Package 'RTCA'

April 10, 2015

Type Package

Title Open-source toolkit to analyse data from xCELLigence System (RTCA)

Version 1.18.0

Date 2012-01-11

Author Jitao David Zhang

Maintainer Jitao David Zhang <davidvonpku@gmail.com>

Description Import, analyze and visualize data from Roche(R) xCELLigence RTCA systems. The package imports real-time cell electrical impedance data into R. As an alternative to commercial software shipped along the system, the Bioconductor package RTCA provides several unique transformation (normalization) strategies and various visualization tools.

License LGPL-3

LazyLoad yes

Depends methods, stats, graphics, Biobase, RColorBrewer, gtools

Suggests xtable

Collate AllClasses.R AllGenerics.R AllMethods.R algorithms.R visualization.R RTCAfunctions.R spectramaxImport.R

biocViews CellBasedAssays, Infrastructure, Visualization, TimeCourse

R topics documented:

phaNames	2
mbineRTCA	3
ntrolView	4
rivativeTransform	6
ctor2numeric	7
terpolationTransform	8
arestTimeIndex	9
rseRTCA	0

alphaNames

plateView	12
plotGridEffect	13
ratioTransform	14
rgrTransform	15
RTCA-class	16
RTCAtimeline-class	
sliceRTCA	19
smoothTransform	20
spectramaxImport	21
	•••
	- 23

Index

alphaNames

Auxilliary functions for experiments with microtitre plates

Description

Functions to manipulate indices or names of microtitre plates

Usage

```
alphaNames(row = 8, column = 12, order=c("column","row"))
repairAlphaName(x)
alphaNames2Pos(x)
rowcol2pos(row = 1, column=1, plateFormat=c("96","384"))
```

Arguments

row	integer, row index, 1,,8 for 96-well plates
column	integer, column index, 1,,12 for 96-well plates
х	character, Well alpha name, in the form of [A-Z][0-9][0-9], like 'A01'
order	character, should the alpha names returned in a row-first or column-first order?
plateFormat	integer, the microtitre format, either 96 or 384

Details

alphaNames returns so-called *alpha well names* in the form of [A-H][0-9][0-9] (i.e., A01, C03, D11, H12) for microtitre plates. The order of returned alphaNames is controlled by the option order, which can be set either as col or row

repairAlphaName attempts to fix incomplete alpha well names. Now it is mainly used to fix well names missing the leading 0 of numeric index, like A1.

alphaName2Pos returns the row and column number of the given alpha well name, in the form of two-column data frame with *row* and *col* as colnames.

rowcol2pos returns the row-wise position index of given row and column index.

combineRTCA

Value

See details

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

Examples

```
wells <- alphaNames()
repairAlphaName("A1")
alphaNames2Pos(c("A01","B02","C03","H12"))
rowcol2pos(3,1)</pre>
```

combineRTCA (

Combine a list of RTCA objects

Description

Combine a list of RTCA objects

Usage

```
combineRTCA(list)
```

Arguments

list A list of RTCA objects

Details

The current implementation requires all the objects have exactly the same time-points recorded (or at least of same length).

The combined RTCA object has an obligatory column in the phenoData 'Plate' (upper-case!), which matches the names of the RTCA list. When the list has no names, the 'Plate' field is filled with integer index starting from 1.

Value

A new RTCA object

Note

Special attention should be given to the cases where the list parameter partially has names. In this case all items without name will be assigned to a 'Plate' field of empty string (""). Therefore it is advised either to assign names to all items of the list, or leave them all off.

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

Examples

```
## An artificial example
require(RTCA)
ofile <- system.file("/extdata/testOutput.csv", package="RTCA")
x <- parseRTCA(ofile)
xSub1 <- x[,1:3]
xSub2 <- x[,4:ncol(x)]
xComb <- combineRTCA(list(sub1=xSub1, sub2=xSub2))
identical(exprs(x), exprs(xComb))
pData(xComb)$Plate
## in case of nameless list
pData(combineRTCA(list(xSub1, xSub2)))$Plate
## partial names
pData(combineRTCA(list(a=xSub1, xSub2)))$Plate</pre>
```

controlView PLOT CONTROL WELLS IN RTCA DATA

Description

A convenience function to plot sample wells with control wells on an *E-plate* in RTCA system. To use the function the phenoData field of the RTCA object must contain a field named "GeneSymbol".

