or the probability binning
statistic.

Usage
binByRef(binRes, data)

Arguments
binRes The result generated by calling teh probBin function on a control dataset.
data An object of class flowFrame

Value

An enviroment containing the matrices for each bin of the test data set

Author(s)
Nishant Gopalakrishnan

calcPBChiSquare 5

See Also

plotBins, proBin

Examples

data(GvHD)
resCtrl<-proBin(GvHD[[1]1],200)
resSample<-binByRef (resCtrl,GvHD[[2]1])

1s(resSample)
calcPBChiSquare Probability binning metirc for comparing the probability binned
datasets
Description

This function calculates the Probability binning metric proposed by Baggerly et al. The function
utilizes the data binned using the proBin and binByRef functions.

Usage

calcPBChiSquare(ctrlRes, sampRes,ctrlCount, sampCount)

Arguments
ctrlRes The result generated by calling the probBin function on a control dataset.
sampRes The result generated by calling the byByRef function on a test sample dataset
ctrlCount The number of events in the control sample
sampCount The number of events in the test sample being compared

Value

A list containing the statistic, p.value, observed, expected counts and the residuals

Author(s)

Nishant Gopalakrishnan

See Also

proBin, calcPBChiSquare

6 calcPearsonChi

Examples

data(GvHD)

flow frame 1 is treated as control dataset and used to generate bins
resCtrl<-proBin(GvHD[[1]1[,c("FSC-H","SSC-H","Time")],200)

plotBins(resCtrl,GvHD[[1]], channels=c("FSC-H","SSC-H","Time"),title="Binned control data")
Same bins are applied to flowFrame 16

resSample<-binByRef (resCtrl,GvHD[[16]11[,c("FSC-H","SSC-H","Time") 1)
ctrlCount<-nrow(GvHD[[1]])

sampCount<-nrow(GvHD[[16]11])

stat<-calcPBChiSquare(resCtrl,resSample,ctrlCount, sampCount)

calcPearsonChi Pearsons chi-square statistic for comparing the probability binned
datasets

Description

This function calculates the Pearsons chi-squared statistic for comparing data binned using the
proBin and binByRef functions.Internally, the function utilizes the chisq.test function.

Usage

calcPearsonChi(ctrlRes, sampRes)

Arguments
ctrlRes The result generated by calling the probBin function on a control dataset.
sampRes The result generated by calling the byByRef function on a sample dataset
Value

A list containing the statistic, p.value, observed, expected counts and the residuals

Author(s)

Nishant Gopalakrishnan

See Also

proBin, calcPBChiSquare

curvFilter-class 7

Examples

data(GvHD)

flow frame 1 is treated as control dataset and used to generate bins
resCtrl<-proBin(GvHDL[1]1]1[,c("FSC-H","SSC-H","Time")],200)

plotBins(resCtrl,GvHD[[1]], channels=c("FSC-H","SSC-H","Time"),title="Binned control data")
Same bins are applied to flowFrame 16
resSample<-binByRef(resCtrl,GvHDL[1611[,c("FSC-H","SSC-H","Time")])
stat<-calcPearsonChi(resCtrl,resSample)

curviFilter-class Class "curvlFilter"

Description

Class and constructor for data-driven filter objects that selects high-density regions in one di-
mension.

Usage

curviFilter(x, bwFac=1.2, gridsize=rep(401, 2),
filterId="defaultCurviFilter")

Arguments
X Character giving the name of the measurement parameter on which the filter is
supposed to work on. This can also be a list containing a single character scalar
for programmatic access.
filterId An optional parameter that sets the filterId slot of this filter. The object can

later be identified by this name.

bwFac, gridsize
Numerics of length 1 and 2, respectively, used to set the bwFac and gridsize
slots of the object.

Details

Areas of high local density in one dimensions are identified by detecting significant curvature re-
gions. See Duong, T. and Cowling, A. and Koch, I. and Wand, M.P.,, Computational Statistics and
Data Analysis 52/9, 2008 for details. The constructor curviFilter is a convenience function for
object instantiation. Evaluating a curviFilter results in potentially multiple sub-populations, an
hence in an object of class multipleFilterResult. Accordingly, curviFilters can be used to
split flow cytometry data sets.

Value

Returns a curviFilter object for use in filtering flowFrames or other flow cytometry objects.

8 curvlFilter-class

Extends

Class "parameterFilter”, directly.
Class "concreteFilter”, by class parameterFilter, distance 2.

Class "filter"”, by class parameterFilter, distance 3.

Slots

bwFac: Object of class "numeric”. The bandwidth factor used for smoothing of the density esti-
mate.

gridsize: Object of class "numeric”. The size of the bins used for density estimation.
parameters: Object of class "character”, describing the parameter used to filter the flowFrame.

filterId: Object of class "character”, referencing the filter.

Objects from the Class

Objects can be created by calls of the form new("curvFilter”, ...) or using the constructor
curviFilter. Using the constructor is the recommended way of object instantiation:

Methods

%in% signature(x = "flowFrame", table = "curviFilter"): The workhorse used to
evaluate the filter on data. This is usually not called directly by the user, but internally by calls
to the filter methods.

show signature(object = "curviFilter"): Print information about the filter.

Note

See the documentation in the flowViz package for plotting of curviFilters.

Author(s)

Florian Hahne

See Also

curv2Filter, flowFrame, flowSet, filter for evaluation of curviFilters and split for split-
ting of flow cytometry data sets based on that.

Examples

library(flowStats)

Loading example data

dat <- read.FCS(system.file("extdata”,"0877408774.B08",
package="flowCore"))

Create directly. Most likely from a command line
curviFilter("FSC-H", filterId="myCurviFilter"”, bwFac=2)

curv2Filter-class 9

To facilitate programmatic construction we also have the following
c1f <- curviFilter(filterId="myCurviFilter"”, x=list("FSC-H"), bwFac=2)

Filtering using curviFilter
fres <- filter(dat, ci1f)

fres

summary (fres)

names(fres)

The result of curvl filtering are multiple sub-populations
and we can split our data set accordingly
split(dat, fres)

We can limit the splitting to one or several sub-populations
split(dat, fres, population="rest")
split(dat, fres, population=list(keep=c("peak 2", "peak 3")))

curv2Filter-class Class "curv2Filter"

Description
Class and constructor for data-driven filter objects that selects high-density regions in two di-
mensions.

Usage

curv2Filter(x, y, filterId="defaultCurv2Filter"”, bwFac=1.2,
gridsize=rep(151, 2))

Arguments
X,y Characters giving the names of the measurement parameter on which the filter
is supposed to work on. y can be missing in which case x is expected to be a
character vector of length 2 or a list of characters.
filterId An optional parameter that sets the filterId slot of this filter. The object can

later be identified by this name.

bwFac, gridsize
Numerics of length 1 and 2, respectively, used to set the bwFac and gridsize
slots of the object.

10 curv2Filter-class

Details

Areas of high local density in two dimensions are identified by detecting significant curvature re-
gions. See Duong, T. and Cowling, A. and Koch, I. and Wand, M.P,, Computational Statistics and
Data Analysis 52/9, 2008 for details. The constructor curv2Filter is a convenience function for
object instantiation. Evaluating a curv2Filter results in potentially multiple sub-populations, an
hence in an object of class multipleFilterResult. Accordingly, curv2Filters can be used to
split flow cytometry data sets.

Value

Returns a curv2Filter object for use in filtering f1lowFrames or other flow cytometry objects.

