
Package ‘eisa’
April 9, 2015

Version 1.18.0

Date 2014-03-26

Title Expression data analysis via the Iterative Signature Algorithm

Author Gabor Csardi <csardi.gabor@gmail.com>

Maintainer Gabor Csardi <csardi.gabor@gmail.com>

Description The Iterative Signature Algorithm (ISA) is a biclustering
method; it finds correlated blocks (transcription modules) in gene
expression (or other tabular) data. The ISA is capable of finding
overlapping modules and it is resilient to noise. This package
provides a convenient interface to the ISA, using standard
BioConductor data structures; and also contains various
visualization tools that can be used with other biclustering
algorithms.

Depends isa2, Biobase (>= 2.17.8), AnnotationDbi, methods

Imports BiocGenerics, Category, genefilter, DBI

Suggests igraph (>= 0.6), Matrix, GOstats, GO.db, KEGG.db, biclust,
MASS, xtable, ALL, hgu95av2.db, targetscan.Hs.eg.db,
org.Hs.eg.db

License GPL (>= 2)

biocViews Classification, Visualization, Microarray, GeneExpression

Collate AllClasses.R AllGenerics.R ISAExpressionSet-methods.R
ISAModules-methods.R enrichment.R CHR.R GO.R KEGG.R miRNA.R
autil.R autogen.R biclust.R eisa.R viz.R zzz.R
generalenrichment.R

R topics documented:
ALLModules . 2
condPlot . 3
enrichment . 5
expPlot . 6
gograph . 8

1

2 ALLModules

ISA . 10
ISA-Biclust conversion . 12
ISA2heatmap . 13
ISACHR . 15
ISAExpressionSet-class . 16
ISAFilterRobust . 18
ISAGO . 19
ISAHTML . 21
ISAIterate . 23
ISAKEGG . 25
ISAmiRNA . 26
ISAModules-class . 28
ISANormalize . 33
ISASweep . 34
ISAUnique . 36
ListHyperGParams-class . 38
ListHyperGResult-class . 41
mnplot . 44
overlap . 46
profilePlot . 47

Index 50

ALLModules ISA transcription modules for the ALL data

Description

The Iterative Signature Algorithm (ISA) is a biclustering method. ALLModules and ALLModulesSmall
are example ISA biclusters (=modules) found in the ALL data set.

Usage

ALLModules
ALLModulesSmall

Format

Both ALLModules and ALLModulesSmall are instances of the ISAModules class.

Source

ISAModules was generated by calling ISA on the ALL data set, using the default parameters. ISAModulesSmall
was generated the same way, but with gene threshold 2.7 and condition threshold 1.4 only.

condPlot 3

References

Bergmann S, Ihmels J, Barkai N: Iterative signature algorithm for the analysis of large-scale gene
expression data Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Mar;67(3 Pt 1):031902. Epub 2003
Mar 11.

See Also

The ALL BioConductor package.

Examples

data(ALLModules)
ALLModules

condPlot Plot sample scores of a transcription module

Description

Creates a barplot of sample (=condition) scores, for a given transcription module. See details below.

Usage

condPlot (modules, number, eset, col = "white", all = TRUE, sep = NULL,
sepcol = "grey", val = TRUE, srt = 90, adj.above = c(0, 0.5),
adj.below = c(1, 0.5), plot.only = seq_len(ncol(eset)), ...)

Arguments

modules An ISAModules object.

number An integer scalar, the module to plot.

eset An ExpressionSet or ISAExpressionSet object. This is needed for calcu-
lating the scores of the samples that are not in the module, see the all argu-
ment. If an ExpressionSet object is supplied, then it is normalised by calling
ISANormalize on it.

col Color of the bars, it it passed to barplot, so it can be any format barplot
accepts. E.g. it can be a character vector with different colors for the different
bars.

all Logical scalar, whether to plot all samples (if TRUE, the default), or just the ones
that are included in the module.

sep NULL or a numeric vector. If not NULL, then the bars are separated at the given
positions with vertical lines. This is useful if you want to subdivide the samples
into groups.

sepcol The color of the separating lines (see the sep argument), if they are plotted.

val Logical scalar, whether to add labels with the actual score values.

4 condPlot

srt Numeric scalar, the rotation angle of the text labels, this is passed to the text
function.

adj.above Adjustment of the text labels that are above the bars. This is passed to text, see
its manual for details.

adj.below Adjustments of the text labels that are below the bars. This is passed to text,
see its manual for details.

plot.only Numeric vector, if supplied it is used to plot a subset of samples only. By default
all samples are plotted.

... Additional argument, to be passed to barplot.

Details

condPlot creates a barplot for the sample scores of an ISA transcription module. Each sample is
represented as a bar.

These plots are useful if you want to show that a given transcription module separates the samples
into two (or more) groups. You can assign different colors to the samples, based on some external
information, e.g. case and control samples can be colored differently.

In most cases the scores are between minus one and one, but this is not necessarily true.

It is possible to assign scores to samples that are not part of the module, but this requires performing
one (more precisely half) ISA iteration step. Currently the function always performs this extra step,
even if the out-of-module samples are not plotted. Because the sample scores in a module are only
approximately constant during ISA iteration, it might be possible that the plotted scores are slightly
different than the ones stored in the modules variable.

Value

None.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

Bergmann S, Ihmels J, Barkai N: Iterative signature algorithm for the analysis of large-scale gene
expression data Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Mar;67(3 Pt 1):031902. Epub 2003
Mar 11.

See Also

ISA and ISAModules.

Examples

data(ALLModulesSmall)
library(ALL)
data(ALL)

enrichment 5

col <- ifelse(grepl("^B", ALL$BT), "darkolivegreen", "orange")
condPlot(ALLModulesSmall, 1, ALL, col=col)

enrichment Enrichment analysis for transcription modules, based on user-defined
categories

Description

This function performs enrichment analysis for each ISA module separately, comparing it to user-
defined categories. It is useful to test against other databases and annotations than the Gene Ontol-
ogy or KEGG pathways.

Usage

ISAEnrichment (modules, categories, ann = annotation(modules),
features = featureNames(modules), hgCutoff = 0.05,
correction = TRUE, correction.method = "holm")

Arguments

modules An ISAModules object, a set of ISA modules.

categories A named list of gene categories. The names of the entries are used as category
names. Each entry of the list must be a character vector containing Entrez gene
ids.

ann Character scalar. The annotation package to be used. By default it is taken from
the modules argument.

features Character vector. The names of the features. By default it is taken from the
modules argument.

hgCutoff Numeric scalar. The cutoff value to be used for the enrichment significance.
This can be changed later, without recalculating the test.

correction Logical scalar, whether to perform multiple hypothesis testing correction.
correction.method

Character scalar, the multiple testing correction method to use. Possible values:
“holm”, “hochberg”, “hommel”, “bonferroni”, “BH”, “BY”, “fdr”, “none”. See
the p.adjust function for details on these.

Details

This function performs enrichment analysis, based on user defined gene labels. It is useful if one
want to test ISA modules against databases, other than GO and KEGG.

The hypergeometric test, a version Fisher’s exact test, takes a gene label and a gene set (in our case
coming from an ISA module) and asks whether the number of genes in the set labelled by the label
is significantly more (or less) than what one would expect by chance.

6 expPlot

ISAEnrichment performs the hypergeometric test for every module, for all user supplied gene
labels. The mapping from the probe ids on the array to Entrez Ids is done using the appropriate
chip annotation package.

ISAEnrichment currently cannot test for under-representation.

Value

A GeneralListHyperGResult object.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

Bergmann S, Ihmels J, Barkai N: Iterative signature algorithm for the analysis of large-scale gene
expression data Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Mar;67(3 Pt 1):031902. Epub 2003
Mar 11.

See Also

ISAGO, ISACHR, ISAKEGG and ISAmiRNA for other enrichment calculations.

The Category package.

Examples

data(ALLModulesSmall)
library(hgu95av2.db)
entrez <- unique(unlist(mget(featureNames(ALLModulesSmall), hgu95av2ENTREZID)))
categories <- lapply(letters, function(x) sample(entrez, 100))
names(categories) <- letters
fakeEnrichment1 <- ISAEnrichment(ALLModulesSmall, categories, correction=FALSE)
fakeEnrichment2 <- ISAEnrichment(ALLModulesSmall, categories, correction=TRUE)

expPlot Expression matrix plots for ISA modules

Description

These functions create an expression matrix plot for an ISA module. The gene and sample scores
are also plotted.

Usage

expPlotCreate (eset, modules, which, norm = c("sample", "raw", "feature"))
expPlot (epo, scores = TRUE)
expPlotColbar (epo)

expPlot 7

Arguments

eset An ExpressionSet or ISAExpressionSet object. If an ExpressionSet object
is supplied (and the norm argument is not set to ‘raw’), then it is normalised by
calling ISANormalize on it. A subset of eset is selected that corresponds to the
features included in modules.

norm Character constant, specifies whether and how to normalize the expression val-
ues to plot. ‘raw’ plots the raw expression values, ‘feature’ the expression val-
ues scaled and centered for each feature (=gene) separately and if ‘sample’ is
specified then the expression values are centered and scaled separately for each
sample.

modules An ISAModules object.

which Numeric scalar, which module to plot.

scores Logical scalar, whether to plot the scores as well.

epo An object returned by expPlotCreate.

Details

expPlotCreate creates an object that contains all data for performing the image plot and returns
it. The reason for not plotting it directly is, that the size of the plot is usually different in different
cases, and the opening of the graphics device is delayed until expPlotCreate returns.

In the returned object, the weight and height entries give the optimal size of the image, in pixels.

expPlot creates the expression plot.

expPlotColbar plots a color bar for the expression plot.

Value

expPlotCreate returns an ISAexpPlot object. It is a named list and has several entries, the impor-
tant ones:

width Numeric scalar, the optimal width of the plot.

height Numeric scalar, the optimal height of the plot.

expPlot returns, invisibly, a named list with members:

coords A list with two entries: x and y, both numeric vectors of length two. They give
the position of the actual expression matrix on the plot.

gene.width Numeric scalar, the width of one box on the image plot, in pixels; if the image
size is exactly the suggested one.

cond.height Numeric scalar, the height of one box on the image plot, in pixels; if the image
size is exactly the suggested one.

expPlotColbar returns NULL, invisibly.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

8 gograph

References

Bergmann S, Ihmels J, Barkai N: Iterative signature algorithm for the analysis of large-scale gene
expression data Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Mar;67(3 Pt 1):031902. Epub 2003
Mar 11.

See Also

The vignette in the eisa package for other ISA visualizations. The ExpressionView package for
an interactive version.

Examples

data(ALLModulesSmall)
library(ALL)
data(ALL)

ep <- expPlotCreate(ALL, ALLModulesSmall, 1)
ep

if (interactive()) {
expPlot(ep)

}

gograph Plot part of the Gene Ontology hierarchy

Description

These functions help creating a plot of the Gene Ontology hierarchy.

Usage

gograph (table, colbar.length = 30, label.cex = 1, alpha=1, abbrev=5,
GOGRAPHS = NULL, go.terms = NULL)

gographPlot (graph, coords = FALSE, ...)

Arguments

table A data frame with one column, containing the p-values of the enriched GO
terms. The row names of the data frame should contain the GO ids.

colbar.length Numeric scalar, the length of the color bar.

label.cex Numeric scalar, factor for the label sizes, e.g. ‘2’ means double size compared
to the default.

alpha Alpha channel for the fill color of the vertices.

abbrev Numeric scalar, the minimum length for the abbreviated GO ids.
GOGRAPHS,go.terms

These are for internal use only.

gograph 9

graph An igraph graph, as returned by the gograph function.

coords Logical scalar, whether to return the coordinates of the vertices on the plot.

... Additional arguments. These are passed to plot.igraph.