Usage

controlView(rtca, genesymbol = c("Allstar", "COPB2", "GFP", "mock", "PLK1", "WEE1"), cols, ylim, smooth

Arguments

rtca	An object of RTCA.To use the function, the phenoData must contain a column which name is specified by the pData.column parameter.
genesymbol	character, gene symbols to be plotted.
cols	character, colors used by the provided gene symbols
ylim	y-axis lim
smooth	logical, whether the RTCA object should be smoothed before plotting
group	logical. If 'group' is set to TRUE, wells with the same <i>GeneSymbol</i> will be sum- marized and plotted. For instance, these could be biological replicates. Other- wise each well is plotted separatedly

controlView

ylab	y axis label
xlab	x axis label
drawsd	logical, should the error bar be drawn to represent standard deviation?
normline	logical, should the base-time indicated by a line? See ratioTransform for the concept of the <i>base-time</i>
ncol	integer, legend column number
legendpos	character, legend position
pData.column	The column which the genesymbol parameter will be matched with
	other parameters passed to the plot function

Details

The function is often called to draw sample and control in one plot.

Value

NULL, the function is called for its side effect

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

See Also

RTCA

Examples

```
require(RTCA)
```

```
ofile <- system.file("extdata/testOutput.csv", package="RTCA")
pfile <- system.file("extdata/testOutputPhenoData.csv", package="RTCA")
pData <- read.csv(pfile, sep="\t", row.names="Well")
metaData <- data.frame(labelDescription=c(
    "Rack number",
    "siRNA catalogue number",
    "siRNA gene symbol",
    "siRNA EntrezGene ID",
    "siRNA targeting accession"
))
phData <- new("AnnotatedDataFrame", data=pData, varMetadata=metaData)
x <- parseRTCA(ofile, phenoData=phData)
controlView(x, genesymbol=c("mock", "COPB2", "PLK1"), ylim=c(0,2))</pre>
```

derivativeTransform DERIVATIVE TRANSFORM OF RTCA OBJECT

Description

Derivative transform of RTCA object, returning the change rate of cell impedance

Usage

```
derivativeTransform(object)
```

Arguments

object An object of RTCA

Details

The first derivative of the cell impedance curve measured by RTCA. The derivative of the last time point is estimated by that of the next to last point.

Value

An RTCA object populated with derivative values

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

See Also

smoothTransform and interpolationTransform for smoothing and interpolating the RTCA data.
rgrTransform calculates relative growth rate, which calls derivativeTransform.

Examples

```
require(RTCA)
```

```
ofile <- system.file("/extdata/testOutput.csv", package="RTCA")
x <- parseRTCA(ofile)</pre>
```

xDeriv <- derivativeTransform(x)</pre>

factor2numeric FACTOR UNITILITIES

Description

The functions implement easy interface to certain tasks of factor. See datails for explaination

Usage

```
factor2numeric(x)
relevels(x, refs)
```

Arguments

х	A vector of factor
refs	A vector of character, reference vector to give the orderof levels

Details

relevels re-arrange the order of levels by the given character refs. Alternatively user could use factor(...,levels=refs) to achieve a similar effect, however the relevels enables also partial list. The missing levels in refs will be ordered to the last.

factor2numeric converts factor of numerics into their numeric form.

Value

A vector of factor

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

Examples

```
## factor2numeric
numFac <- factor(c(3.5, 2.5, 2.5, 3.5, 1))
numFac
levels(numFac)
factor2numeric(numFac)
class(factor2numeric(numFac))
## relevels
relevels(numFac, c("3.5", "1", "2.5"))</pre>
```

interpolationTransform

TRANSFORM RTCA DATA WITH INTERPOLATION

Description

Interpolate RTCA data

Usage

interpolationTransform(object, interval=0.01, method=c("linear","constant","fmm","periodic","natural

Arguments

object	An RTCA object
	other parameters, interval and method are implemented, see below
interval	numeric, the interval between interpolated points, set to 0.01 by default
method	character, specifying the method for interpolation, "linear" by default (for linear interpolation). Allowed options are: "linear" and "constant" for approx interpolation, and "fmm", "periodic", "natural" and "monoH.FC" for cubic spline interpolation

Details

Since most RTCA experiements record the experiments in the irregular time-series, sometimes however it is desired to have regular intervals. interpolationTransform interpolate between data points to estimate results of regular intervals.