Extends

Class "parameterFilter”, directly.
Class "concreteFilter”, by class parameterFilter, distance 2.

Class "filter", by class parameterFilter, distance 3.

Slots

bwFac: Object of class "numeric”. The bandwidth factor used for smoothing of the density esti-
mate.

gridsize: Object of class "numeric”. The size of the bins used for density estimation.
parameters: Object of class "character”, describing the parameters used to filter the flowFrame.

filterId: Object of class "character”, referencing the filter.

Objects from the Class
Objects can be created by calls of the form new("curv2Filter”, ...) or using the constructor
curv2Filter. The constructor is the recommended way of object instantiation:

Methods

%in% signature(x = "flowFrame", table = "curv2Filter"): The workhorse used to
evaluate the filter on data. This is usually not called directly by the user, but internally by calls
to the filter methods.

show signature(object = "curv2Filter"): Print information about the filter.

Note

See the documentation in the flowViz package for plotting of curv2Filters.

Author(s)

Florian Hahne

curvPeaks 11

See Also

curviFilter, flowFrame, flowSet, filter for evaluation of curv2Filters and split for split-
ting of flow cytometry data sets based on that.

Examples

Loading example data
dat <- read.FCS(system.file("extdata”,"0877408774.B08",
package="flowCore"))

Create directly. Most likely from a command line
curv2Filter("FSC-H", "SSC-H", filterId="myCurv2Filter")

To facilitate programmatic construction we also have the following
c2f <- curv2Filter(filterId="myCurv2Filter”, x=1list("FSC-H", "SSC-H"),
bwFac=2)

c2f <- curv2Filter(filterId="myCurv2Filter"”, x=c("FSC-H", "SSC-H"),
bwFac=2)

Filtering using curv2Filter
fres <- filter(dat, c2f)

fres

summary(fres)

names(fres)

The result of curv2 filtering are multiple sub-populations
and we can split our data set accordingly
split(dat, fres)

We can limit the splitting to one or several sub-populations

split(dat, fres, population="rest")
split(dat, fres, population=list(keep=c("area 2", "area 3")))

curv2Filter("FSC-H", "SSC-H", filterId="test filter")

curvPeaks Parse curviFilter output

Description

Parse the output of curviFilter and find modes and midpoints of the high-density regions. This
function is considered to be internal.

12 curvPeaks

Usage

curvPeaks(x, dat, borderQuant = 0.01, n = 201, from, to, densities=NULL)

Arguments

X A multipleFilterResult produced by a curviFilter operation.

dat The corresponding flowFrame.

borderQuant A numeric in [0, 1] giving the extreme quantiles for which high-density regions

are ignored.

n, from, to Arguments are passed on to density.

densities The optional y values of the density estimate computed for the respective data.
Value

A list with items

peaks x and y locations of the modes of the regions in the density estimates.
regions the left and right margins of the regions.
midpoints the mean of regions.
regPoints x and y locations of the outline of the significant density regions.
densFuns an approximation function of the density estimate

Author(s)

Florian Hahne

See Also

landmarkMatrix

Examples

data(GvHD)
tmp <- filter(GvHD[L[10]], curviFilter("FSC-H"))
res <- flowStats:::curvPeaks(tmp, exprs(GvHD[[10]1)[, "FSC-H"1)

densityld

13

densityld

Find most likely separation between positive and negative populations
in 1D

Description

The function tries to find a reasonable split point between the two hypothetical cell populations
"positive" and "negative". This function is considered internal, please use the API provided by

rangeGate.

Usage

densityld(x, stain, alpha = "min", sd = 2, plot = FALSE, borderQuant =

0.1, absolute

TRUE, inBetween = FALSE, reflLine=NULL,rare=FALSE,bwFac=1.2

,sig=NULL,peakNr=NULL, ...)

Arguments

X

stain

alpha

sd

plot

borderQuant

absolute

inBetween

A flowSet or flowFrame.

A character scalar giving the flow parameter for which to compute the separa-
tion.

A tuning parameter that controls the location of the split point between the two
populations. This has to be a numeric in the range [0, 1], where values closer
to 0 will shift the split point closer to the negative population and values closer
to 1 will shift towards the positive population. Additionally, the value of alpha
can be "min", in which case the split point will be selected as the area of lowest
local density between the two populations.

For the case where there is only a single population, the algorithm falls back to
esitmating the mode of this population and a robust measure of the variance of
it distribution. The sd tuning parameter controls how far away from the mode
the split point is set.

Create a plot of the results of the computation.

Usualy the instrument is set up in a way that the positive population is some-
where on the high end of the measurement range and the negative population is
on the low end. This parameter allows to disregard populations with mean val-
ues in the extreme quantiles of the data range. It’s value should be in the range

[o,11.

Logical controling whether to classify a population (positive or negative) relative
to the theoretical measurment range of the instrument or the actual range of the
data. This can be set to TRUE if the alignment of the measurment range is not
optimal and the bulk of the data is on one end of the theoretical range.

Force the algorithm to put the separator in between two peaks. If there are more
than two peaks, this argument is ignored.

14 densityld

reflLine Either NULL or a numeric of lenth 1. If NULL, this parameter is ignored. When it
is set to a numeric, the minor sub-population (if any) below this reference line
will be igored while determining the separator between positive and negative.

rare Either TRUE or FALSE, assumes that there is one major peak, and that the rare
positive population is to the right of it. Uses a robust estimate of mean and
variance to gate the positive cells.

bwFac The bandwidth for smoothing the density estimate. User-tunable

sig a value of ¢((NULL,"L","R"),when sig is not NULL,use the half (left or right) of
signal to estimate the std and mean.

peakNr when peakNr is not NULL,drop the less significant peaks by their heights

Further arguments.

Details

The algorithm first tries to identify high density regions in the data. If the input is a flowSet, den-
sity regions will be computed on the collapsed data, hence it should have been normalized before
(see warpSet for one possible normalization technique). The high density regions are then clasified
as positive and negative populations, based on their mean value in the theoretical (or absolute if
argument absolute=TRUE) measurement range. In case there are only two high-density regions the
lower one is usually clasified as the negative populations, however the heuristics in the algorithm
will force the classification towards a positive population if the mean value is already very high.
The absolute and borderQuant arguments can be used to control this behaviour. The split point
between populations will be drawn at the value of mimimum local density between the two popu-
lations, or, if the alpha argument is used, somewhere between the two populations where the value
of alpha forces the point to be closer to the negative (0 - 0.5) or closer to the positive population
(0.5 - 1.

If there is only a single high-density region, the algorithm will fall back to estimating the mode
of the distribution (hubers) and a robust measure of it’s variance and, in combination with the sd
argument, set the split point somewhere in the right or left tail, depending on the classification of
the region.

For more than two populations, the algorithm will still classify each population into positive and
negative and compute the split point between those clusteres, similar to the two population case.

Value

A numeric indicating the split point between positive and negative populations.

Author(s)

Florian Hahne

See Also

warpSet, rangeGate

gaussNorm 15

Examples

data(GvHD)

dat <- GvHD[pData(GvHD)$Patient==10]

dat <- transform(dat, "FL4-H"=asinh(FL4-H), "FL3-H"=asinh(FL3-H))
d <- flowStats:::densityld(dat, "FL4-H", plot=TRUE)
if(require(flowviz))

densityplot(~FL4-H, dat, refline=d)

tweaking the location
flowStats:::densityld(dat, "FL4-H", plot=TRUE, alpha=0.8)

only a single population
flowStats:::densityld(dat, "FL3-H", plot=TRUE)
flowStats:::densityld(dat, "FL3-H", plot=TRUE, sd=2)

gaussNorm Per-channel normalization based on landmark registration

Description

This funciton normalizes a set of flow cytometry data samples by identifying and aligning the high
density regions (landmarks or peaks) for each channel. The data of each channel is shifted in such
a way that the identified high density regions are moved to fixed locations called base landmarks.