Details

A GO plot can be created in two steps. gograph creates an igraph graph object that contains all
the information about the plot; gographPlot creates the actual plot.

The two steps are needed, because gograph calculates the optimal size of the plot, and then a
graphics device of this size can be created before calling gographPlot.

The optimal size is returned by gograph in the width and height graph attributes, these can be
queried with

G <- gograph(...)
G$width
G$height

Value

gograph returns an igraph object.

gographPlot by default returns NULL, invisibly. If the coords argument is TRUE, then it returns the
coordinates of the vertices on the plot.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

The Gene Ontology Consortium. Gene ontology: tool for the unification of biology. Nat. Genet.
May 2000;25(1):25-9.

Bergmann S, Ihmels J, Barkai N: Iterative signature algorithm for the analysis of large-scale gene
expression data Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Mar;67(3 Pt 1):031902. Epub 2003
Mar 11.

See Also

The igraph0 package for more about igraph graphs.

Examples

data(ALLModulesSmall)
GO <- ISAGO(ALLModulesSmall)
gotab <- summary(GO$BP)[[1]][,"Pvalue",drop=FALSE]

G <- gograph(gotab)
if (interactive()) {

x11(width=G$width/15, height=G$height/15)

10 ISA

gographPlot(G)
}

ISA Iterative Signature Algorithm on Gene Expression data

Description

Run ISA on an ExpressionSet with the default parameters.

Usage

ISA (data, flist = filterfun(function(x) IQR(x) > 0.5),
uniqueEntrez = TRUE, thr.gene = seq(2, 4, by = 0.5),
thr.cond = seq(1, 3, by = 0.5), no.seeds = 100)

Arguments

data The input, an ExpressionSet object.

flist A ‘list’ of filter functions to apply to the array. This is passed to the genefilter
function without touching it. Supply NA here if you don’t want to filter the
expression set before running ISA on it.

uniqueEntrez Logical scalar, whether to filter the input expression set to keep exactly one
probeset for each Entrez gene. Probesets that are not mapped to an Entrez gene
are dropped.

thr.gene Numeric vector. The threshold parameters for the ISA, for features (=probesets
or genes). All combinations of thr.gene and thr.cond will be used to run ISA.

thr.cond Numeric vector. The threshold parameters for the ISA, for samples. All combi-
nations of thr.gene and thr.cond will be used to run ISA.

no.seeds Number of seeds to run ISA from.

Details

Please read tutorial vignette included in this package for an introduction on ISA. The isa2-package
manual page in the isa2 package is also useful.

The ISA function performs the ISA algorithm on the supplied expression data. This involves the
following steps:

1. Filtering the features (i.e. probe sets) according to their variance. You will need the genefilter
package for this. The default filtering function keeps the features that have an IQR of 0.5 or
more. See genefilter for details on how to create filtering functions. If NA is given as the
flist argument, then no filtering is performed.

2. Filtering the features by mapping them to Entrez genes. Features that do not map to Entrez
genes are removed from the data set. If more features map to the same Entrez gene, then only
the one with the highest variance will be kept.

ISA 11

3. Calling the isa function in the isa2 package to perform the Iterative Signature Algorithm.
This itself performs the following steps:

(a) Normalizing the data by calling isa.normalize.
(b) Generating random input seeds via generate.seeds.
(c) Running ISA with all combinations of given feature and sample thresholds, by calling

isa.iterate.
(d) Merging similar modules, separately for each threshold combination, by calling isa.unique.
(e) Filtering the modules separately for each threshold combination, by calling isa.filter.robust

in the isa2 package.
(f) Putting all modules from the runs with different thresholds into a single object.
(g) Merging similar modules, across all threshold combinations, if two modules are similar,

then the one with the milder thresholds is kept.

4. Creates an ISAModules object from the ISA results.

Value

An ISAModules-class object.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

Bergmann S, Ihmels J, Barkai N: Iterative signature algorithm for the analysis of large-scale gene
expression data Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Mar;67(3 Pt 1):031902. Epub 2003
Mar 11.

Ihmels J, Friedlander G, Bergmann S, Sarig O, Ziv Y, Barkai N: Revealing modular organization in
the yeast transcriptional network Nat Genet. 2002 Aug;31(4):370-7. Epub 2002 Jul 22

Ihmels J, Bergmann S, Barkai N: Defining transcription modules using large-scale gene expression
data Bioinformatics 2004 Sep 1;20(13):1993-2003. Epub 2004 Mar 25.

See Also

The vignette included in the eisa package.

Examples

library(ALL)
data(ALL)
modules <- ISA(ALL, thr.gene=2.7, thr.cond=1.4)
modules

12 ISA-Biclust conversion

ISA-Biclust conversion

Convert ISA modules to a Biclust object, or the opposite

Description

The biclust package implements several biclustering algorithms in a unified framework. The result
of the biclustering is a Biclust object. These functions allow the conversion between Biclust and
ISAModules objects.

Usage

annotate(biclusters, data)

Arguments

biclusters A Biclust object.

data An ExpressionSet object.

Details

To convert an ISAModules object (mods) to a Biclust object (bc), you can do:

bc <- as(mods, "Biclust")

The seed data and run data of the ISAModules object is stored in the Parameters slot of the Biclust
object. The ISA scores are binarized by the conversion.

To convert a Biclust object (bc) to an ISAModules object (mods), you can call:

mods <- as(bc, "ISAModules")

The Parameters slot of the Biclust object is used as the run data of the ISAModules object. The
seed data of the new object will be an empty data frame.

The annotate function puts biological annotation into a Biclust object. It is suggested to use
it before converting the Biclust object to ISAModules, so that ISA visualization functions and
enrichment calculations can make use of this information.

Value

annotate returns a Biclust object.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

ISA2heatmap 13

References

Bergmann S, Ihmels J, Barkai N: Iterative signature algorithm for the analysis of large-scale gene
expression data Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Mar;67(3 Pt 1):031902. Epub 2003
Mar 11.

Sebastian Kaiser, Rodrigo Santamaria, Roberto Theron, Luis Quintales and Friedrich Leisch. (2009).
biclust: BiCluster Algorithms. R package version 0.8.1. http://CRAN.R-project.org/package=biclust

Examples

if (require(biclust)) {

library(ALL)
data(ALL)
ALL.filtered <- ALL[sample(1:nrow(ALL), 1000),]

Biclust -> ISAModules
set.seed(1)
Bc <- biclust(exprs(ALL.filtered), BCPlaid(),

fit.model = ~m + a + b, verbose = FALSE)
Bc <- annotate(Bc, ALL.filtered)
modules <- as(Bc, "ISAModules")
Bc
modules
getNoFeatures(modules)
getNoSamples(modules)

ISAModules -> Biclust
data(ALLModulesSmall)
Bc2 <- as(ALLModulesSmall, "Biclust")
ALLModulesSmall
getNoFeatures(ALLModulesSmall)
getNoSamples(ALLModulesSmall)
Bc2

}

ISA2heatmap Heatmap of a transcription module

Description

Create a heatmap plot for an ISA module.

Usage

ISA2heatmap (modules, module, eset, norm = c("raw", "feature", "sample"),
scale = c("none", "row", "column"), ...)

14 ISA2heatmap

Arguments

modules An ISAModules object.

module Numeric scalar, the number of the module to plot.

eset An ExpressionSet or ISAExpressionSet object. If an ExpressionSet object
is supplied (and the norm argument is not set to ‘raw’), then it is normalised by
calling ISANormalize on it. A subset of eset is selected that corresponds to the
features included in modules.

norm Character constant, specifies whether and how to normalize the expression val-
ues to plot. ‘raw’ plots the raw expression values, ‘feature’ the expression val-
ues scaled and centered for each feature (=gene) separately and if ‘sample’ is
specified then the expression values are centered and scaled separately for each
sample.

scale Character scalar, passed to the heatmap function.

... Additional arguments, they are passed to the heatmap function.

Value

The same as heatmap.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

Bergmann S, Ihmels J, Barkai N: Iterative signature algorithm for the analysis of large-scale gene
expression data Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Mar;67(3 Pt 1):031902. Epub 2003
Mar 11.

See Also

heatmap

Examples

library(ALL)
data(ALL)
data(ALLModulesSmall)

if (interactive()) {
ISA2heatmap(ALLModulesSmall, 1, ALL, norm="feature")

}

ISACHR 15

ISACHR Calculate chromosome enrichment for transcription modules

Description

Hypergeometric test(s) to check whether significantly many genes of an ISA module are on the
same chromosome.

Usage

ISACHR (modules, ann = annotation(modules), features = featureNames(modules),
hgCutoff = 0.05, correction = TRUE, correction.method = "holm")

Arguments

modules An ISAModules object, a set of ISA modules.

ann Character scalar. The annotation package to be used. By default it is taken from
the modules argument.

features Character vector. The names of the features. By default it is taken from the
modules argument.

hgCutoff Numeric scalar. The cutoff value to be used for the enrichment significance.
This can be changed later, without recalculating the test.

correction Logical scalar, whether to perform multiple hypothesis testing correction.
correction.method

Character scalar, the multiple testing correction method to use. Possible values:
“holm”, “hochberg”, “hommel”, “bonferroni”, “BH”, “BY”, “fdr”, “none”. See
the p.adjust function for details on these.

Details

The hypergeometric test, a version Fisher’s exact test, takes a chromosome and a gene set (in our
case coming from an ISA module) and asks whether the number of genes in the set that are on the
given chromosome is significantly more (or less) than what one would expect by chance.

ISACHR performs the hypergeometric test for every module, for every chromosome. The chromo-
some mapping is taken from the annotation package of the chip.

ISACHR currently cannot test for under-representation.

Value

A CHRListHyperGResult object.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

16 ISAExpressionSet-class

References

Bergmann S, Ihmels J, Barkai N: Iterative signature algorithm for the analysis of large-scale gene
expression data Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Mar;67(3 Pt 1):031902. Epub 2003
Mar 11.

See Also

ISAGO, ISAKEGG and ISAmiRNA for other enrichment calculations.

The Category package.

Examples

data(ALLModulesSmall)
CHR <- ISACHR(ALLModulesSmall)
CHR
sigCategories(CHR)[[2]]
geneIdsByCategory(CHR)[[2]][[1]]

ISAExpressionSet-class

Expression Set, normalized for using with ISA

Description

An ExpressionSet object (Biobase package) that contains expression values normalized for use
with the Iterative Signature Algorithm.

Usage

S4 method for signature ISAExpressionSet
featExprs(object)
S4 method for signature ISAExpressionSet
sampExprs(object)

S4 method for signature ISAExpressionSet
hasNA(object)
S4 replacement method for signature ISAExpressionSet
hasNA(object) <- value

S4 method for signature ISAExpressionSet
prenormalized(object)
S4 replacement method for signature ISAExpressionSet
prenormalized(object) <- value

Arguments

object An ISAExpressionSet object.
value A logical scalar, new value of the hasNA or prenormalized attribute.

ISAExpressionSet-class 17

Details

An ISAExpressionSet contains three expression matrices.

In most cases, when then ISAExpressionSet was produced by the ISANormalize function, these
are: the original, raw data, the feature-wise scaled and centered data and the sample-wise scaled
and centered data.

Two additional methods were defined to access the extra matrices: featExprs returns the feature-
wise standardized data, sampExprs the sample-wise standardized one.

The hasNA function returns TRUE if NA or NaN values appear in at least one of the expression matrices.

The prenormalized function returns TRUE if the data was prenormalized, see ISANormalize for
details.

Value

featExprs and sampExprs both return a matrix.

hasNA and prenormalized return a logical vector of length one.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

Bergmann S, Ihmels J, Barkai N: Iterative signature algorithm for the analysis of large-scale gene
expression data Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Mar;67(3 Pt 1):031902. Epub 2003
Mar 11.

See Also

ISANormalize, ExpressionSet in the Biobase package.