Two classes of interpolations are supported by now: linear (using approx) and cubic spline (spline) interpolation. By default linear interpolation is used.

Value

An interpolated object of RTCA.

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

See Also

rgrTransform stands for *relative growth rate transformation*, ratioTransform for ratio normalization adopted by Roche commercial software. smoothTransform to smooth the RTCA readout.

nearestTimeIndex

Examples

require(RTCA)

```
ofile <- system.file("/extdata/testOutput.csv", package="RTCA")
x <- parseRTCA(ofile)</pre>
```

xInter <- interpolationTransform(x)</pre>

nearestTimeIndex GET INDEX FOR NEAREST TIME

Description

Get index for the nearest time point to the given one. Called internally in many time-point related functions.

Usage

nearestTimeIndex(rtca, time)

Arguments

rtca	An object of RTCA
time	numeric, a time point

Details

The function finds the time point with minimum absolute difference to the given time and returns its index.

Value

An integer, the index of the nearest time point

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

See Also

timepoints to return all time points of an RTCA object.

Examples

```
require(RTCA)
ofile <- system.file("/extdata/testOutput.csv", package="RTCA")
x <- parseRTCA(ofile)
x
xIndex <- nearestTimeIndex(x, 25)
timepoints(x)[xIndex]</pre>
```

parseRTCA

PARSE RTCA OUTPUT FILE

Description

The function parses RTCA output file into RTCA object

Usage

parseRTCA(file, dec = ".", phenoData, maskWell, ...)

Arguments

file	character, name of the RTCA output file
dec	decimal sign of the file
phenoData	phenoData
maskWell	character, either names or regular expression $pattern(s)$ for $well(s)$ to mask
	other parameters passed to read.table

Details

A csv-like format file can be exported from the RTCA device, which can be fed into this function to set up an instance of RTCA object.

In the *lextdatal* directory of the package, such a file is provided as an example. The first line contains the experiment ID, which is followed by a matrix of recorded data in the tabular form. The first and second column records the time-interval in the unit of hour and hour-minute-second format respectively. The rest columns then record the read-out ('Cell-Index', or 'CI') of the device, with each well a role.

phenoData allows user to annotate the wells. Its usage mimicks the ExpressionSet object in the Biobase package.

maskWell allows to mask wells in case, for example, they are known to be contaminated. The values can be either a vector of well names, or a regular expression pattern for wells to be masked. To learn regular expression patterns see grep.

parseRTCA

Value

An object of RTCA-class

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

References

http://www.roche-applied-science.com/proddata/gpip/3_8_9_1_1_1.html

Examples

```
require(RTCA)
ofile <- system.file("extdata/testOutput.csv", package="RTCA")</pre>
pfile <- system.file("extdata/testOutputPhenoData.csv", package="RTCA")</pre>
pData <- read.csv(pfile, sep="\t", row.names="Well")</pre>
metaData <- data.frame(labelDescription=c(</pre>
"Rack number",
"siRNA catalogue number",
"siRNA gene symbol",
"siRNA EntrezGene ID",
"siRNA targeting accession"
))
phData <- new("AnnotatedDataFrame", data=pData, varMetadata=metaData)</pre>
x <- parseRTCA(ofile, phenoData=phData)</pre>
print(x)
## mask wells, e.g. due to unusual values
x.skip <- parseRTCA(ofile, phenoData=phData, maskWell=c("D09"))</pre>
x.skip.multiWells <- parseRTCA(ofile, phenoData=phData, maskWell=c("A01", "B01",
"C02"))
## skip the last row
x.skip.pattern <- parseRTCA(ofile, phenoData=phData,</pre>
maskWell=c("H[0-9]{2}"))
## check the number of masked wells
noMasked <- function(x) sum(apply(x, 2, function(x) all(is.na(x))))</pre>
noMasked(exprs(x))
noMasked(exprs(x.skip))
noMasked(exprs(x.skip.multiWells))
noMasked(exprs(x.skip.pattern))
```

plateView

Description

Plots a E-plate in RTCA assays in one plot to convey an overview of the plate

Usage

```
plateView(rtca, ylim, titles,...)
```

Arguments

rtca	An object of RTCA
ylim	ylab lim
titles	Titles of sub-figures representing each well. If missing, the function seeks whether a <i>Well</i> column is available in the pData of the RTCA object, and if so, its value will be used. If not, the sample names (by sampleNames function) will be used as titles.
	Other parameters passed to the plot function. Currently options col, lty and lwd are supported. See details below.