Usage

gaussNorm (flowset, channel.names, max.lms=2, base.lms=NULL,
peak.density.thr=0.05, peak.distance.thr=0.05, debug=FALSE, fname=)

Arguments

flowset A flowSet.
channel.names A character vector of flow parameters in flowset to be normalized.

max.1lms A numeric vector of the maximum number of base landmarks to be used for
normalizing each channel. If it has only one value that will be used as the
maximum number of base landmarks for all the channels.

base.1lms A list of vector for each channel that contains the base landmarks for normaliz-
ing that channel. If not specified the base landmarks are computed from the set
of extracted landmarks.

peak.density. thr
The peaks with density value less than "peak.density.thr times maximum peak
density" are discarded.

16 gaussNorm

peak.distance. thr
The sequences of peaks that are located closer than "peak.distance.thr times
range of data" are identified. Then for each sequence only one peak (the one
with the highest intensity value) is used as a landmark. In other words no two
landmarks are located closer than "peak.distance.thr times range of data" to each
other.

debug Logical. Forces the function to draw before and after normalization plots for
each sample. The plot of the i-th sample is stored in paste(fname, i) file.

fname The pre- and post- normalization plots of the i-th sample is stored in paste(fname, i)
file if debug is set to TRUE. If default value is used the plots are drawn on sep-
arate X11 windows for each sample. In this case, the function waits for a user
input to draw the plots for the next sample.

Details

Normalization is archived in three phases: (i) identifying high-density regions (landmarks) for each
flowFrame in the flowSet for a single channel; (ii) computing the best matching between the
landmarks and a set of fixed reference landmarks for each channel called base landmarks; (iii)
manipulating the data of each channel in such a way that each landmark is moved to its matching
base landmark. Please note that this normalization is on a channel-by-channel basis. Multiple
channels are normalized in a loop.

Value

A list with items flowset: normalized flowSet. confidence: a confidence measure of the nor-
malization procedure.

Author(s)
Alireza Hadj Khodabakhshi

Examples

data(ITN)

dat <- transform(ITN, "CD4"=asinh(CD4), "CD3"=asinh(CD3), "CD8"=asinh(CD8))
lg <- lymphGate(dat, channels=c("CD3", "SSC"),
preselection="CD4",scale=1.5)

dat <- Subset(dat, lg$n2gate)

datr <- gaussNorm(dat, "CD8")$flowset

if(require(flowViz)){

d1 <- densityplot(~CD8, dat, main="original”, filter=curviFilter("CD8"))

d2 <- densityplot(~CD8, datr, main="normalized"”, filter=curviFilter("CD8"))
plot(dl, split=c(1,1,2,1))

plot(d2, split=c(2,1,2,1), newpage=FALSE)

3

gpaSet 17

gpaSet Multi-dimensional normalization of flow cytometry data

Description

This function performs a multi-dimensional normalization of flow cytometry data (flowSets) using
a generalized Procrustes analysis (GPA) method.

Usage

gpaSet(x, params, register="backgating”, bgChannels=NULL,
bg=NULL, rotation.only=TRUE,
downweight.missingFeatures=FALSE, thres.sigma=2.5,
show.workflow=FALSE,
ask=names(dev.cur())!="pdf")

Arguments

X A flowSet.

params A character vector of length 2 describing the channels of interest.

register A character indicating the method to be used for identifying features. Available
method only includes “backgating” at the point.

bgChannels A character vector indicating the channels used for backgating. If NULL, backGating
will find the appropriate backgating channels.

bg A data frame as the returning value of the backGating function. If not NULL,

gpaSet will skip the backGating process and use the given data frame to extract
potential features.

rotation.only Logical for coarsing a reflection matrix to a rotation matrix.
downweight.missingFeatures
Logical. If TRUE, the missing features, labeled as bogus features, are down-
weighted to zero. See details.

thres.sigma A numerical value indicating the threshold of where to cut the tree, e.g., as
resulting from diana, into several clusters. It is default to 2.5 sigma of the
distribution of the heights of the cluster points.

show.workflow Logical. If TRUE, the workflow of gpaSet will be displayed.
ask Logical. If TRUE, the display operates in interactive mode.

Details

Normalization is achieved by first identifying features for each flowFrame in the flowSet for des-
ignated channels using backgating, subsequently labeling features, and finally aligning the features
to a reference feature in the sense of minimizing the Frobenus norm of

IsFQ — FJ|,

18 gpaSet

where s is a scalar, () a rotational matrix, F' the matrix of features, and F the reference feature.
Both s and @) are solved by using singular value decomposition (SVD).

Note that if feature F;; is missing, it is given a bogus value as F; -

If downweight.missingFeatures is TRUE, the cost function becomes
[sWoFQ — WoF|],

where the weighting function W), is zero if the corresponding feature is bogus.

Value

The normalized flowSet with "GPA" attribute.

Author(s)
C. J. Wong <cwon2@fhcrc.org>

References

in progress

Examples

Example 1: calling up gpaSet directly
data(ITN)
data(BackGating)

tl <- transformList(colnames(ITN)[3:7], asinh, transformationId="asinh")
dat <- transform(ITN, tl)

xy = c("FSC", "SSC")

bgChannels = c("CD8", "CD4", "CD3")

bg <- flowStats:::backGating(dat, xy=xy, channels=bgChannels)
using pre-generated backgating results: BackGating

s <- gpaSet(dat, params=xy, bgChannels=bgChannels, bg=BackGating)

if(require(flowviz)) {
dl <- densityplot(~., s, channels=c("FSC", "SSC"),
layout=c(2,1), main="After GPA using bg")
d2 <- xyplot(FSC ~ SSC, as(s, "flowFrame"),
channels=c("FSC", "SSC"), main="All flowFrames")
plot(dl)
plot(d2)
3

view "GPA" attribute
attr(s, "GPA")

Not run:

Example 2: using work flow and normalization objects
data(ITN)

ITN <- ITN[1:8,]

idFeaturesByBackgating 19

wf <- workFlow(ITN)
tl <- transformList(colnames(ITN)[3:7], asinh, transformationId="asinh")
add(wf, tl)
x <- Data(wf[["asinh"]1])
normalize FSC and SSC channels
norm <- normalization(normFun=function(x, parameters, ...)
gpaSet(x, parameters, ...),
parameters = c("FSC", "SSC"),
arguments=1list(bgChannels=c("CD8", "CD3"),
register="backgating”),
normalizationId="Procrustes”)

add(wf, norm2, parent="asinh")
s <- Data(wf[["Procrustes”]1])
if(require(flowviz)) {
dl <- densityplot(~., s, channels=c("FSC", "SSC"),
layout=c(2,1), main="After GPA using bg")
d2 <- xyplot(FSC ~ SSC, as(s, "flowFrame"),
channels=c("FSC", "SSC"), main="All flowFrames")
plot(dl)
plot(d2)
3

End(Not run) ## end of dontrun

idFeaturesByBackgating

(Internal use only) Identify features of flow cytometry data using back-
gating

Description

Identify and labeling significant features using divisive clustering method such as diana.