Examples

library(ALL)
data(ALL)

Do the normalization
ALL.normed <- ISANormalize(ALL)
class(ALL.normed)
dim(exprs(ALL.normed))
dim(featExprs(ALL.normed))
dim(sampExprs(ALL.normed))

Check that we indeed have Z-scores
all(abs(apply(featExprs(ALL.normed), 2, mean)) < 1e-12)
all(abs(1-apply(featExprs(ALL.normed), 2, sd)) < 1e-12)

all(abs(apply(sampExprs(ALL.normed), 1, mean)) < 1e-12)
all(abs(1-apply(sampExprs(ALL.normed), 1, sd)) < 1e-12)

18 ISAFilterRobust

ISAFilterRobust Robustness of ISA biclusters

Description

Robustness of ISA biclusters. The more robust biclusters are more significant, in the sense that they
are less likely to be found in random data.

Usage

ISARobustness(data, isaresult)
ISAFilterRobust(data, isaresult, ...)

Arguments

data An ExpressionSet or ISAExpressionSet object. If an ExpressionSet object
is supplied, then it is normalised by calling ISANormalize on it.

isaresult An ISAModules object, a set of modules.

... Additional arguments, they are passed to the isa.filter.robust function in
the isa2 package.

Details

ISARobustness calculates robustness scores for ISA modules. The higher the score, the more
robust the module.

ISAFilterRobust filters a set of ISA modules, by running ISA on the randomized expression
data and then eliminating all modules that have a robustness score that is lower than at least one
robustness score found in the randomized data.

The same feature and sample thresholds are used to calculate the randomized robustness scores. In
other words the limit for the filtering depends on the feature and sample thresholds.

You can find more details in the manual of the robustness function in the isa2 package.

Value

ISARobustness returns a numeric vector, the robustness scores of the biclusters.

ISAFilterRobust returns the filtered ISAModules instance.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

Bergmann S, Ihmels J, Barkai N: Iterative signature algorithm for the analysis of large-scale gene
expression data Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Mar;67(3 Pt 1):031902. Epub 2003
Mar 11.

ISAGO 19

See Also

The robustness function in the isa2 package.

Examples

data(ALLModules)
library(ALL)
data(ALL)
rob <- ISARobustness(ALL, ALLModules)
summary(rob)

ISAGO Calculate Gene Ontology enrichment for transcription modules

Description

Gene Ontology enrichment is calculated for each ISA module separately. In the end the result is
corrected for multiple hypothesis testing.

Usage

ISAGO (modules, ann = annotation(modules), features = featureNames(modules),
hgCutoff = 0.05, correction = TRUE, correction.method = "holm")

Arguments

modules An ISAModules object, a set of ISA modules.

ann Character scalar. The annotation package to be used. By default it is taken from
the modules argument.

features Character vector. The names of the features. By default it is taken from the
modules argument.

hgCutoff Numeric scalar. The cutoff value to be used for the enrichment significance.
This can be changed later, without recalculating the test.

correction Logical scalar, whether to perform multiple hypothesis testing correction.
correction.method

Character scalar, the multiple testing correction method to use. Possible values:
“holm”, “hochberg”, “hommel”, “bonferroni”, “BH”, “BY”, “fdr”, “none”. See
the p.adjust function for details on these.

Details

The Gene Ontology is a database of gene annotation. The annotating labels (these are called terms)
are standardized and organized into a directed acyclic graph. In other words terms may have more
specific sub-terms, that can have even more specific sub-sub-terms, and so on.

20 ISAGO

The Gene Ontology database has three big sub-graphs, the root nodes (the most general terms) of
these are the direct children of the root term of the whole ontology: biological process, cellular
component, molecular function. They are usually referred to as ontologies.

The hypergeometric test, a version Fisher’s exact test, takes a GO term and a gene set (in our case
coming from an ISA module) and asks whether the number of genes in the set annotated by the
term is significantly more (or less) than what one would expect by chance.

ISAGO performs the hypergeometric test for every module, for all GO terms of the three GO ontolo-
gies. The GO data is taken from the GO.db package and the annotation package of the chip.

ISAGO currently cannot test for under-representation and the conditional test, as implemented in the
GOstats package, is not available either.

Value

A list with three GOListHyperGResult objects, for the three Gene Ontologies, named

BP aka Biological Processes

CC aka Cellular Components

MF aka Molecular Function

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

The Gene Ontology Consortium. Gene ontology: tool for the unification of biology. Nat. Genet.
May 2000;25(1):25-9.

Bergmann S, Ihmels J, Barkai N: Iterative signature algorithm for the analysis of large-scale gene
expression data Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Mar;67(3 Pt 1):031902. Epub 2003
Mar 11.

See Also

ISAKEGG, ISACHR, ISAmiRNA for other enrichment calculations.

The GO.db, GOstats and Category packages.

Examples

data(ALLModulesSmall)
GO <- ISAGO(ALLModulesSmall)
GO
summary(GO$BP)[[1]][,1:5]

ISAHTML 21

ISAHTML Create HTML summary pages from the result of modular analysis

Description

These functions create various sophisticated HTML pages from a set of ISA biclusters.

Usage

ISAHTMLTable (modules, target.dir, which = NULL,
template = system.file("autogen", package = "eisa"), GO = NULL,
KEGG = NULL, miRNA = NULL, CHR = NULL, htmltitle = NULL,
notes = NULL, seed = NULL, extra = list())

ISAHTMLModules (eset, modules, which = NULL, target.dir,
template = system.file("autogen", package = "eisa"), GO = NULL,
KEGG = NULL, miRNA = NULL, CHR = NULL, cond.to.include = NULL,
cond.col = "white", sep = NULL, seed = NULL, condPlot = TRUE)

ISAHTML (eset, modules, target.dir, template = system.file("autogen",
package = "eisa"), GO, KEGG, miRNA = NULL, CHR = NULL, htmltitle = NULL,
notes = NULL, seed = NULL, table.extra = list(), cond.to.include = NULL,
cond.col = "white", sep = NULL, condPlot = TRUE, which = NULL)

Arguments

modules An ISAModules object.

target.dir Character vector of length one, the directory in which the result is placed. It is
created if it does not exist.

which Numeric vector, which modules to include in the table (ISAHTMLTable); or,
which modules to create HTML pages for (ISAHTML and ISAHTMLModules). All
modules are used if this argument is NULL, which is the default.

template The directory containing the HTML template files. By default the template in-
cluded in the eisa package is used.

GO List of three GOListHyperGResult objects, as returned by the ISAGO function.

KEGG A KEGGListHyperGResult object, usually the output of the ISAKEGG function.

miRNA A miRNAListHyperGResult object, or NULL. See also the ISAmiRNA function.

CHR A CHRListHyperGResult object or NULL, see also the ISACHR function.

htmltitle Character vector of length one, the title of the HTML page.

notes Character vector of length one. Optional HTML text, on the default template it
is placed on the top of the page, above the table.

seed Either NULL, or a character vector, with an optional column that is added to the
module table.

22 ISAHTML

extra Extra columns to put in the HTML table. It should be a named list of character
vectors, each with the same length as the number of modules.

table.extra This is passed to ISAHTMLTable as the extra argument.

eset An ExpressionSet or ISAExpressionSet object. If an ExpressionSet object
is supplied, then it is normalised by calling ISANormalize on it.

cond.to.include

Numeric or character vector, specifies which columns of the phyenotype data of
the original expression matrix are included in the tables of samples. By default
the first six columns are included.

cond.col This is passed to condPlot as the col argument.

sep This is passed to condPlot as the sep argument.

condPlot Logical scalar, whether to create condition plots. If an alternative biclustering
method was used to find the modules, then probably it makes no sense creating
condition plots for them.

Details

ISAHTMLTable creates an HTML page, a summary of the results of the modular analysis, including
enrichment analysis of the modules.

ISAHTMLModules creates a separate HTML page for each module, including the following elements:

• An expression plot of the genes and samples in the module, including the ISA scores. This is
done by calling expPlot.

• Gene Ontology tree plots for the enriched GO terms, separately for the three ontologies. These
are produced by calling gograph.

• Tables for the enriched Gene Ontology terms, separately for the three ontologies.

• A table for the enriched KEGG pathways.

• A table for the enriched miRNA families.

• The list of genes in the module.

• The list of samples in the module.

• A condition plot (if the condPlot argument is TRUE), see condPlot.

By default, clicking on the rows of the table generated by ISAHTMLTable is linked to the HTML
page of the module, generated by ISAHTMLModules.

ISAHTML calls both ISAHTMLTable and ISAHTMLModules.

Value

These functions do not return a value. (They return NULL, invisibly.)

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

ISAIterate 23

References

Bergmann S, Ihmels J, Barkai N: Iterative signature algorithm for the analysis of large-scale gene
expression data Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Mar;67(3 Pt 1):031902. Epub 2003
Mar 11.

See Also

The vignette included in the eisa package.

Examples

Load data
library(ALL)
data(ALL)
data(ALLModulesSmall)

Calculate enrichment
GO <- ISAGO(ALLModulesSmall)
KEGG <- ISAKEGG(ALLModulesSmall)
CHR <- ISACHR(ALLModulesSmall)

Generate HTML summary
htmldir <- tempdir()
ISAHTML(ALL, modules=ALLModulesSmall, target.dir=htmldir,

GO=GO, KEGG=KEGG, CHR=CHR)

Open a browser to view the summary
if (interactive()) {

browseURL(URLencode(paste("file://", htmldir, "/maintable.html", sep="")))
}

ISAIterate Perform the Iterative Signature Algorithm

Description

ISAIterate performs the ISA on an ExpressionSet object, from the given input seeds.

Usage

ISAIterate(data, feature.seeds, sample.seeds, thr.feat,
thr.samp = thr.feat, ...)

Arguments

data An ExpressionSet or ISAExpressionSet object. If an ExpressionSet object
is supplied, then it is normalised by calling ISANormalize on it.

24 ISAIterate

feature.seeds A matrix of feature seeds. The number of rows should match the number of
features in the ExpressionSet, each column is a seed. Either this, or the
sample.seeds argument must be given.

sample.seeds A matrix of sample seeds. The number of rows should match the number of
samples in the ExpressionSet, each column in a seed. Either this, or the
feature.seeds argument must be given.

thr.feat Numeric scalar or vector giving the threshold parameter for the features. Higher
values indicate a more stringent threshold and the result biclusters will contain
less features on average. The threshold is measured by the number of standard
deviations from the mean, over the values of the feature vector. If it is a vector,
then it must contain an entry for each seed.

thr.samp Numeric scalar or vector giving the threshold parameter for the columns. The
analogue of thr.feat.

... Additional arguments, these are passed to the isa.iterate function in the isa2
package. See also details below.

Details

Performs the ISA from the given seeds. It is allowed to specify both type of seeds, then a half-
iteration is performed on the sample.seeds and they are appended to the feature.seeds.

The isa.iterate function of the isa2 package is called to do all the work, this has the follow-
ing extra parameters: direction, convergence, cor.limit, eps, corx, oscillation, maxiter.
Please see the isa.iterate manual for details about them.

Value

An ISAModules object.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

Bergmann S, Ihmels J, Barkai N: Iterative signature algorithm for the analysis of large-scale gene
expression data Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Mar;67(3 Pt 1):031902. Epub 2003
Mar 11.

See Also

The ISA function for an easier interface with parameters.

Examples

library(ALL)
data(ALL)

Only use a small sample, to make this example finish faster
ALL.normed <- ISANormalize(ALL)[sample(1:nrow(ALL), 1000),]

ISAKEGG 25

Generate seeds and do ISA
seeds <- generate.seeds(nrow(ALL.normed), count=100)
modules <- ISAIterate(ALL.normed, seeds, thr.feat=3, thr.samp=2)
modules

ISAKEGG Calculate KEGG Pathway enrichment for transcription modules

Description

KEGG pathway enrichment is calculated for each ISA module separately. In the end the result is
corrected for multiple hypothesis testing.