Details

For now the function only supports the visualization of a 96-well E-plate.

The plate view plot draws lines indicating cell index (or its transformations) in a birdview. When ... are not specified, default color, line style and width are used. col,lty and lwd can be a vector, and if needed they will be expanded to have the same length as wells.

Value

NULL, the function is called for the side effect

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

See Also

RTCA for data structure, plot for the basic plot function.

plotGridEffect

Examples

require(RTCA)

```
ofile <- system.file("extdata/testOutput.csv", package="RTCA")
rtca <- parseRTCA(ofile)
## Not run automatically, because of margin too large
## plateView(rtca)
## plateView(rtca, lty=2)
## plateView(rtca, col=rep(1:8, each=12))
rtca.skip <- parseRTCA(ofile, maskWell="H[0-9]{2}")
## plateView(rtca.skip)</pre>
```

plotGridEffect PLOT GRID EFFECT OF RTCA

Description

Plot the mean and deviation of rows/columns of a RTCA *E-plate*, to provide hints of potential row/column effect of the plate

Usage

```
plotGridEffect(rtca, mode = c("column", "row"), xlab = "time point",
ylab = "readout", legend = TRUE, col, ...)
```

Arguments

rtca	An object of RTCA
mode	character, either "column" or "row", to choose which effect to depict
xlab	x-axis label
ylab	y-axis label
legend	logical, whether the legend should be added
col	Color of the curves
	Further parameters passed to plot function

Details

The error bars depicts the standard deviations

Value

NULL, the funciton is called for its side effect

Author(s)

Jitao David Zhang

Examples

require(RTCA)

```
ofile <- system.file("extdata/testOutput.csv", package="RTCA")
x <- parseRTCA(ofile)
plotGridEffect(x)</pre>
```

ratioTransform RATIO TRANSFORMATION OF RTCA DATA

Description

Performs ratio transformation (normalisation) of RTCA data, as recommended by the producer Roche.

Usage

ratioTransform(object, time)

Arguments

object	An object of RTCA
time	numeric, the time point used to normalize the whole series of data

Details

The *xCelligence* software provided by Roche performs ratio transform implicitly by dividing the time-series impedance measurement by the value of a selected time point (so-called 'base-time'), for instance 5 hours after compound transfection, in each cell. The aim of this transformation was to scale (normalize) the data of different wells, since the normalized values of all wells are uniformly 1 at the base-time.

However, this method is vulnerable to arbitrary selection of the time point chosen to normalize. It may be helpful to try several base-time values before comparing normalized results.

See derivativeTransform and rgrTransform for other normalization (scaling) possibilities.

Value

An object of RTCA, populated with normalized value. The normalized values of all wells are uniformly 1 at the base-time.

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

rgrTransform

See Also

smoothTransform and interpolationTransform for smoothing and interpolating the RTCA data.
rgrTransform calculates relative growth rate, derivativeTransform calculates derivative. The
later two methods are not sensative to the selection of base-time point.

Examples

```
require(RTCA)
```

```
ofile <- system.file("/extdata/testOutput.csv", package="RTCA")
x <- parseRTCA(ofile)</pre>
```

```
xNorm <- ratioTransform(x, 35)</pre>
```

rgrTransform TRANSFORM RTCA DATA INTO RELATIVE GROWTH RATE

Description

Transform RTCA data into relative growth rate

Usage

rgrTransform(object, smooth)

Arguments

object	An object of RTCA
smooth	logical, should the object be smooth transformed after the rgrTransform? Set
	to TRUE by default

Details

TODO: relative growth rate

Value

An object of RTCA populated with relative growth rate instead of input data

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

References

TODO: reference

See Also

derivativeTransform for first derivative. ratioTransform for ratio normalization adopted by Roche commercial software. smoothTransform and interpolationTransform for other transformation possibilities.

Examples

require(RTCA)

ofile <- system.file("/extdata/testOutput.csv", package="RTCA")
x <- parseRTCA(ofile)</pre>

xRgr <- rgrTransform(x)</pre>

RTCA-class

Class "RTCA"

Description

RTCA object

Objects from the Class

Objects can be created by calls of the form new("RTCA", assayData, phenoData, featureData, experimentData, anno However, it is more common to be constructed by parseRTCA function by reading in RTCA output data directly.