Usage

idFeaturesByBackgating(bg, nDim, thres.sigma=2.5, lambda=0.1,
reference.method="median",
plot.workflow=FALSE, ask=names(dev.cur())!="pdf")

Arguments
bg A data frame containing subpopulations on channels of interests. Must be a
returning result from flowStats: : :backGating
nDim An integer indicating the length of channels of interest.
thres.sigma An numerical value indicating the threshold at which to cut tree, e.g., as resulting

from ’diana’, into several clusters.

20 idFeaturesByBackgating

lambda A numerical value indicating the percentage of the potential features that is used
as a threshold for deciding outlier clusters. The default value is 0.1.
reference.method

A character vector indicating the method for computing the reference features. If
median, the reference feature is defined by the medain of eac cluster of features.
Valid methods include median and mean only.

plot.workflow Logical. If TURE, display the workflow of feature identification.
ask Logical. If TRUE, the display operates in interactive mode.

Details

Using the resulting data frame from backGating as potential features, the algorithm follows four
major steps: (i) centering the potential features, which yields the returning value TransMatrix,
(ii) using diana to compute a clustering of the potential features, (iii) cutting the tree into several
clusters, and (iv) accessing outliers and rendering the final registered features with labels.

In step three, the threshold for cutting the tree is computed by
sd x thres.sigma,

where sd is the standard deviation of the distribution of the height between entities computed by
diana.

A cluster is determined as an outlier if the number of its members is less than the median of the
numbers of all clusters’ members times "lambda’.
Value

register A list containing registered features for each sample.

Author(s)
Chao-Jen Wong

See Also

diana, BackGating, gpaSet.

Examples

Not run:

data(ITN)

wf <- workFlow(ITN)

tl <- transformList(colnames(ITN)[3:7], asinh, transformationId="asinh")
dat <- trnasformList(ITN, tl)

bg <- backGating(dat, xy=c("FSC", "SSC"), channels="CD3")

End(Not run)
data(BackGating)

results <- flowStats:::idFeaturesByBackgating(bg=BackGating, nDim=2,
plot.workflow=TRUE, ask=TRUE)

iProcrustes 21

iProcrustes Procrustes analysis. Using singular value decomposition (SVD) to
determine a linear transformation to align the points in X to the points
in a reference matrix Y.

Description

Based on generalized Procrustes analysis, this function determines a linear transformation (rota-
tion/reflection and scalling) of the points in matrix x to align them to their reference points in
matrix xbar. The alignemnt is carried out by minimizing the distance between the points in x and
xbar.

Usage

iProcrustes(x, xbar, rotation.only=TRUE, scalling=TRUE, translate=FALSE)

Arguments
X A numerical matrix to be align to points in xbar, the second arguement. The
columns represents the coordinates of the points. The matrices x and xbar must
have the same dimensions.
xbar A numerical, reference matrix to which points in matrix x are to be aligned.

rotation.only Logical. When rotaion.only is TRUE, it allows the function to lose reflection
component of the linear transformation. Although it might not give the best-
fitting aligenment, when dealing with flow cytometry data alignment, a non-
reflection transformation is prefered. When rotaion.only is FALSE, it allows
the function to retain the reflection component.

scalling Logical. When scalling is FALSE, it allows the function to calculate the linear
transformation without a scalling factor. That is, the returning scalling factor is
setto 1.

translate Logical. Set translate to FALSE when the points in matrices x and xbar are

already centralized prior to applying this function. When translate is TRUE,
it allows the function to translate the centroid the points in matrix x to that of
points in xbar.

Details

Suppose the points in matrix X and X are centralized (meaning their centroids are at the origin).
The linear transformation of X for aligning X to its reference matrix X ., i.e., min |[sXQ — X||r,
is given by:

Q=vU",

and -
s = trace(XT X Q) /trace(XT X),

where V and U are the sigular value vectors of X7 X (thatis, X” X = UXVT), and s is the scalling
factor.

22 iProcrustes

Value

A list of the linear tranformation with items

Q An orthogonal, rotation/reflection matrix.
scal A scalling factor
T (optional) A translation vector used to shift the centroid of the points in matrix

x to the origin. Returned when translate is TRUE.

T.xbar (optional) Centered xbar (that is, the centroid of the points in xbar is translated
to the origin). Returned when translate is TRUE.

Note that the return values of this function do not include the transformed matrix scal * x * Q or
scal * (x — IT) * Q, where T is the translation vector and [is an n — by — 1 vector with elements
1.

Author(s)

C. J. Wong <cwon2@fhcrc.org>

See Also

gpaSet

Examples

Example 1

x <= matrix(runif(20), nrow=10, ncol=2)+ 1.4

s <- matrix(c(cos(60), -sin(60), sin(60), cos(60)),
nrow=2, ncol=2, byrow=TRUE)

xbar <= 2.2 *x(x %*% s) - 0.1

1t <- iProcrustes(x, xbar, translate=TRUE) ## return linear transformation
1t

showing result

I <- matrix(1, nrow=nrow(x), ncol=1)
tx <= x - I %*% 1t$T

get the transformed matrix xnew
xnew <- lt$scal x (tx %*% 1t$Q)

if (require(lattice)) {
xyplot(Vl ~ V2,

do.call(make.groups, lapply(list(x=x, xbar=xbar, T.xbar=1t$T.xbar,
xnew=xnew) , as.data.frame)),

group=which, aspect=c(0.7), pch=c(1,3,2,4), col.symbol="black",

main=("Align the points in x to xbar"),

key=list(points=list(pch=c(1,3,2,4), col="black"), space="right",

text=list(c("x", "xbar", "T.xbar", "xnew"))))

ITN 23

Example 2. centralized x and xbar prior to using iProcrustes
x <= matrix(runif(10), nrow=5, ncol=2)
s <- matrix(c(cos(60), -sin(60), sin(60), cos(60)),
nrow=2, ncol=2, byrow=TRUE)
xbar <= 1.2 *(x %*% s) - 2
I <- matrix(1, nrow=nrow(x), ncol=1)
X <= x-(I %*% colMeans(x)) ## shift the centroid of points in x to the origin
xbar <- xbar - (I %*% colMeans(xbar)) ## shift centroid to the origin
1t <- iProcrustes(x, xbar, translate=FALSE) ## return linear transformation
only return the rotation/reflection matrix and scalling factor
1t

xnew=1t$scal *(x %*% 1t$Q) ## transformed matrix aligned to centralized xbar
if (require(lattice)) {
xyplot(V1l ~ V2,
do.call(make.groups, lapply(list(x=x,xbar=xbar,
xnew=xnew), as.data.frame)),
group=which, auto.key=list(space="right"))

ITN Sample flow cytometry data

Description

A flowSet cotaining data from 15 patients.

Usage

data(ITN)

Format

A flowSet containing 15 flowFrames. There are 3 patient groups with 5 samples each.

Source

Immune Tolerance Network

24 landmarkMatrix

landmarkMatrix Compute and cluster high density regions in 1D

Description

This functions first identifies high-density regions for each flowFrame in a flowSet and subse-
quently tries to cluster these regions, yielding the landmarks matrix that needs to be supplied to
landmarkreg. The function is considered to be internal.