Usage

ISAKEGG (modules,ann = annotation(modules), features = featureNames(modules),
hgCutoff = 0.05, correction = TRUE, correction.method = "holm")

Arguments

modules An ISAModules object, a set of ISA modules.

ann Character scalar. The annotation package to be used. By default it is taken from
the modules argument.

features Character vector. The names of the features. By default it is taken from the
modules argument.

hgCutoff Numeric scalar. The cutoff value to be used for the enrichment significance.
This can be changed later, without recalculating the test.

correction Logical scalar, whether to perform multiple hypothesis testing correction.
correction.method

Character scalar, the multiple testing correction method to use. Possible values:
“holm”, “hochberg”, “hommel”, “bonferroni”, “BH”, “BY”, “fdr”, “none”. See
the p.adjust function for details on these.

Details

KEGG (Kyoto Encyclopedia of Genes and Genomes) is a collection of online databases dealing
with genomes, enzymatic pathways, and biological chemicals. The PATHWAY database records
networks of molecular interactions in the cells, and variants of them specific to particular organisms.

The hypergeometric test, a version Fisher’s exact test, takes a KEGG pathway and a gene set (in our
case coming from an ISA module) and asks whether the number of genes in the set participating in
the pathway, is significantly more (or less) than what one would expect by chance.

ISAKEGG performs the hypergeometric test for every module, for all KEGG pathways. The KEGG
data is taken from the KEGG.db package and the annotation package of the chip.

ISAKEGG currently cannot test for under-representation.

26 ISAmiRNA

Value

A KEGGListHyperGResult object.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

http://www.genome.jp/kegg/

Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M., The KEGG resource for deciphering the
genome, Nucleic Acids Res. 2004 Jan 1;32(Database issue):D277-80.

Bergmann S, Ihmels J, Barkai N: Iterative signature algorithm for the analysis of large-scale gene
expression data Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Mar;67(3 Pt 1):031902. Epub 2003
Mar 11.

See Also

ISAGO, ISACHR, ISAmiRNA for other enrichment calculations.

The KEGG.db and Category packages.

Examples

data(ALLModulesSmall)
KEGG <- ISAKEGG(ALLModulesSmall)
KEGG
sigCategories(KEGG)[[1]]
summary(KEGG)[[1]][,1:5]

ISAmiRNA Calculate (predicted) miRNA target enrichment for transcription mod-
ules

Description

This function performs enrichment calculations with respect to predicted miRNA targets to check
whether an ISA module contains many genes that are targets of the same miRNA.

Usage

ISAmiRNA (modules, ann = annotation(modules), features = featureNames(modules),
hgCutoff = 0.05, correction = TRUE, correction.method = "holm")

http://www.genome.jp/kegg/

ISAmiRNA 27

Arguments

modules An ISAModules object, a set of ISA modules.

ann Character scalar. The annotation package to be used. By default it is taken from
the modules argument.

features Character vector. The names of the features. By default it is taken from the
modules argument.

hgCutoff Numeric scalar. The cutoff value to be used for the enrichment significance.
This can be changed later, without recalculating the test.

correction Logical scalar, whether to perform multiple hypothesis testing correction.
correction.method

Character scalar, the multiple testing correction method to use. Possible values:
“holm”, “hochberg”, “hommel”, “bonferroni”, “BH”, “BY”, “fdr”, “none”. See
the p.adjust function for details on these.

Details

miRNAs are short RNA fragments that specifically regulate (usually inhibit) the expression of
genes. Some genes have been experimentally validated as targets of a given miRNA, but we cur-
rently don’t know the target genes of most miRNAs.

TargetScan is a database of predicted miRNA targets. The predictions are done based many factors,
including the conservation of the target region during evolution.

The hypergeometric test, a version Fisher’s exact test, takes a miRNA and a gene set (in our case
coming from an ISA module) and asks whether the number of genes in the set regulated by the
miRNA is significantly more (or less) than what one would expect by chance.

ISAmiRNA performs the hypergeometric test for every module, for all miRNAs in the TargetScan
database.

In order to use this function, TargetScan annotation packages are needed.

Value

A miRNAListHyperGResult object.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes
are MicroRNA Targets Benjamin P Lewis, Christopher B Burge, David P Bartel. Cell, 120:15-20
(2005).

Bergmann S, Ihmels J, Barkai N: Iterative signature algorithm for the analysis of large-scale gene
expression data Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Mar;67(3 Pt 1):031902. Epub 2003
Mar 11.

28 ISAModules-class

See Also

ISAGO, ISAKEGG and ISACHR for other enrichment calculations.

The Category package.

Examples

data(ALLModulesSmall)

if (require(targetscan.Hs.eg.db)) {
miRNA <- ISAmiRNA(ALLModulesSmall)
summary(miRNA, p=0.1)[[7]]

}

ISAModules-class A set of ISA modules

Description

An ISAModules object stores the results of one ISA run. It contains a set of biclusters (=modules
or transcription modules) and some meta information about the ISA run and the input data.

Usage

S4 method for signature ISAModules
dim(x)
S4 method for signature ISAModules
featureNames(modules)
S4 method for signature ISAModules
sampleNames(modules)
S4 method for signature ISAModules
annotation(modules)
S4 method for signature ISAModules
getOrganism(modules)
S4 method for signature ISAModules
pData(modules)

S4 method for signature ISAModules
seedData(modules)
S4 method for signature ISAModules
runData(modules)
S4 method for signature ISAModules
featureThreshold(modules, mods)
S4 method for signature ISAModules
sampleThreshold(modules, mods)

S4 method for signature ISAModules
length(x)

ISAModules-class 29

S4 method for signature ISAModules
getNoFeatures(modules, mods)
S4 method for signature ISAModules
getNoSamples(modules, mods)

S4 method for signature ISAModules
getFeatures(modules, mods)
S4 method for signature ISAModules
getSamples(modules, mods)
S4 method for signature ISAModules
getFeatureNames(modules, mods)
S4 method for signature ISAModules
getSampleNames(modules, mods)
S4 method for signature ISAModules
getFeatureScores(modules, mods)
S4 method for signature ISAModules
getSampleScores(modules, mods)
S4 method for signature ISAModules
getFeatureMatrix(modules, binary = FALSE,

sparse = FALSE, mods)
S4 method for signature ISAModules
getSampleMatrix(modules, binary = FALSE,

sparse = FALSE, mods)
S4 method for signature ISAModules
getFullFeatureMatrix(modules, eset, mods)
S4 method for signature ISAModules
getFullSampleMatrix(modules, eset, mods)

S4 method for signature ISAModules,ANY,ANY
x[i, j, ..., drop = FALSE]
S4 method for signature ISAModules,ANY,ANY
x[[i, j, ..., drop = FALSE]]

Arguments

x,modules An ISAModules object.

mods An optional numeric index vector for the modules. If given, the information is
only returned only for the specified modules.

binary Logical scalar. Whether to binarize the feature or sample scores.

sparse Logical scalar. Whether to return a sparse matrix. The Matrix package is re-
quired for sparse matrices.

eset An ExpressionSet or ISAExpressionSet object. This is needed for calculat-
ing the scores of the features/samples that are not in the module. If an ExpressionSet
object is supplied, then it is normalised by calling ISANormalize on it.

i For ‘[’ an index vector for selecting features (=probes, genes). For ‘[[’ an index
vector for selecting modules.

j For ‘[’ an index vector for selecting samples. It is ignored for ‘[[’.

30 ISAModules-class

... Additional indexing arguments, they are not used, just ignored.

drop This argument is currently not used, just silently ignored.

Details

An ISAModules object contains a set of biclusters, obtained using one run of the Iterative Signature
Algorithm.

Various operations are defined such an object, here we document all of them, in several groups.

Value

dim returns a numeric vector of length two. featureNames and sampleNames return a character
vector. annotation and getOrganism return a character vector of length one. pData returns a data
frame.

seedData returns a data frame, see more below. runData returns a named list, see more below.
featureThreshold and sampleThreshold return a numeric vector.

length returns a numeric scalar. getNoFeatures and getNoSamples return a numeric vector.

getFeatures and getSamples return a list of named numeric vectors. getFeatureNames and
getSampleNames return a list of character vectors. getFeatureScores and getSampleScores re-
turn a list of named numeric vectors. getFeatureMatrix, getSampleMatrix, getFullFeatureMatrix
and getFullSampleMatrix return a numeric matrix.

Information about the input data.

dim returns the dimension of the input expression matrix, number of features times number of
samples.

featureNames returns a character vector, the names of the features in the original input matrix.
I.e. in the input was an ExpressionSet for an Affymetrix array, then the Affymetrix probe IDs are
returned.

sampleNames returns a character vector, the names of the samples in the original expression set.

annotation returns a character scalar, the name of the array for the input expression set. More
precisely, the annotation slot of the input ExpressionSet is returned, this is the name of the
annotation package to use for the ExpressionSet.

getOrganism returns the scientific name of the organism for which the input expression data was
measures. This is obtained by loading the annotation package of the input ExpressionSet object,
so that must be installed.

pData returns the phenotypic data attached to the input ExpressionSet object, in a data frame,
samples as rows and various phenotypic variables as columns.

Information about the ISA run

seedData returns information about the modules. Each row of the returned data frame corresponds
to one module, the columns are various variables:

iterations The number of ISA iterations needed to find the module.

oscillation The length of the oscillation cycle for oscillating modules, zero for others.

ISAModules-class 31

thr.row The feature (=gene) threshold used for finding the module.

thr.col The sample (=condition) threshold used for finding the module.

freq The number of times the module was found. This is always one, unless ISAUnique was
performed.

rob The robustness score of the module. See ISARobustness for details.

rob.limit The robustness limit that was used for filtering the modules. As this depends of the
feature and sample thresholds, it may be different for different modules.

runData returns information about the ISA runs, it is a named list with elements:

annotation The annotation package corresponding to the input expression set.

organism The scientific name of the organism.

direction The direction parameter of the ISA. Please see ISAIterate for details.

convergence The method to determine ISA convergence, a character scalar. Please see ISAIterate
for details.

cor.limit Correlation limit for the “cor” convergence criterium, see ISAIterate for details.

eps Difference limit for the “eps” convergence criterium, see ISAIterate for details.

corx Size of the time window for the “corx” convergence criterium, see ISAIterate for details.

maxiter The maximum number of ISA iterations that was allowed.

oscillation Logical, whether oscillating modules were considered during the ISA iteration.

N Numeric scalar, the number of input seeds that were used to find the modules.

unique Logical scalar, whether ISAUnique was run on the modules.

prenormalize Logical scalar, whether the input data was prenormalized during ISA normalization,
see ISANormalize.

hasNA Logical scalar, whether the normalized input data contained some NA or NaN values.

rob.perms Numeric scalar, the number of times the input data was scrambled when the modules
were filtered according to robustness.

Note that some of these might be missing, i.e. rob.perms is only present if ISAFilterRobust was
performed.

featureThreshold returns the feature thresholds that were used to find the modules.

sampleThreshold returns the sample thresholds that were used to find the modules.

Information about the modules

length returns the number of modules.

getNoFeatures returns the number of features (=genes) in the input data. The number of features
after filtering is returned if the input data was filtered.

getNoSamples returns the number of samples (=conditions) in the input data.