Slots

expID: Object of class "character", experiment ID

timeline: Object of class "RTCAtimeline", recording action track along the time line

assayData: Object of class "AssayData", assay data inherited from ExpressionSet-class

phenoData: Object of class "AnnotatedDataFrame", pheno data of the assay, annotating the wells

featureData: Object of class "AnnotatedDataFrame", feature data of the assay, preserved for time-line recording by the package

experimentData: Object of class "MIAME", idle

annotation: Object of class "character", idle

.__classVersion__: Object of class "Versions",idle

Extends

Class ExpressionSet-class, directly. Class eSet-class, by class "ExpressionSet", distance 2. Class VersionedBiobase-class, by class "ExpressionSet", distance 3. Class Versioned-class, by class "ExpressionSet", distance 4.

RTCA-class

Methods

- getAction signature(object = "RTCA", time = "numeric"): get action at the specified time, passed to the RTCAtimeline slot
- plotRTCA signature(x = "RTCA"): plot RTCA
- rmAction signature(object = "RTCA", time = "numeric"): remove action at the specified time, passed to the RTCAtimeline slot
- show signature(object = "RTCA"): print method
- expID codesignature(object = "RTCA"): get Experiment ID
- expID<- codesignature(object = "RTCA", value = "ANY"): set Experiment ID
- **time** signature(x = "RTCA"): deprecated

timeline signature(object = "RTCA"): get the RTCAtimeline slot

timeline<- signature(object = "RTCA"): assign the RTCAtimeline slot</pre>

timepoints signature(object = "RTCA"): get the recording time points in a vector

timepoints<- signature(object = "RTCA"): assign the recording time points

- updateAction signature(object = "RTCA", time = "numeric", action = "character"):
 update the action at the specified time, passed to the RTCAtimeline slot
- **plot** signature(x = "RTCA", y): plot the RTCA running plot with matplot. y is interpretated as the indices of the columns to be plotted, and will be expanded to all the columns in case it is missing.

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

References

- 1 https://www.roche-applied-science.com/sis/xcelligence/index.jsp?id=xcect_000000 introduces xCelligence system.
- 2 http://www.roche-applied-science.com/proddata/gpip/3_8_9_1_1_1.html for brief introduction into RTCA

Examples

new("RTCA", expID="testExp01")

RTCAtimeline-class Class "RTCAtimeline"

Description

Time line of actions performed by the xCelligence device, supporting CRUD manipulations (create, read, update and delete).

Objects from the Class

Objects can be created by calls of the form new("RTCAtimeline"). However, it is more common to be called implicitly by creating an instance of RTCA object.

Slots

- actionTrack: Object of class "data.frame", records action track in the form of two-column data.frame. The two columns must have the names 'time' and 'action'.
- timeUnit: Object of class "character", recording the unit of time points stored in the actionTrack slot.
- startTime: Object of class "POSIXct", the absolute time when the measurement started (at the time point '0')

Methods

- actionTrack signature(object = "RTCAtimeline"): get the action track in the form of data.frame
- getAction signature(object = "RTCAtimeline", time = "numeric"): get action at the specified time
- **orderAction** signature(object = "RTCAtimeline"): order the action track by the time
- reset signature(object = "RTCAtimeline"): undo all editing of the object and reset it to the initial state
- rmAction signature(object = "RTCAtimeline", time = "numeric"): remove the action at the specified time
- timeUnit signature(object = "RTCAtimeline"): return the time unit used by the actiont track
- timeUnit<- signature(object = "RTCAtimeline", value = "character"): assign the time
 unit used by the actiont track</pre>
- start signature(object = "RTCAtimeline"): return the starting POSIXct time of the experiment
- timeUnit<- signature(object = "RTCAtimeline", value = "character"): assign the starting POSIXct time of the experiment

sliceRTCA

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

References

- 1 http://www.xcelligence.roche.com/ introduces xCelligence system.
- 2 http://www.roche-applied-science.com/proddata/gpip/3_8_9_1_1_1.html for brief introduction into RTCA

See Also

RTCA

Examples

```
tl <- new("RTCAtimeline")
show(tl)</pre>
```

```
sliceRTCA
```

SLICE RTCA OBJECT WITH TIME

Description

Subset (slice) RTCA object with starting- and ending-time

Usage

sliceRTCA(x, start, end)

Arguments

х	An object of RTCA
start	numeric, start time
end	numeric, end time

Details

In case the exact starting- or ending-time is not matched, the nearest time point will be used to subset.