Usage

landmarkMatrix(data, fres, parm, border=0.05, peakNr=NULL, densities =
NULL, n = 201, indices=FALSE)

Arguments
data A flowSet.
fres A list of filterResultList objects generated by a filtering opration using a
curviFilter. Each list item represents the results for one of the flow parame-
ters in parm.
parm Character scalar of flow paramater to compute landmarks for.
border A numeric in [0,1]. Ignore all high-density regions with mean values in the
extreme percentiles of the data range.
peakNr Force a fixed number of peaks.
densities An optional matrix of y values of the density estimates for the flowSet. If this
is not present, density estimates will be calculated by the function.
n Number of bins used for the density estimation.
indices Return matrix of population indices instead of landmark locations. These in-
dices can be used to point into the populations identified by the curv1Filter.
Details

In order to normalize the data using the landmarkreg function in the fda, a set of landmarks has
to be computed for each flowFrame in a flowSet. The number of lansmarks has to be the same
for each frame. This function identifies high-density regions in each frame, computes a simple
clustering and returns a matrix of landmark locations. Missing landmarks of individual frames are
substituted by the mean landmark location of the respective cluster.

Value

A matrix of landmark locations. Columns are landmarks and rows are flowFrames.

Author(s)

Florian Hahne

lymphFilter-class 25

See Also

landmarkreg,warpSet

Examples

data(GvHD)
tmp <- list("FSC-H"=filter(GvHD[1:3], curviFilter("FSC-H")))
res <- flowStats:::landmarkMatrix(GvHD[1:3], tmp, "FSC-H")

lymphFilter-class Automated gating of elliptical cell populations in 2D.

Description

Cell populations of roughly elliptical shape in two-dimensional projections are of huge interest in
many flow cytometry applications. This function identifies a single such population, potentially
from a mixture of multiple populations.

Usage

lymphGate(x, channels, preselection=NULL, scale=2.5, bwFac=1.3,
filterId="defaultLymphGate", evaluate=TRUE, plot=FALSE, ...)

lymphFilter(channels, preselection=as.character(NULL),
scale=2.5, bwFac=1.3, filterId="defaultLymphFilter")

Arguments
X An object of class flowSet.
channels A character vector of length 2 of valid flow parameters in x.

preselection Either NULL, in which case this boils down to fitting a regular norm2Filter,
a character scalar giving one of the flow parameters in x, or a named list of
numerics specifying the initial rough preselection. The latter gets passed on to
rectangleGate, see it’s documentation for details.

scale The scaleFactor parameter that gets passed on to norm2Filter.

bwFac The bandwidth factor that gets passed on to curviFilter.

filterId A character used as filterId.

evaluate A logical indicating wether the filter should be resolved (computation of the

filterResult and the subset).
plot Logical. Produce plots of filter results

Additional arguments.

26 lymphFilter-class

Details

This algorithm does not apply real mixture modelling, however it is able to identify a single elliptical
cell population from a mixture of multiple such populations. The idea is to first define a rough
rectangular preselection and, in a second step, fit a bivariate normal distribution to this subset only.

Depending on the value of preselection, the initial rough selection is either

NULL: No preselection at all

character scalar Preselection based on cells that are positive for a single marker only. This allows
for back-gating, for instances by selecting CD4+ T-cells and using this information to back-gate
lymphocytes in FSC and SSC. Positive cells are identified using a curvi1Filter.

a named list of numerics: Preselection by a rectangular gate. The items of the list have to be
numerics of length one giving the gate boundaries in the respective dimensions.

The lymphFilter class and constructor provide the means to treat lymphGates as regular
flowCore filters.

Value

A list with items

X The filtered flowSet.
n2gate The norm2Filter object.
n2gateResults The filterResult after applying the norm2Filter on the flowSet.

for the 1ymphGate function. Note that x and n2gateResults are NULL when eval=FALSE.

The lymphFilter constructor returns and object of class lymphFilter, which can be used as a
regular flowCore fitler.

Extends

Class parameterFilter, directly.
Class concreteFilter, by class "parameterFilter", distance 2.

Class filter, by class "parameterFilter", distance 3.

Slots

See Arguments section for details.

preselection: Object of class character, the name of the flow parameter used for preselection.
rectDef: Object of class 1ist, the initial rectangular selection.

scale: Object of class numeric.

bwFac: Object of class numeric.

parameters: Object of class parameters, the flow parameters to operate on.

filterId: Object of class "character”, the filter identifier.

normalize-methods 27

Objects from the Class

Objects can be created by calls of the form new("”lymphFilter", parameters, ...) orusing
the constructor lymphFilter. The constructor is the recommended way of object instantiation.

Methods

%in% signature(x = "flowFrame", table = "lymphFilter"): the work horse for doing the
actual filtering. Internally, this simply calls the 1ympghGate function.

Author(s)

Florian Hahne

See Also

norm2Filter, curviFilter

Examples

data(GvHD)

dat <- GvHD[pData(GvHD)$Patient==10]

dat <- transform(dat, "FL4-H"=asinh(FL4-H))

lg <- lymphGate(dat, channels=c("FSC-H", "SSC-H"), preselection="FL4-H" 6scale=1.5)

if(require(flowviz))
xyplot(SSC-H~FSC-H, dat, filter=1lg$n2gate)

This is using the abstract lymphFilter class instead
1f <- lymphFilter(channels=c("FSC-H", "SSC-H"), preselection="FL4-H")
filter(dat, 1f)

normalize-methods normalize a GatingSet imported with flowWorkspace, using sequential
normalization on the manual gates in the GatingHierarchy.

Description

The method will step through the gating hierarchy in a breadth first search manner and normalize
each dimension and gate not explicitly excluded in skipdims,or skipgates. The normalization ap-
proach is based on warpSet, but uses sequential normalization to alternately normalize then perform
gating of the cell populations. This often helps with feature registration of popualtions lower in the
gating hierarchy. FSC and SSC, as well as time are generally excluded by default. The rule of
thumb, is to only normalize a channel in a gate if it is absolutely warranted.

Usage

normalize(data,x,...)

28

Arguments

data

X

Details

normalize-methods

The GatingSet to be normalized.
missing. Not used in here.

Arguments passed to downstream functions.

target: The target sample to normalize the other samples in the gating set to. A
character vector. Must match a sample name in x, otherwise NULL will use the
mean (average) of the peaks identified in all samples

populations: A character vector of population names that are to be normalized.
dims: A character vector of parameter names to be normalized.

chunksize: For a memory-efficient implementation of normalization, set the
chunksize,(an integer), which will peform normalization on chunks of the
data of size chunksize.

nPeaks: A list of integer or an integer vector that specifies the expected
number of peaks for each sample. Can be omitted to keep all peaks.

bwFac: The bandwidth for density estimation, a numeric. Affects the sensitivity
for smoothing and detecting distinct peaks.

This function implements sequential normalization using a GatingSet and a set of manual gates. For
each gate in the gating hierarchy, the algorithm checks if the gate should be normalized, and which
dimensions in the gate should be normalized. If normalization is warranted, this is performed prior
to gating. After gating, the counts for the gate in the GatingSet are updated, and the next gate is
processed. This is useful in the application of template gates to data that has staining variability in
one or more channels.

Value

Returns a GatingSet of normalized data.