32 ISAModules-class

Retrieve the modules

getFeatures returns the indices of the features included in the modules. It returns a list, with one
entry for each module. Each entry contains the indices of the features (=genes) in the corresponding
module.

getSamples does the same as getFeatures, but for samples.

getFeatureNames is similar to getFeatures, but returns feature names instead of feature indices.

getSampleNames is similar to getSamples, but returns sample names instead of sample indices.

getFeatureScores returns the feature scores for the selected modules (all modules by default). It
returns a list, with one entry for each module. Each list entry contains the feature scores for one
module, in a named numeric vector.

getSampleScores is similar to getFeatureScores, but for samples and sample scores.

getFeatureMatrix returns feature scores for the specified modules (all modules by default) in a
matrix form. The number of rows is the number of features and the number of columns is the
number of modules requested. It can optionally binarize the values.

getSampleMatrix is similar to getFeatureMatrix, but for sample scores.

getFullFeatureMatrix is similar to getFeatureMatrix, but is also calculates scores for the fea-
tures that were not included in the module. For this it performs one ISA iteration and omits the
thresholding step. You need to supply the normalized (or the original) expression data to make this
possible.

getFullSampleMatrix is the same as getFullFeatureMatrix, but for sample scores.

Indexing

A couple of indexing operations were defined to make it easier selecting subsets of modules, fea-
tures or samples from an ISAModules object.

The ‘[[’ double bracket indexing operator can be used with a single index vector to select a subset
of modules.

The ‘[’ single bracket indexing operator can be used to restrict an ISAModules object to a subset of
features and/or samples. The first index corresponds to features, the second to samples. Indices can
be numeric, logical or character vectors, for the latter feature and sample names are used.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

Bergmann S, Ihmels J, Barkai N: Iterative signature algorithm for the analysis of large-scale gene
expression data Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Mar;67(3 Pt 1):031902. Epub 2003
Mar 11.

See Also

The vignette included in the eisa package.

ISANormalize 33

Examples

data(ALLModulesSmall)
ALLModulesSmall

length(ALLModulesSmall)
dim(ALLModulesSmall)
annotation(ALLModulesSmall)
getOrganism(ALLModulesSmall)

seedData(ALLModulesSmall)

getNoFeatures(ALLModulesSmall)
getNoSamples(ALLModulesSmall)

getFeatureScores(ALLModulesSmall, 1)[[1]]

ISANormalize Normalize expression data for the Iterative Signature Algorithm

Description

ISA works best if the input data is centered and scaled. ISANormalize performs this transformation.

Usage

ISANormalize (data, prenormalize = FALSE)

Arguments

data An ExpressionSet object.

prenormalize If this argument is set to TRUE, then feature-wise scaling is calculated on the
sample-wise scaled matrix and not on the input matrix directly.

Details

It was observed that the ISA works better if the input matrix is scaled and its rows have mean zero
and standard deviation one.

An ISA step consists of two sub-steps, and this implies two different normalizations, in the first
the rows (=features), in the second the columns (=samples) of the input matrix will be scaled and
centered.

Value

An ISAExpressionSet object.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

34 ISASweep

References

Bergmann S, Ihmels J, Barkai N: Iterative signature algorithm for the analysis of large-scale gene
expression data Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Mar;67(3 Pt 1):031902. Epub 2003
Mar 11.

See Also

The ISA function for an easier ISA workflow.

Examples

library(ALL)
data(ALL)

Do the normalization
ALL.normed <- ISANormalize(ALL)
class(ALL.normed)
dim(exprs(ALL.normed))
dim(featExprs(ALL.normed))
dim(sampExprs(ALL.normed))

Check that we indeed have Z-scores
all(abs(apply(featExprs(ALL.normed), 2, mean)) < 1e-12)
all(abs(1-apply(featExprs(ALL.normed), 2, sd)) < 1e-12)

all(abs(apply(sampExprs(ALL.normed), 1, mean)) < 1e-12)
all(abs(1-apply(sampExprs(ALL.normed), 1, sd)) < 1e-12)

ISASweep Create an ISA module tree

Description

These functions create and plot the hierarchical description of an expression data set, by applying
the ISA with various thresholds, and connecting the related modules. See details below.

Usage

ISASweep (expset, modules, ...)
ISASweepGraph (sweep.result)
ISASweepGraphPlot (graph, vertex.label=V(graph)$id,

vertex.label.topleft=NA, vertex.label.topright=NA,
vertex.label.bottomleft=NA, vertex.label.bottomright=NA,
vertex.label.cex=0.8, edge.label=NA, asp=FALSE, rescale=FALSE,
xlim=range(graph$layout[,1]), ylim=range(graph$layout[,2]),
thresholds=TRUE, xlab=NA, ylab=NA, ...)

ISASweep 35

Arguments

expset The expression set object, if it is not an ISAExpressionSet, then ISANormalize
is called on it.

modules An ISAModules object.
... Additional arguments. ISASweep passes these to isa.sweep; ISASweepGraphPlot

passes additional arguments to plot.igraph.
sweep.result An ISAModules object that contains the sweep tree information as well.
graph An igraph graph object, the sweep tree.
vertex.label Vertex labels, by default the ids of the modules.
vertex.label.topleft

Vertex labels to put at the top left corner.
vertex.label.topright

Vertex labels to put at the top right corner.
vertex.label.bottomleft

Vertex labels to put at the bottom left corner.
vertex.label.bottomright

Vertex labels to put at the bottom right corner.
vertex.label.cex

Magnification factor for the vertex labels.
edge.label Edge labels.
asp Logical scalar, whether the plot should have 1:1 aspect ratio.
rescale Logical scalar, whether to rescale the layout coordinates to the [-1,1] interval.
xlim Numeric vector of length two, the X limits of the plot.
ylim Numeric vector of length two, the Y limits of the plot.
thresholds Logical scalar, whether to add the (non-constant) thresholds to the plot.
xlab The label of the horizontal axis, by default omitted.
ylab The label of the vertical axis, by default omitted.

Details

The ISA uses two threshold parameters that tune the sizes of the transcription modules. The sweep
graph of an expression set is defined as the following. It is a directed graph, where the vertices
are ISA modules, found at some threshold parameter values. There is an edge from module A to
module B, if using 1) (the genes of) module A as the seed vector and 2) the threshold parameters
used to find module B, the ISA converges to module B.
The ISASweep function creates an ISA sweep tree, in which one threshold parameter is kept fixed
and the other varies. It starts from the modules found at the most stringent (=highest) threshold
parameters, and uses them individually as seeds at the next less stringent threshold level. If this ISA
iteration converges to an already known module, then an edge of the sweep tree is found. If the
iteration converges to a new module, then this is added to the module list, together with the sweep
tree edge. Then we proceed with the next level of modules, towards the less stringent threshold
parameters.
The ISASweepGraph function creates a graph object that corresponds to the sweep tree of the ex-
pression set.
The ISASweepGraphPlot function plots a graph created with ISASweepGraph.

36 ISAUnique

Value

ISASweep returns an ISAModules object, with some seed data added.

ISASweepGraph returns an igraph graph object.

ISASweepGraphPlot returns NULL, invisibly.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

Bergmann S, Ihmels J, Barkai N: Iterative signature algorithm for the analysis of large-scale gene
expression data Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Mar;67(3 Pt 1):031902. Epub 2003
Mar 11.

Examples

library(genefilter)
library(ALL)
data(ALL)

varLimit <- 0.5
kLimit <- 4
ALimit <- 5
flist <- filterfun(function(x) var(x)>varLimit, kOverA(kLimit,ALimit))
ALL.filt <- ALL[genefilter(ALL, flist),]
ALL.filt2 <- ALL.filt[, grepl("^B", ALL.filt$BT)]

Run ISA
set.seed(2)
modules <- ISA(ALL.filt2, flist=NA, thr.gene=seq(2,4,by=0.5), thr.cond=1)

Do the sweep
modules2 <- ISASweep(ALL.filt2, modules)
modules2

Plot it
Not run:

G <- ISASweepGraph(modules2)
ISASweepGraphPlot(G)

End(Not run)

ISAUnique Remove duplicated ISA modules

ISAUnique 37

Description

From a potentially non-unique set of ISA modules remove all modules that are similar to another
module that was found earlier.

Usage

ISAUnique(data, isaresult, ...)

Arguments

data An ExpressionSet or ISAExpressionSet object. If an ExpressionSet object
is supplied, then it is normalised by calling ISANormalize on it.

isaresult An ISAModules object to be filtered.

... Additional arguments, these are passed to the isa.unique function in the isa2
package. See also details below.

Details

The ISA algorithm might very well find the same modules from many different input seeds, so the
output of the ISAIterate function is usually not unique: many modules are very similar to each
other.

ISAUnique eliminates the duplicates and potentially also the non-convergent modules.

The work is performed by calling the isa.iterate function in the isa2 package. The following
additional arguments can be specified to be passed to this function:

method Character scalar giving the method to be used to determine if two biclusters are similar.
Right now only ‘cor’ is implemented, this keeps both biclusters if their Pearson correlation is
less than cor.limit, both for their row and column scores. See also the neg.cor argument.

ignore.div Logical scalar, if TRUE, then the divergent biclusters will be removed.

cor.limit Numeric scalar, giving the correlation limit for the ‘cor’ method.

neg.cor Logical scalar, if TRUE, then the ‘cor’ method considers the absolute value of the correla-
tion.

drop.zero Logical scalar, whether to drop biclusters that have all zero scores.

Value

Another ISAModules object, with unique modules.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

Bergmann S, Ihmels J, Barkai N: Iterative signature algorithm for the analysis of large-scale gene
expression data Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Mar;67(3 Pt 1):031902. Epub 2003
Mar 11.

38 ListHyperGParams-class

See Also

The ISA function for an easier ISA workflow.

Examples

library(ALL)
data(ALL)

Only use a small sample, to make this example finish faster
ALL.normed <- ISANormalize(ALL)[sample(1:nrow(ALL), 1000),]

Generate seeds and do ISA
seeds <- generate.seeds(nrow(ALL.normed), count=100)
modules <- ISAIterate(ALL.normed, seeds, thr.feat=3, thr.samp=2)
modules

Merge the modules
modules2 <- ISAUnique(ALL.normed, modules)
modules2

ListHyperGParams-class

Classes for quick GO/KEGG/CHR/miRNA target or other enrichment
calculation of multiple gene sets.

Description

These classes extend the HyperGParams class from the Category package to perform enrichment
calculation quickly for multiple gene sets.

Usage

S4 method for signature ListHyperGParams
makeValidParams(object)
S4 method for signature ListHyperGParams
drive(p)
S4 replacement method for signature ListHyperGParams,logical
drive(p) <- dri

S4 method for signature GOListHyperGParams
ontology(object)
S4 replacement method for signature GOListHyperGParams,character
ontology(object) <- go
S4 method for signature GOListHyperGParams
conditional(r)
S4 replacement method for signature GOListHyperGParams,logical
conditional(r) <- cond

ListHyperGParams-class 39

S4 method for signature ListHyperGParams
hyperGTest(p)

Arguments

object,p,r A ListHyperGParams object.

dri Logical scalar, whether to store the genes that are in the intersection of the spec-
ified gene set and the annotation category.

go Character scalar, the ontology for GO, possible values: ‘BP’, ‘CC’, ‘MF’.

cond Logical scalar, whether to perform conditional enrichment calculation. Cur-
rently this option is ignored.

Details

The ListHyperGParams abstract class extends HyperGParams and allows to specify a list of gene
sets for the enrichment calculation instead of a single set.

ListHyperGParams calculates the enrichment much faster than the original HyperGParams classes
in the Category package, especially if the calculation is performed against the same gene universe
for many gene sets.

ListHyperGParams is an abstract class, it is not possible to instantiate objects from it. Instead, its
various extensions must be used: GOListHyperGParams, KEGGListHyperGParams, CHRListHyperGParams
and miRNAListHyperGParams.

The various ListHyperGParams objects can be created with the standard new command, by giving
all necessary arguments. Please see the examples below.

Value

makeValidParmas returns another ListHyperGParams instance that has the same class as its argu-
ments’.

ontology returns a character vector of length one.

conditional returns a logical vector of length one.

drive returns a logical vector of length one.