Author(s)

Greg Finak <gfinak @thcrc.org>

See Also

See also GatingSet-class, GatingHierarchy-class, ncdfFlowSet

Examples

Not run:

#gs is a GatingSet
gs_norm <- normalize(gs

target = "M+T panel_903997-25.fcs"”
populations = "cd27gate”

dims = "<Violet A 610/20-A>"
minCountThreshold = 100

nPeaks = list(cd27gate = 2)

normQA 29

, chunksize = 10
, bwFac = 2
)

#show the population statistics for before and after normalization
getPopStats(gs)
getPopStats(gs_norm)

#plot the gate to see the effects of normalization
grid.arrange(

plotGate(gs, "cd27gate”, type = "densityplot”, stack = T)
,plotGate(gs_norm, "cd27gate”, type = "densityplot”, stack = T)
)

End(Not run)

normQA Normalization quality assessment

Description

Create QA plots for a flow cytometry normalization process.

Usage

normQA(data, morph = c("*fsc"”, "*ssc”), channels, odat = NULL, ask = names(dev.cur()) != "pdf", grouping

Arguments
data a normalized flowSet.
morph A character vector of channel names to use for the backgating into the morpho-

logical channels.

channels The channels for which to create plots. Defaults to all normalized channels.
odat The original data set, always needed if there are no warping functions available.
ask Ask before creating a new plot.
grouping A grouping variable in data’s phenoData slot.

tag.outliers Logical. Add sample name to outliers in the plots.

peaksOnly Logical. Only use data when a peak was detected in a particular sample. If set
to FALSE, a average peak location is estimated.

30 plotBins

Details

This function assumes that the necessary information has been added as attributes to data during the
normalization procedure. Depending on the available information, a set of QA plots is generated.
Auvailable plots are:

Amount of peak adjustment
Warping functions
Landmark classification confidence

Backgating of peak events in morphological channels

Value

This function is called for its side effect of generating plots.

Author(s)

Florian Hahne

plotBins Plots the probability bins overlaid with flowFrame data

Description

This function is useful in visualizing the differences between the binned control and sample datasets.
The bins generated from the control dataset are overlaid with the sample dataset. An optional argu-
ment residuals can be used to shade each bin based on a calculated statistical measure of difference
between the number of events in each bin.

Usage

plotBins(binRes,data,channels,title,residuals, shadeFactor)

Arguments

binRes The result generated by calling the probBin function on a control dataset.

data An object of class flowFrame sample(dataset)

channels The flow parameters to be plotted.In cases where more than two parameters are
binned from the control set, the plotBins function plots the projections of the
hyperplanes in 2 dimensions)

title Optional title for the plot generated

residuals A vector of length equal to the number of bins generated that can be used
to shade each bin. The residuals from the calcPearsonChi function or the
calcPBChiSquare function can be used to highlight the bins that are different
between control and sample datasets

shadeFactor Optional argument between 0 and 1 that controls the intensity of the shading of

bins

proBin 31

Author(s)

Nishant Gopalakrishnan

See Also

proBin, calcPearsonChi, calcPBChiSquare

Examples

data(GvHD)

flow frame 1 is treated as control dataset and used to generate bins
resCtrl<-proBin(GvHD[[1]1],200,channels=c("FSC-H","SSC-H"))

plotBins(resCtrl,GvHD[[1]], channels=c("FSC-H","SSC-H"),title="Binned control data")

Same bins are applied to flowFrame 16

resSample<-binByRef (resCtrl,GvHD[[16]])

stat<-calcPearsonChi(resCtrl,resSample)

dev.new()

plotBins(resCtrl,data=GvHD[[16]], channels=c("FSC-H","SSC-H","Time"),title="Comparision 1 & 16",
residuals=stat$residuals[2,],shadeFactor=0.7)

proBin Probability binning - a metric for evaluating multivariate differences

Description

This function divides the flowframe events into bins such that each bin contains the same number
of events. The number of events falling into each bin can then be compared across the control and
test samples using statistical methods such as the Chi-squared test.

Usage

proBin(m, minEvents=500,channels=NULL)

Arguments
m An object of class flowFrame
minEvents The minEvents The minimum number of events in each bin. (i.e. the termina-
tion criterion for the probability binning algorithm)
channels A character vector for the Flourescence channels on which probability binning is

to be performed. Defaults is NULL, in which case, all flourescence channels are
used for probability binning.(Time information, if provided in the flowFrame is
discarded)

32

Details

proBin

The flowSet is first filtered using a rectangleGate and the norm2Filter is subsequently fitted to
the remaining subset.

Value

A list with items:

table

data

limits

splitPars

Author(s)

A data. frame that stores information regarding each node of the tree generated
during each stage of the probability binning algorithm. Each row in the table
represents a node, the first row representing the original f1owFrame matrix.
The datalndx column provides indexes for retrieving the matrices during each
stage of the binning process from the enviroment data .

The parent field indicates the row number in the table that holds the parent in-
formation for the corresponding node.

The left and right columns indicates the row numbers in the table that stores
information regarding the children of that particular node. The leaf nodes that
hold the binned data can be identified by the nodes with the left of right values
of zero(ie. no children nodes)

The visited column is used internally by the algorithm to check if a particular
node has been visited during the computation process.

An enviroment in which the matrices generated during each stage of the prob-
ability binning process is stored. The matrices stored at the leaf nodes repre-
sent the binned events obtained after the stop criterion of minEvents has been
achieved. These can be identified by the corresponding datalndx fields provided
by the rows in the table with the left or right column values of zero.

A list containing the the boundaries of each hyperplane generated during prob-
ability binning

A data. frame containing two columns splitCol - indicates the column number
of the flowFrame , the split was performed.

splitMed - The median value which was used as the threshold for splitting the
flowFrame

The splitCol and splitMed parameters are utilized by the plotBins and shadeBins
functions in visualizing the differences between control and test sample cases.

Nishant Gopalakrishnan

See Also

plotBins, binByRef

Examples

data(GvHD)

res<-proBin(GvHD[[1]1],200, channels=c("FSC-H","SSC-H","FL1-H","FL4-H"))

quadrantGate

33

quadrantGate

Automated quad gating

Description

This function tries to find the most likely separation of two-dimensional flow cytometry in four

quadrants.

Usage

quadrantGate(x, stains, alpha=c("min”, "min"), sd=c(2, 2), plot=FALSE,
filterId="defaultQuadGate"”, refLine.1=NULL, reflLine.2=NULL
,rare=c(FALSE, FALSE)
,Sig=c(NULL,NULL)

yees)

Arguments

X

stains

alpha, sd

plot
filterlId

refLine.1

refLine.?2

rare

sig

Details

A flowSet or flowFrame.

A character vector of length two giving the two flow parameters for which the
quad gate is to be computed.

Tuning factors to control the computation of the gate boundaries. See rangeGate
for details.

Logical. Produce plots of intermediate results.
Character, the name assigned to the resulting filter.

Either NULL or a numeric of lenth 1. If NULL, this parameter is ignored. When it
is set to a numeric, the minor sub-population (if any) below this reference line
in the first stain channel will be igored while determining the separator between
positive and negative.

Either NULL or a numeric of lenth 1. If NULL, this parameter is ignored. When it
is set to a numeric, the minor sub-population (if any) below this reference line in
the second stain channel will be igored while determining the separator between
positive and negative.

logical flags for two channels, Refer to density1d for more details.
parameters for two channels. Refer to density1d for more details.

Additional arguments

The most likely separation between postitive and negative stains for two-dimensional data is com-
puted based on density estimates. Essentially, the gate parameters are first fitted separately for the
two parameters and later combined. See the documentation for rangeGate for details. There is a
certain amount of heuristics involved in this process. The algorithm can be slightly tweaked using
the alpha and sd arguments. Their values will be recycled for the two dimensions unless explicitely
given as vectors of length 2.

34 rangeGate

Value

An object of class quadGate.

Author(s)

Florian Hahne

See Also

quadGate, rangeGate

Examples

Not run:

data(GvHD)

dat <- GvHD[pData(GvHD)$Patient==10]

dat <- transform(dat, "FL4-H"=asinh(FL4-H), "FL2-H"=asinh(FL2-H))
gg <- quadrantGate(dat, c("FL2-H", "FL4-H"))

qg

if(require(flowViz))
xyplot(FL2-H~FL4-H, dat, filter=qg)

gg <- quadrantGate(dat, c("FL2-H", "FL4-H"), alpha=c(0.1, 0.9), plot=TRUE)
qag
split(dat, qg)

End(Not run)

rangeGate Find most likely separation between positive and negative populations
in 1D

Description
The function tries to find a reasonable split point between the two hypothetical cell populations
"positive" and "negative".

Usage

rangeGate(x, stain, alpha="min", sd=2, plot=FALSE, borderQuant=0.1,
absolute=TRUE, filterId="defaultRectangleGate”, positive=TRUE,
refLine=NULL, simple = FALSE,...)

rangeFilter(stain, alpha="min", sd=2, borderQuant=0.1,
filterId="defaultRangeFilter")

rangeGate

Arguments

X

stain

alpha

sd

plot

borderQuant

absolute

filterId

positive

refLine

simple

Details

35

A flowSet or flowFrame.

A character scalar giving the flow parameter for which to compute the separa-
tion.

A tuning parameter that controls the location of the split point between the two
populations. This has to be a numeric in the range [0, 1], where values closer
to 0 will shift the split point closer to the negative population and values closer
to 1 will shift towards the positive population. Additionally, the value of alpha
can be "min”, in which case the split point will be selected as the area of lowest
local density between the two populations.

For the case where there is only a single population, the algorithm falls back to
esitmating the mode of this population and a robust measure of the variance of
it distribution. The sd tuning parameter controls how far away from the mode
the split point is set.

Create a plot of the results of the computation.

Usualy the instrument is set up in a way that the positive population is some-
where on the high end of the measurement range and the negative population is
on the low end. This parameter allows to disregard populations with mean val-
ues in the extreme quantiles of the data range. It’s value should be in the range

[o,11.

Logical controling whether to classify a population (positive or negative) relative
to the theoretical measurment range of the instrument or the actual range of the
data. This can be set to TRUE if the alignment of the measurment range is not
optimal and the bulk of the data is on one end of the theoretical range.

Character, the name assigned to the resulting filter.

Create a range gate that includes the positive (TRUE) or the negative (FALSE)
population.

Either NULL or a numeric of lenth 1. If NULL, this parameter is ignored. When it
is set to a numeric, the minor sub-population (if any) below this reference line
will be igored while determining the separator between positive and negative.

logical scalar indicating whether to use a simple peak finding version of den-
sityld algorithm.

Further arguments.

The algorithm first tries to identify high density regions in the data. If the input is a flowSet, den-
sity regions will be computed on the collapsed data, hence it should have been normalized before
(see warpSet for one possible normalization technique). The high density regions are then clasified
as positive and negative populations, based on their mean value in the theoretical (or absolute if
argument absolute=TRUE) measurement range. In case there are only two high-density regions the
lower one is usually clasified as the negative populations, however the heuristics in the algorithm
will force the classification towards a positive population if the mean value is already very high.
The absolute and borderQuant arguments can be used to control this behaviour. The split point

36

rangeGate

between populations will be drawn at the value of mimimum local density between the two popu-
lations, or, if the alpha argument is used, somewhere between the two populations where the value
of alpha forces the point to be closer to the negative (0 - 0.5) or closer to the positive population
0.5 = 1).

If there is only a single high-density region, the algorithm will fall back to estimating the mode
of the distribution (hubers) and a robust measure of it’s variance and, in combination with the sd
argument, set the split point somewhere in the right or left tail, depending on the classification of
the region.

For more than two populations, the algorithm will still classify each population into positive and
negative and compute the split point between those clusteres, similar to the two population case.

The rangeFilter class and constructor provide the means to treat rangeGate as regular flowCore
filters.

Value

A range gate, more explicitely an object of class rectangleGate.

Methods

%in% signature(x = "flowFrame", table = "rangeFilter"): the work horse for doing the
actual filtering. Internally, this simply calls the rangeGate function.

Author(s)

Florian Hahne, Kyongryun Lee

See Also

warpSet, rangeGate, rectangleGate

Examples

data(GvHD)

dat <- GvHD[pData(GvHD)$Patient==10]

dat <- transform(dat, "FL4-H"=asinh(FL4-H), "FL3-H"=asinh(FL3-H))
rg <- rangeGate(dat, "FL4-H", plot=TRUE)

rg

split(dat, rg)

Test rangeGate when settting reflLine=0; it does not do anything since
there is no sub-population below zero.
rangeGate(dat, "FL4-H", plot=FALSE, reflLine=0)

rf <- rangeFilter("FL4-H")
filter(dat, rf)

singletGate 37

singletGate Creates a singlet polygon gate using the prediction bands from a ro-
bust linear model

Description
The function constructs a singlet polygonGate using the prediction bands from a robust linear
model trained on the area and height of one flow parameter (usually forward scatter).

Usage

singletGate(x, area = "FSC-A", height = "FSC-H", sidescatter = NULL,
prediction_level = 0.99, subsample_pct = NULL, wider_gate = FALSE,

filterId = "singlet”, maxit = 5, ...)
Arguments
X a flowFrame object
area character giving the channel name that records the signal intensity as peak area
height character giving the channel name that records the signal intensity as peak heightchan-
nel name of height
sidescatter character giving an optional channel name for the sidescatter signal. By default,

ignored.

prediction_level
a numeric value between 0 and 1 specifying the level to use for the prediction
bands

subsample_pct a numeric value between O and 1 indicating the percentage of observations that
should be randomly selected from x to construct the gate. By default, no sub-
sampling is performed.

wider_gate logical value. If TRUE, the prediction bands used to construct the singlet gate use
the robust fitted weights, which increase prediction uncertainty, especially for
large FSC-A. This leads to wider gates, which are sometimes desired.

filterId the name for the filter that is returned

maxit the limit on the number of IWLS iterations passed to rlm

additional arguments passed to rlm

Details

We construct a singlet gate by applying a robust linear model with r1m. By default, we model the
forward-scatter height (FSC-H)as a function of forward-scatter area (FSC-A). If sidescatter is
given, forward-scatter height is as a function of area + sidescatter + sidescatter / area.

Because rlmrelies on iteratively reweighted least squares (IRLS), the runtime to construct a singlet
gate is dependent in part on the number of observations in x. To improve the runtime, we provide
an option to subsample randomly a subset of x. A percentage of observations to subsample can be
given in subsample_pct. By default, no subsampling is applied.

38 warpSet

Value

polygonGate.

Author(s)

Greg Finak, John Ramey

See Also

rangeGate, polygonGate

Examples

Not run:

fr is a flowFrame

sg <- singletGate(fr, area = "FSC-A", height = "FSC-H")
Sg

plot the gate

xyplot(FSC-H ~ FSC-A, fr, filter = sg)

End(Not run)

warpSet Normalization based on landmark registration

Description
This function will perform a normalization of flow cytometry data based on warping functions
computed on high-density region landmarks for individual flow channels.