Member functions

Most of these functions are analogous to the ones defined in the Category package, the only differ-
ence is that they handle ListHyperGParams objects.

makeValidParams validates ListHyperGParams object, in particular, it removes duplicate genes,
both from the gene universe and the specified gene sets; and it also makes sure that all genes in the
gene sets are included in the universe.

ontology can be used to query or set the ontology for enrichment calculated against the GO
database.

conditional queries or sets whether conditional GO enrichment will be performed. This feature is
not implemented yet, see the Category and GOstats packages for a working implementation and
more information.

40 ListHyperGParams-class

drive queries or sets whether the intersections of the gene sets and the universe are stored in the
result object. This information can be calculated later as well, but it is faster to store it at the same
time when the hypergeometric test is performed.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

Functions for enrichment calculation of ISA modules: ISAGO, ISAKEGG, ISACHR, ISAmiRNA.

Perhaps see also the vignette in the GOstats package.

Examples

GO enrichment, "by hand"
Load data first
data(ALLModulesSmall)

Create gene sets
library(hgu95av2.db)
genes <- getFeatureNames(ALLModulesSmall)
entrez <- lapply(genes, function(x) na.omit(unlist(mget(x,

hgu95av2ENTREZID))))

Create universe
universe <- na.omit(unlist(mget(featureNames(ALLModulesSmall),

hgu95av2ENTREZID)))

Create parameter object
param <- new("GOListHyperGParams", geneIds=entrez, universeGeneIds=universe,

pvalueCutoff=0.01, drive=FALSE, ontology="BP",
conditional=FALSE, testDirection="over",
annotation=annotation(ALLModulesSmall))

Do the calculation
GOBP <- hyperGTest(param)

Inspect the result
GOBP
summary(GOBP)[[1]]

How to create other parameter objects
paramKEGG <- new("KEGGListHyperGParams", geneIds=entrez,

universeGeneIds=universe, drive=FALSE,
annotation=annotation(ALLModulesSmall))

paramCHR <- new("CHRListHyperGParams", geneIds=entrez,
universeGeneIds=universe, drive=FALSE,
annotation=annotation(ALLModulesSmall))

Enrichment with user-supplied categories, we use a list of
hand-picked genes that are involved in myelin formation

ListHyperGResult-class 41

mygenes <- c("YARS", "NFKB2", "NGFR", "CDH1", "NFAT5", "NDRG1", "GAP43",
"EGR2", "MSN", "ROCK1", "SREBF2", "SOX10", "FIG4", "EGR1", "PIK3R1",
"CDC42", "EDN3", "EDNRB", "NCAM1", "DHH", "OMG", "PMP22", "LAMA4",
"MPDZ", "MTMR2", "REL", "S100A1", "ITGA4", "GFAP", "FGF2", "RPSA",
"CADM1", "CDH19", "DNM2", "PAX3", "SREBF1", "DAG1", "DRP2", "SDC2",
"MBP", "RELA", "RELB", "JUN", "NAB1", "MOBP", "SKI", "COL5A2", "RHOA",
"NFASC", "NEFL", "MPZ", "MAG", "EDNRA", "ERBB4", "LITAF", "MMP2",
"PLP1", "CDKN1A", "PAK1", "RDX", "GJB1", "LAMA5", "JAM3", "ITGB1",
"PARD3", "FABP7", "LAMA2", "ERBB3", "CADM4", "FOXO4", "TSPAN31",
"GPR126", "PTK2", "RAC1", "CDKN2A", "CLDN5", "ID2", "LAMC1", "SOX2",
"CNTN2", "ERBB2", "NFKB1", "NAB2", "EDN2", "MMP9", "CCND1", "L1CAM",
"MOG")

library(org.Hs.eg.db)
myentrez <- na.omit(unlist(mget(mygenes, revmap(org.Hs.egSYMBOL))))
categories <- list(myelin=myentrez)

data(ALLModules)
genes2 <- getFeatureNames(ALLModules)
entrez2 <- lapply(genes2, function(x) na.omit(unlist(mget(x,

hgu95av2ENTREZID))))

Create universe
universe2 <- na.omit(unlist(mget(featureNames(ALLModules),

hgu95av2ENTREZID)))

paramMY <- new("GeneralListHyperGParams", geneIds=entrez2,
universeGeneIds=universe2, drive=FALSE,
annotation=annotation(ALLModulesSmall),
categories=categories)

MY <- hyperGTest(paramMY)
MY
summary(MY)[[1]]

ListHyperGResult-class

Classes for quick GO/KEGG/CHR/miRNA target or other enrichment
calculation for multiple gene sets

Description

These classes extend the HyperGResult class from the Category package to perform enrichment
calculation quickly for multiple gene sets.

Usage

S4 method for signature ListHyperGResult
summary(object, pvalue = pvalueCutoff(object),
categorySize = NULL)

S4 method for signature ListHyperGResult

42 ListHyperGResult-class

htmlReport(r, file = "", append = FALSE,
label = "", digits = 3, summary.args = NULL)

S4 method for signature ListHyperGResult
pvalues(r)
S4 method for signature ListHyperGResult
sigCategories(r, p)

S4 method for signature ListHyperGResult
geneCounts(r)
S4 method for signature ListHyperGResult
expectedCounts(r)
S4 method for signature ListHyperGResult
oddsRatios(r)
S4 method for signature ListHyperGResult
universeCounts(r)
S4 method for signature ListHyperGResult
geneMappedCount(r)
S4 method for signature ListHyperGResult
universeMappedCount(r)
S4 method for signature ListHyperGResult
geneIdsByCategory(r, catids = NULL)

S4 method for signature ListHyperGResult
geneIdUniverse(r, cond = FALSE)

Arguments

object,r A ListHyperGResult object.

pvalue,p Numeric vector of length one, the p-value limit, up to which the terms are listed.

categorySize A numeric vector of length one, or NULL. If not NULL, then it gives the minimum
number of annotated genes in the universe, in order to list the term.

file A file name, or a connection object. The result is written here. If it is "", then
the result is written to the standard output. If it is NULL, then the result is not
written anywhere. (But it is always returned, invisibly, see below.)

append Logical scalar, whether to append the HTML code to the given file, or remove
its previous contents if it already exists.

label An HTML label (tag) to add.

digits The number of digits to use for the numeric columns.

summary.args A list of arguments to pass to the summary method.

catids The categories for which the genes are listed. All categories will be listed if this
argument is NULL.

cond Currently not used.

Details

A ListHyperGResult object can store the results of hypergeometric tests, several gene sets against
the same universe. ListHyperGRresult is an extension of HyperGResult, as defined in the Category

ListHyperGResult-class 43

package.

More precisely, ListHyperGResult is an abstract class, it is not possible to instantiate objects from
it. Its extensions are be used instead: GOListHyperGResult, KEGGListHyperGResult, CHRListHyperGResult
and miRNAListHyperGResult.

Value

pvalues, geneCounts, expectedCounts, oddsRatios and universeCounts return a list of named
numeric vectors.

geneMappedCount returns a numeric vector, universeMappedCount returns a numeric vector of
length one.

sigCategories returns a list of character vectors.

geneIdsByCategory returns a list of lists of character vectors.

geneIdUniverse returns a list of character vectors.

summary returns a list of data frames with columns: ‘Pvalue’, ‘OddsRatio’, ‘ExpCount’, ‘Count’,
‘Size’ and optionally ‘drive’.

htmlReport returns a list of chracter vectors, invisibly.

conditional returns a logical vector of length one. ontology returns a character vector of length
one.

Member functions

Most of the member functions are analogous to the ones defined for HyperGResult in the Category
package. Usually the only difference is that they return a list of vectors, with one entry for each
gene set, instead of just a single vector.

pvalues returns the p-values of the hypergeomatric tests. A list is returned, with one numeric vector
entry for each input gene set. The p-values for each gene set are ordered according to decreasing
significance.

geneCounts returns the number of genes from the gene set that are annotated with the given term.
This is returned for all input gene sets, in a list.

expectedCounts returns the number of genes that are expected to be annotated with the given term,
just by chance. This is calculated for all input gene sets, and returned as a list.

oddsRatios returns the odds ratios for each term tested, for all gene sets, in a list of numeric
vectors.

universeCounts returns the number of genes from the universe that are annotated with the given
term, for all gene sets, in a list.

geneMappedCount gives the size of the gene sets, as used in the algorithm. This can be different
than the size of the input gene sets, because of the elimination of duplicates and genes that are not
in the universe, before the actual computation.

universeMappedCount gives the size of the gene universe, as used in the computation. This can be
different than the size given by the user, because duplicates are eliminated before the computation.

sigCategories returns the significant terms, at the given p-value threshold, for all gene sets, as a
list.

44 mnplot

geneIdsByCategory returns a list of lists, one entry for each input gene set. Every entry is a list
itself and for each tested term it gives the gene ids from the gene set that are annotated with the
given term.

geneIdUniverse returns a list of character vectors, one for each term that was tested, giving the ids
of the genes from the universe that are annotated with that term.

summary returns a list of data frames, one for each input gene set. Each data frame has columns:
‘Pvalue’, ‘OddsRatio’, ‘ExpCount’, ‘Count’, ‘Size’ and optionally ‘drive’. Each row of the data
frame corresponds to a tested term.

htmlReport creates a HTML summary from a ListHyperGParams object. This consists of one
table for each input gene get. The summary can be written to a file, but it is also returned in a list of
character vectors. There is one list entry for each input gene set, and each element of the character
vector corresponds to one line of HTML code. You need the xtable package to use this function.

The following functions are defined for GOListHyperGResult objects only.

conditional returns a logical vector of length one, whether the test was conditional or not. Con-
ditional testing is currently not implemented, please see the GOstats package for a working imple-
mentation.

ontology returns a character vector of length one, the name of the ontology for the GO test.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

Functions for enrichment calculation of ISA modules: ISAGO, ISAKEGG, ISACHR, ISAmiRNA, ISAEnrichment.

Perhaps see also the vignette in the GOstats package.

Examples

data(ALLModulesSmall)
GO <- ISAGO(ALLModulesSmall)
GO$CC
sigCategories(GO$CC)[[1]]
summary(GO$CC)[[1]][,1:5]

mnplot Plot group means against each other, for an ISA module

Description

Plot mean expression values for two sets of samples, against each other.

Usage

mnplot (x, expset, group, ...)
ISAmnplot (modules, number, eset, norm = c("raw", "feature", "sample"),

group, ...)

mnplot 45

Arguments

x A character vector, the feature names for which the plot is created.

expset An ExpressionSet object (Biobase package), or an expression matrix, with
row names as feature names.

eset An ExpressionSet or ISAExpressionSet object. If an ExpressionSet object
is supplied (and the norm argument is not set to ‘raw’), then it is normalised by
calling ISANormalize on it. A subset of eset is selected that corresponds to the
features included in modules.

norm Character constant, specifies whether and how to normalize the expression val-
ues to plot. ‘raw’ plots the raw expression values, ‘feature’ the expression val-
ues scaled and centered for each feature (=gene) separately and if ‘sample’ is
specified then the expression values are centered and scaled separately for each
sample.

group A factor that defines two groups to plot one against the other.

modules An ISAModules object.

number A numeric scalar, the number of the module for which the plot is created.

... Additional arguments, they are passed to the plot function.

Details

mnplot plots two group-means against each other, the mean expression of all the specified probes.
The two groups are specified as a factor with two levels.

ISAmnplot calls mnplot and plots the mean expression of genes in an ISA module, again, for two
groups.

Value

Both functions return invisibly a matrix with two lines, the mean expression values for the two
groups, for all the specified genes.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

Bergmann S, Ihmels J, Barkai N: Iterative signature algorithm for the analysis of large-scale gene
expression data Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Mar;67(3 Pt 1):031902. Epub 2003
Mar 11.