Usage

warpSet(x, stains, grouping = NULL, monwrd = TRUE, subsample=NULL,
peakNr=NULL, clipRange=0.01, nbreaks=11, fres, bwFac=2,

warpFuns=FALSE, target=NULL, ...)
Arguments

X A flowSet.

stains A character vector of flow parameters in x to be normalized.

grouping A character indicating one of the phenotypic variables in the phenoData slot of
x used as a grouping factor. The within-group and between-group variance is
computed and a warning is issued in case the latter is bigger than the former,
indicating the likely removal of signal by the normalization procedure.

monwrd Logical. Compute strictly monotone warping functions. This gets directly

passed on to landmarkreg.

warpSet 39

subsample Numeric. Reduce the number of events in each flowSet by sub sampling for
all density estimation steps and the calculation of the warping functions. This
can increase computation time for large data sets, however it might reduce the
accuracy of the density estimates. To be used with care.

peakNr Numeric scalar. Force a fixed number of peaks to use for the normalization.

clipRange Only use peaks within a clipped data range. Essentially, the number indicates
the percent of clipping on both sides of the data range, e.g. min(x) - 0.01 =*
diff(range(x)).

nbreaks The number of spline sections used to approximate the data. Higher values

produce more accurate results, however this comes with the cost of increaseqd
computing times. For most data, the default setting is good enough.

fres A named list of filterResultList objects. This can be used to speed up the
process since the curviFilter step can take quite some time.

bwFac Numeric of lenght 1 used to set the bandwidth factor by curviFilter for smooth-
ing of the density estimate.

warpFuns Logical indcating whether to return the normalized flowSet or a list of warping
functions.

target Character vector specifying the target sample to which other samples in the

flowSet should be normalized. If NULL, then the mean of the peaks is used.

Further arguments that are passed on to landmarkreg.

Details

Normalization is achived by first identifying high-density regions (landmarks) for each flowFrame
in the flowSet for a single channel and subsequently by computing warping functions for each
flowFrame that best align these landmarks. This is based on the algorithm implemented in the
landmarkreg function in the fda package. An intermediate step classifies the high-density regions,
see landmarkMatrix for details.

Please note that this normalization is on a channel-by-channel basis. Multiple channels are normal-
ized in a loop.

Value

The normalized flowSet if warpFuns is FALSE, otherwise a list of warping functions. Additional
inforamtion is attached as the warping attribute to the flowSet in form of a list.

Note

We currently use a patched fda version.

Author(s)

Florian Hahne

References

J.0. Ramsay and B.W. Silverman: Applied Functional Data Analysis, Springer 2002

40 warpSet

See Also

curvlFilter, landmarkMatrix

Examples

data(ITN)

dat <- transform(ITN, "CD4"=asinh(CD4), "CD3"=asinh(CD3), "CD8"=asinh(CD8))
lg <- lymphGate(dat, channels=c("CD3", "SSC"),
preselection="CD4",scale=1.5)

dat <- Subset(dat, lg$n2gate)

datr <- warpSet(dat, "CD8", grouping="GroupID"”, monwrd=TRUE)
if(require(flowViz)){

dl <- densityplot(~CD8, dat, main="original”, filter=curvi1Filter("”CD8"))

d2 <- densityplot(~CD8, datr, main="normalized"”, filter=curviFilter("CD8"))
plot(dl, split=c(1,1,2,1))

plot(d2, split=c(2,1,2,1), newpage=FALSE)

}

Index

*Topic classes
curvilFilter-class, 7
curv2Filter-class, 9
lymphFilter-class, 25
*Topic datasets
BackGating, 4
ITN, 23
*Topic methods
curviFilter-class, 7
curv2Filter-class, 9
normalize-methods, 27
*Topic misc
autoGate, 2
binByRef, 4
calcPBChiSquare, 5
calcPearsonChi, 6
idFeaturesByBackgating, 19
lymphFilter-class, 25
plotBins, 30
proBin, 31
+Topic package
flowStats-package, 2
%in%,flowFrame,curviFilter-method
(curviFilter-class), 7
%in%,flowFrame,curv2Filter-method
(curv2Filter-class), 9
%in%, flowFrame, lymphFilter-method
(lymphFilter-class), 25
%in%,flowFrame, rangeFilter-method
(rangeGate), 34

autoGate, 2

BackGating, 4, 20
binByRef, 4, 32

calcPBChiSquare, 5, 5, 6, 31
calcPearsonChi, 6, 31
concreteFilter, 8, 10, 26
curviFilter, 11,24, 25,27, 39, 40

41

curviFilter (curviFilter-class), 7
curviFilter-class, 7
curv2Filter, 8, 10

curv2Filter (curv2Filter-class), 9
curv2Filter-class, 9

curvPeaks, 11

density, 12
densityld, 13, 33
diana, 19, 20

fda, 24, 39

filter, 7-11, 26

filterResult, 3, 25, 26

filterResultlList, 24

flowFrame, 4,7, 8, 10-13, 16, 17, 24, 30, 31,
33,35,37,39

flowFrames, 23

flowSet, 3,8, 11, 13, 15, 17, 23-25, 29, 33,
35, 38

flowStats (flowStats-package), 2

flowStats-package, 2

flowViz, 8, 10

gaussNorm, 15
gpaSet, 17, 20, 22

hubers, 14, 36

idFeatures (idFeaturesByBackgating), 19
idFeaturesByBackgating, 19
iProcrustes, 21

ITN, 23

landmarkMatrix, 12, 24, 39, 40
landmarkreg, 24, 25, 38

lymphFilter (lymphFilter-class), 25
lymphFilter-class, 25

lymphGate, 3

lymphGate (1lymphFilter-class), 25

42

multipleFilterResult, 7, 10, 12

ncdfFlowSet, 28

norm2Filter, 3, 25, 27

normalize (normalize-methods), 27

normalize,GatingSet,missing-method
(normalize-methods), 27

normalize,GatingSetInternal,missing-method
(normalize-methods), 27

normalize-methods, 27

normQA, 29

oneDGate (rangeGate), 34

parameterFilter, 8, 10, 26
plotBins, 5, 30, 32
polygonGate, 38
proBin, 5, 6, 31, 31

guadGate, 34
quadrantGate, 33

rangeFilter (rangeGate), 34
rangefFilter-class (rangeGate), 34
rangeGate, 13, 14, 33, 34, 34, 36, 38
rectangleGate, 3, 25, 36

rlm, 37

show, curviFilter-method
(curviFilter-class), 7

show, curv2Filter-method
(curv2Filter-class), 9

singletGate, 37

split, 8, 11

summarizeFilter,multipleFilterResult,curviFilter-method

(curviFilter-class), 7

summarizeFilter,multipleFilterResult,curv2Filter-method

(curv2Filter-class), 9

warpSet, 14, 25, 35, 36, 38
warpSetGS (warpSet), 38
warpSetNCDF (warpSet), 38
warpSetNCDFLowMem (warpSet), 38

INDEX

	flowStats-package
	autoGate
	BackGating
	binByRef
	calcPBChiSquare
	calcPearsonChi
	curv1Filter-class
	curv2Filter-class
	curvPeaks
	density1d
	gaussNorm
	gpaSet
	idFeaturesByBackgating
	iProcrustes
	ITN
	landmarkMatrix
	lymphFilter-class
	normalize-methods
	normQA
	plotBins
	proBin
	quadrantGate
	rangeGate
	singletGate
	warpSet
	Index