See Also

The GOmnplot and KEGGmnplot functions in the annotate package.

46 overlap

Examples

data(ALLModulesSmall)
library(ALL)
data(ALL)
group <- ifelse(grepl("^B", ALL$BT), "B-cell", "T-cell")
ISAmnplot(ALLModulesSmall, 2, ALL, norm="feature", group=group)

overlap Overlap of ISA biclusters

Description

Plots a network, where each node is a module and modules that overlap are closer to each other.

Usage

overlap (modules, algorithm = c("mds", "fr", "drl"), edge.limit = 0.5)
overlapPlot (graph, xsize = 400, ysize = 400, vertex.size = 20,

vertex.size2 = 10, ...)

Arguments

modules An ISAModules object.

algorithm The algorithm to use for placing the vertices, a character scalar. See details
below.

edge.limit Numeric constant between zero and one, only edges between modules that have
a Pearson correlation higher than edge.limit will be drawn.

graph An igraph object, as returned by overlap.

xsize The width of the plot in pixels, only used to calculate the return value, it does
not influence the plot itself.

ysize The height of the plot in pixels, only used to calculate the return value, it does
not influence the plot itself.

vertex.size The width of the vertices on the plot.

vertex.size2 The height of the vertices on the plot.

... Additional arguments, these are passed to the plot.igraph function from the
igraph package.

Details

An ISAModules object may potentially contain many modules that overlap. These functions visu-
alize the overlapping relationships of a set of modules.

overlap creates an igraph graph with additional information on how to plot this graph in a way
that nodes representing overlapping modules are close to each other.

overlapPlot takes such a graph and plots it.

profilePlot 47

overlap can use various algorithms, depending on the algorithm argument. If it is ‘mds’, then
multi-dimensional scaling is used, by calling the isaMDS function in the MASS package. If it is ‘fr’,
then the Fruchterman-Reingold algorithm is used, through the layout.fruchterman.reingold
function of the igraph package. If it is ‘drl’, then the DrL graph layout algorithm is used, see the
layout.drl function in the igraph0 package.

Value

overlap returns an igraph graph.

overlapPlot returns the coordinates of the vertices in a two-column matrix, invisibly.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

Bergmann S, Ihmels J, Barkai N: Iterative signature algorithm for the analysis of large-scale gene
expression data Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Mar;67(3 Pt 1):031902. Epub 2003
Mar 11.

Examples

data(ALLModulesSmall)
G <- overlap(ALLModulesSmall, algorithm="drl", edge.limit=0.3)
if (interactive()) {

overlapPlot(G)
}

profilePlot Profile plots for ISA biclusters

Description

Line plots to compare biclusters to the background, i.e. the rest of the expression matrix.

Usage

profilePlot (modules, module, eset, plot = c("samples", "features",
"both"), norm = "default", background = TRUE,
col = gray(0.7), col.mod = 1, type = "l", type.mod = type,
mean = TRUE, meancol = "green", meancol.mod = "red",
xlabs = c("Features", "Samples"), ylab = "Expression",
...)

48 profilePlot

Arguments

modules An ISAModules object.

module Numeric scalar, the module to plot.

eset An ExpressionSet or ISAExpressionSet object. If an ExpressionSet object
is supplied (and the norm argument is not set to ‘raw’), then it is normalised by
calling ISANormalize on it. A subset of eset is selected that corresponds to the
features included in modules.

plot Character constant, specifies what to plot. ‘sample’ plots sample scores, ‘fea-
tures’ plots feature scores. If ‘both’ is given, then the plot is divided into two
subplots and both scores are plotted.

norm Character constant, specifies how to normalize the expression matrix for plot-
ting. It can be of length one or two, the latter for the case when plots are made
both for features and samples. Possible values: ‘raw’ uses the raw expression
values; ‘feature’ uses featExprs to extract the expression values from the ex-
pression set object; ‘sample’ uses sampExprs; ‘default’ means ‘feature’ for
sample plots and ‘sample’ for feature plots.

background Logical scalar, whether to plot the features/samples that are not in the module.

col Color of lines corresponding to the background features/samples.

col.mod Color of the lines corresponding to the features/samples included in the module.

type Type of the plot, for the background features/samples. It is passed to plot.

type.mod Type of the plot, for the features/samples included in the module. It is passed to
plot.

mean Logical scalar, whether to plot the mean expression for each feature/sample,
separately for the samples/features that are in the module and the ones that are
not.

meancol Color of the line for the mean expression values, background.

meancol.mod Color of the line for the mean expression values, module.

xlabs Character vector of length one or two. The labels of the horizontal axes of the
plot, the second value is used if both the feature and the sample plots are drawn.

ylab Character vector of length one. The label of the vertical axes.

... Additional graphical arguments. They are passed to the lines function that
creates the lines of the plot.

Details

plot="both" uses the mfrow graphical parameter to create the two subplots. This does not work
properly if you already have subplots.

Value

None. (Well, NULL, invisibly.)

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

profilePlot 49

References

Bergmann S, Ihmels J, Barkai N: Iterative signature algorithm for the analysis of large-scale gene
expression data Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Mar;67(3 Pt 1):031902. Epub 2003
Mar 11.

See Also

The similar parallelCoordinates function in the biclust package.

Examples

data(ALLModulesSmall)
library(ALL)
data(ALL)
if (interactive()) {

profilePlot(ALLModulesSmall, 2, ALL, plot="samples")
}

Index

∗Topic classes
ISAExpressionSet-class, 16

∗Topic cluster
condPlot, 3
enrichment, 5
expPlot, 6
gograph, 8
ISA, 10
ISA-Biclust conversion, 12
ISA2heatmap, 13
ISACHR, 15
ISAFilterRobust, 18
ISAGO, 19
ISAHTML, 21
ISAIterate, 23
ISAKEGG, 25
ISAmiRNA, 26
ISAModules-class, 28
ISANormalize, 33
ISASweep, 34
ISAUnique, 36
ListHyperGParams-class, 38
ListHyperGResult-class, 41
mnplot, 44
overlap, 46
profilePlot, 47

∗Topic datasets
ALLModules, 2

[,ISAModules,ANY,ANY,ANY-method
(ISAModules-class), 28

[,ISAModules,ANY,ANY-method
(ISAModules-class), 28

[,ISAModules,ANY-method
(ISAModules-class), 28

[[,ISAModules,ANY,ANY-method
(ISAModules-class), 28

[[,ISAModules,ANY-method
(ISAModules-class), 28

ALLModules, 2

ALLModulesSmall (ALLModules), 2
annotate (ISA-Biclust conversion), 12
annotation,ISAModules-method

(ISAModules-class), 28
anrichment (enrichment), 5

barplot, 3, 4
Biclust, 12

CHRListHyperGParams
(ListHyperGParams-class), 38

CHRListHyperGParams-class
(ListHyperGParams-class), 38

CHRListHyperGResult, 15, 21
CHRListHyperGResult

(ListHyperGResult-class), 41
CHRListHyperGResult-class

(ListHyperGResult-class), 41
class:ISAModules (ISAModules-class), 28
coerce,Biclust,ISAModules-method

(ISA-Biclust conversion), 12
coerce,ISAModules,Biclust-method

(ISA-Biclust conversion), 12
condGeneIdUniverse,CHRListHyperGResult-method

(ListHyperGResult-class), 41
condGeneIdUniverse,GeneralListHyperGResult-method

(ListHyperGResult-class), 41
condGeneIdUniverse,GOListHyperGResult-method

(ListHyperGResult-class), 41
condGeneIdUniverse,KEGGListHyperGResult-method

(ListHyperGResult-class), 41
condGeneIdUniverse,ListHyperGResult-method

(ListHyperGResult-class), 41
condGeneIdUniverse,miRNAListHyperGResult-method

(ListHyperGResult-class), 41
conditional,GOListHyperGParams-method

(ListHyperGParams-class), 38
conditional,GOListHyperGResult-method

(ListHyperGResult-class), 41

50

INDEX 51

conditional<-,GOListHyperGParams,logical-method
(ListHyperGParams-class), 38

condPlot, 3, 22

dim,ISAModules-method
(ISAModules-class), 28

drive (ListHyperGParams-class), 38
drive,CHRListHyperGParams-method

(ListHyperGParams-class), 38
drive,GeneralListHyperGParams-method

(ListHyperGParams-class), 38
drive,GOListHyperGParams-method

(ListHyperGParams-class), 38
drive,KEGGListHyperGParams-method

(ListHyperGParams-class), 38
drive,ListHyperGParams-method

(ListHyperGParams-class), 38
drive,miRNAListHyperGParams-method

(ListHyperGParams-class), 38
drive<- (ListHyperGParams-class), 38
drive<-,CHRListHyperGParams,logical-method

(ListHyperGParams-class), 38
drive<-,GeneralListHyperGParams,logical-method

(ListHyperGParams-class), 38
drive<-,GOListHyperGParams,logical-method

(ListHyperGParams-class), 38
drive<-,KEGGListHyperGParams,logical-method

(ListHyperGParams-class), 38
drive<-,ListHyperGParams,logical-method

(ListHyperGParams-class), 38
drive<-,miRNAListHyperGParams,logical-method

(ListHyperGParams-class), 38

enrichment, 5
expectedCounts,CHRListHyperGResult-method

(ListHyperGResult-class), 41
expectedCounts,GeneralListHyperGResult-method

(ListHyperGResult-class), 41
expectedCounts,GOListHyperGResult-method

(ListHyperGResult-class), 41
expectedCounts,KEGGListHyperGResult-method

(ListHyperGResult-class), 41
expectedCounts,ListHyperGResult-method

(ListHyperGResult-class), 41
expectedCounts,miRNAListHyperGResult-method

(ListHyperGResult-class), 41
expPlot, 6, 22
expPlotColbar (expPlot), 6
expPlotCreate (expPlot), 6

featExprs, 48
featExprs (ISAExpressionSet-class), 16
featExprs,ISAExpressionSet-method

(ISAExpressionSet-class), 16
featureNames,ISAModules-method

(ISAModules-class), 28
featureThreshold (ISAModules-class), 28
featureThreshold,ISAModules-method

(ISAModules-class), 28

geneCounts,CHRListHyperGResult-method
(ListHyperGResult-class), 41

geneCounts,GeneralListHyperGResult-method
(ListHyperGResult-class), 41

geneCounts,GOListHyperGResult-method
(ListHyperGResult-class), 41

geneCounts,KEGGListHyperGResult-method
(ListHyperGResult-class), 41

geneCounts,ListHyperGResult-method
(ListHyperGResult-class), 41

geneCounts,miRNAListHyperGResult-method
(ListHyperGResult-class), 41

genefilter, 10
geneIdsByCategory,CHRListHyperGResult-method

(ListHyperGResult-class), 41
geneIdsByCategory,GeneralListHyperGResult-method

(ListHyperGResult-class), 41
geneIdsByCategory,GOListHyperGResult-method

(ListHyperGResult-class), 41
geneIdsByCategory,KEGGListHyperGResult-method

(ListHyperGResult-class), 41
geneIdsByCategory,ListHyperGResult-method

(ListHyperGResult-class), 41
geneIdsByCategory,miRNAListHyperGResult-method

(ListHyperGResult-class), 41
geneIdUniverse,CHRListHyperGResult-method

(ListHyperGResult-class), 41
geneIdUniverse,GeneralListHyperGResult-method

(ListHyperGResult-class), 41
geneIdUniverse,GOListHyperGResult-method

(ListHyperGResult-class), 41
geneIdUniverse,KEGGListHyperGResult-method

(ListHyperGResult-class), 41
geneIdUniverse,ListHyperGResult-method

(ListHyperGResult-class), 41
geneIdUniverse,miRNAListHyperGResult-method

(ListHyperGResult-class), 41
geneMappedCount,CHRListHyperGResult-method

(ListHyperGResult-class), 41

52 INDEX

geneMappedCount,GeneralListHyperGResult-method
(ListHyperGResult-class), 41

geneMappedCount,GOListHyperGResult-method
(ListHyperGResult-class), 41

geneMappedCount,KEGGListHyperGResult-method
(ListHyperGResult-class), 41

geneMappedCount,ListHyperGResult-method
(ListHyperGResult-class), 41

geneMappedCount,miRNAListHyperGResult-method
(ListHyperGResult-class), 41

GeneralListHyperGParams
(ListHyperGParams-class), 38

GeneralListHyperGParams-class
(ListHyperGParams-class), 38

GeneralListHyperGResult, 6
GeneralListHyperGResult

(ListHyperGResult-class), 41
GeneralListHyperGResult-class

(ListHyperGResult-class), 41
generate.seeds, 11
getFeatureMatrix (ISAModules-class), 28
getFeatureMatrix,ISAModules-method

(ISAModules-class), 28
getFeatureNames (ISAModules-class), 28
getFeatureNames,ISAModules-method

(ISAModules-class), 28
getFeatures (ISAModules-class), 28
getFeatures,ISAModules-method

(ISAModules-class), 28
getFeatureScores (ISAModules-class), 28
getFeatureScores,ISAModules-method

(ISAModules-class), 28
getFullFeatureMatrix

(ISAModules-class), 28
getFullFeatureMatrix,ISAModules-method

(ISAModules-class), 28
getFullSampleMatrix (ISAModules-class),

28
getFullSampleMatrix,ISAModules-method

(ISAModules-class), 28
getNoFeatures (ISAModules-class), 28
getNoFeatures,ISAModules-method

(ISAModules-class), 28
getNoSamples (ISAModules-class), 28
getNoSamples,ISAModules-method

(ISAModules-class), 28
getOrganism (ISAModules-class), 28
getOrganism,ISAModules-method

(ISAModules-class), 28
getSampleMatrix (ISAModules-class), 28
getSampleMatrix,ISAModules-method

(ISAModules-class), 28
getSampleNames (ISAModules-class), 28
getSampleNames,ISAModules-method

(ISAModules-class), 28
getSamples (ISAModules-class), 28
getSamples,ISAModules-method

(ISAModules-class), 28
getSampleScores (ISAModules-class), 28
getSampleScores,ISAModules-method

(ISAModules-class), 28
gograph, 8, 22
gographPlot (gograph), 8
GOListHyperGParams

(ListHyperGParams-class), 38
GOListHyperGParams-class

(ListHyperGParams-class), 38
GOListHyperGResult, 20, 21
GOListHyperGResult

(ListHyperGResult-class), 41
GOListHyperGResult-class

(ListHyperGResult-class), 41
GOmnplot, 45

hasNA (ISAExpressionSet-class), 16
hasNA,ISAExpressionSet-method

(ISAExpressionSet-class), 16
hasNA<- (ISAExpressionSet-class), 16
hasNA<-,ISAExpressionSet-method

(ISAExpressionSet-class), 16
heatmap, 14
htmlReport,CHRListHyperGResult-method

(ListHyperGResult-class), 41
htmlReport,GeneralListHyperGResult-method

(ListHyperGResult-class), 41
htmlReport,GOListHyperGResult-method

(ListHyperGResult-class), 41
htmlReport,KEGGListHyperGResult-method

(ListHyperGResult-class), 41
htmlReport,ListHyperGResult-method

(ListHyperGResult-class), 41
htmlReport,miRNAListHyperGResult-method

(ListHyperGResult-class), 41
hyperGTest,CHRListHyperGParams-method

(ListHyperGParams-class), 38
hyperGTest,GeneralListHyperGParams-method

(ListHyperGParams-class), 38

INDEX 53

hyperGTest,GOListHyperGParams-method
(ListHyperGParams-class), 38

hyperGTest,KEGGListHyperGParams-method
(ListHyperGParams-class), 38

hyperGTest,ListHyperGParams-method
(ListHyperGParams-class), 38

hyperGTest,miRNAListHyperGParams-method
(ListHyperGParams-class), 38

IQR, 10
ISA, 4, 10, 24, 34, 38
isa, 11
ISA-Biclust conversion, 12
isa.iterate, 11, 24, 37
isa.normalize, 11
isa.unique, 11, 37
ISA2heatmap, 13
ISACHR, 6, 15, 20, 21, 26, 28, 40, 44
ISAEnrichment, 44
ISAEnrichment (enrichment), 5
ISAExpressionSet, 33
ISAExpressionSet

(ISAExpressionSet-class), 16
ISAExpressionSet-class, 16
ISAFilterRobust, 18, 31
ISAGO, 6, 16, 19, 21, 26, 28, 40, 44
ISAHTML, 21
ISAHTMLModules (ISAHTML), 21
ISAHTMLTable (ISAHTML), 21
ISAIterate, 23, 31, 37
ISAKEGG, 6, 16, 20, 21, 25, 28, 40, 44
ISAmiRNA, 6, 16, 20, 21, 26, 26, 40, 44
ISAmnplot (mnplot), 44
ISAModules, 4, 7, 12, 14, 24, 45, 46
ISAModules (ISAModules-class), 28
ISAModules-class, 28
ISANormalize, 3, 7, 14, 17, 18, 22, 23, 29, 31,

33, 37, 45, 48
ISARobustness, 31
ISARobustness (ISAFilterRobust), 18
ISASweep, 34
ISASweepGraph (ISASweep), 34
ISASweepGraphPlot (ISASweep), 34
ISAUnique, 31, 36

KEGGListHyperGParams
(ListHyperGParams-class), 38

KEGGListHyperGParams-class
(ListHyperGParams-class), 38

KEGGListHyperGResult, 21, 26
KEGGListHyperGResult

(ListHyperGResult-class), 41
KEGGListHyperGResult-class

(ListHyperGResult-class), 41

length,ISAModules-method
(ISAModules-class), 28

lines, 48
ListHyperGParams

(ListHyperGParams-class), 38
ListHyperGParams-class, 38
ListHyperGResult

(ListHyperGResult-class), 41
ListHyperGResult-class, 41

makeValidParams,CHRListHyperGParams-method
(ListHyperGParams-class), 38

makeValidParams,GeneralListHyperGParams-method
(ListHyperGParams-class), 38

makeValidParams,GOListHyperGParams-method
(ListHyperGParams-class), 38

makeValidParams,KEGGListHyperGParams-method
(ListHyperGParams-class), 38

makeValidParams,ListHyperGParams-method
(ListHyperGParams-class), 38

makeValidParams,miRNAListHyperGParams-method
(ListHyperGParams-class), 38

miRNAListHyperGParams
(ListHyperGParams-class), 38

miRNAListHyperGParams-class
(ListHyperGParams-class), 38

miRNAListHyperGResult, 21, 27
miRNAListHyperGResult

(ListHyperGResult-class), 41
miRNAListHyperGResult-class

(ListHyperGResult-class), 41
mnplot, 44

oddsRatios,CHRListHyperGResult-method
(ListHyperGResult-class), 41

oddsRatios,GeneralListHyperGResult-method
(ListHyperGResult-class), 41

oddsRatios,GOListHyperGResult-method
(ListHyperGResult-class), 41

oddsRatios,KEGGListHyperGResult-method
(ListHyperGResult-class), 41

oddsRatios,ListHyperGResult-method
(ListHyperGResult-class), 41

54 INDEX

oddsRatios,miRNAListHyperGResult-method
(ListHyperGResult-class), 41

ontology,GOListHyperGParams-method
(ListHyperGParams-class), 38

ontology,GOListHyperGResult-method
(ListHyperGResult-class), 41

ontology<-,GOListHyperGParams,character-method
(ListHyperGParams-class), 38

overlap, 46
overlapPlot (overlap), 46

p.adjust, 5, 15, 19, 25, 27
parallelCoordinates, 49
pData,ISAModules-method

(ISAModules-class), 28
plot, 45, 48
prenormalized (ISAExpressionSet-class),

16
prenormalized,ISAExpressionSet-method

(ISAExpressionSet-class), 16
prenormalized<-

(ISAExpressionSet-class), 16
prenormalized<-,ISAExpressionSet-method

(ISAExpressionSet-class), 16
print.ISAexpPlot (expPlot), 6
profilePlot, 47
pvalues,CHRListHyperGResult-method

(ListHyperGResult-class), 41
pvalues,GeneralListHyperGResult-method

(ListHyperGResult-class), 41
pvalues,GOListHyperGResult-method

(ListHyperGResult-class), 41
pvalues,KEGGListHyperGResult-method

(ListHyperGResult-class), 41
pvalues,ListHyperGResult-method

(ListHyperGResult-class), 41
pvalues,miRNAListHyperGResult-method

(ListHyperGResult-class), 41

robustness, 18, 19
runData (ISAModules-class), 28
runData,ISAModules-method

(ISAModules-class), 28

sampExprs, 48
sampExprs (ISAExpressionSet-class), 16
sampExprs,ISAExpressionSet-method

(ISAExpressionSet-class), 16

sampleNames,ISAModules-method
(ISAModules-class), 28

sampleThreshold (ISAModules-class), 28
sampleThreshold,ISAModules-method

(ISAModules-class), 28
seedData (ISAModules-class), 28
seedData,ISAModules-method

(ISAModules-class), 28
sigCategories,CHRListHyperGResult-method

(ListHyperGResult-class), 41
sigCategories,GeneralListHyperGResult-method

(ListHyperGResult-class), 41
sigCategories,GOListHyperGResult-method

(ListHyperGResult-class), 41
sigCategories,KEGGListHyperGResult-method

(ListHyperGResult-class), 41
sigCategories,ListHyperGResult-method

(ListHyperGResult-class), 41
sigCategories,miRNAListHyperGResult-method

(ListHyperGResult-class), 41
summary,CHRListHyperGResult-method

(ListHyperGResult-class), 41
summary,GeneralListHyperGResult-method

(ListHyperGResult-class), 41
summary,GOListHyperGResult-method

(ListHyperGResult-class), 41
summary,KEGGListHyperGResult-method

(ListHyperGResult-class), 41
summary,ListHyperGResult-method

(ListHyperGResult-class), 41
summary,miRNAListHyperGResult-method

(ListHyperGResult-class), 41

text, 4

universeCounts,CHRListHyperGResult-method
(ListHyperGResult-class), 41

universeCounts,GeneralListHyperGResult-method
(ListHyperGResult-class), 41

universeCounts,GOListHyperGResult-method
(ListHyperGResult-class), 41

universeCounts,KEGGListHyperGResult-method
(ListHyperGResult-class), 41

universeCounts,ListHyperGResult-method
(ListHyperGResult-class), 41

universeCounts,miRNAListHyperGResult-method
(ListHyperGResult-class), 41

universeMappedCount,CHRListHyperGResult-method
(ListHyperGResult-class), 41

INDEX 55

universeMappedCount,GeneralListHyperGResult-method
(ListHyperGResult-class), 41

universeMappedCount,GOListHyperGResult-method
(ListHyperGResult-class), 41

universeMappedCount,KEGGListHyperGResult-method
(ListHyperGResult-class), 41

universeMappedCount,ListHyperGResult-method
(ListHyperGResult-class), 41

universeMappedCount,miRNAListHyperGResult-method
(ListHyperGResult-class), 41

	ALLModules
	condPlot
	enrichment
	expPlot
	gograph
	ISA
	ISA-Biclust conversion
	ISA2heatmap
	ISACHR
	ISAExpressionSet-class
	ISAFilterRobust
	ISAGO
	ISAHTML
	ISAIterate
	ISAKEGG
	ISAmiRNA
	ISAModules-class
	ISANormalize
	ISASweep
	ISAUnique
	ListHyperGParams-class
	ListHyperGResult-class
	mnplot
	overlap
	profilePlot
	Index