Value

An object of RTCA

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

Examples

```
require(RTCA)
ofile <- system.file("/extdata/testOutput.csv", package="RTCA")
x <- parseRTCA(ofile)
subx <- sliceRTCA(x, 20, 50)</pre>
```

smoothTransform SMOOTH TRANSFORM OF RTCA OBJECT

Description

Smoothing the RTCA cell impedance measurement

Usage

```
smoothTransform(object, ...)
```

Arguments

object	An object of RTCA
	Parameters passed to smooth.spline

Details

smoothTransform smooths the RTCA cell impedance measurement by calling the function smooth.spline. This feature can be useful for visualiation purposes and in conjuction with other transformations.

Value

An RTCA object populated with smoothed values

Note

ratioTransform performs ratio transformation recommended by the machine provider. interpolationTransform for interpolating the RTCA data. derivativeTransform returns cell impedance change rates and rgrTransform calculates relative growth rate.

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

spectramaxImport

Examples

require(RTCA)

```
ofile <- system.file("/extdata/testOutput.csv", package="RTCA")
x <- parseRTCA(ofile)</pre>
```

```
xSmooth <- smoothTransform(x)</pre>
```

spectramaxImport Import output files from Spectramax spectrophotometer

Description

Import output files from Spectramax spectrophotometer (plate reader) into the list format compatible with the cellHTS2 package.

Usage

```
spectramaxImport(file, encoding="latin1")
```

Arguments

file	A Spectramax file
encoding	File character encoding, by default "latin1"

Details

The function imports output files from Spectramax plate reader, with which single-channel cellbased assays could be performed. Such assay includes WST-1 viability assay, which can be used to validate RTCA assay results.

Value

A list of two items: one data frame (no name) and one character vector (*txt*). The data frame contains following columns:

well	Well indices ([A-Z][0-9][0-9] format) on the microtitre plate
val	Value of each well

The character vector txt contains a copy of the file contents.

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

See Also

cellHTS2 package documentation.

Examples

```
wstFiles <- dir(system.file("extdata", package="RTCA"),
pattern="^WST.*csv$", full.names=TRUE)
spectramaxImport(wstFiles[1])
## NOT RUN
## spectramaxImport also supports multiple files, in which case the
## result is a list of individual lists
spectramaxImport(wstFiles)
## END NOT RUN</pre>
```

Index

```
*Topic IO
                                                 expID, RTCA-method (RTCA-class), 16
    parseRTCA, 10
                                                 expID<- (RTCA-class), 16
*Topic classes
                                                 expID<-,RTCA-method (RTCA-class), 16</pre>
    RTCA-class, 16
    RTCAtimeline-class, 18
                                                 factor2numeric, 7, 7
*Topic file
                                                 getAction (RTCAtimeline-class), 18
    parseRTCA, 10
*Topic hplot
                                                 getAction, RTCA, numeric-method
    controlView, 4
                                                         (RTCA-class), 16
    plateView, 12
                                                 getAction,RTCAtimeline,numeric-method
    plotGridEffect, 13
                                                          (RTCAtimeline-class), 18
*Topic misc
                                                 grep. 10
    factor2numeric, 7
*Topic models
                                                 interpolationTransform, 6, 8, 15, 16, 20
                                                 interpolationTransform, RTCA-method
    rgrTransform, 15
                                                         (RTCA-class), 16
*Topic ts
    interpolationTransform, 8
                                                 matplot, 17
actionTrack (RTCAtimeline-class), 18
actionTrack,RTCAtimeline-method
                                                 nearestTimeIndex, 9
        (RTCAtimeline-class), 18
actionTrack<- (RTCAtimeline-class), 18</pre>
                                                 orderAction (RTCAtimeline-class), 18
actionTrack<-,RTCAtimeline,data.frame-method orderAction,RTCAtimeline-method
        (RTCAtimeline-class), 18
                                                          (RTCAtimeline-class), 18
addAction (RTCAtimeline-class), 18
addAction, RTCA, numeric, character-method
                                                 parseRTCA, 10, 16
        (RTCA-class), 16
                                                 plateView, 12
addAction, RTCAtimeline, numeric, character-methopdot, 5, 12, 13
        (RTCAtimeline-class), 18
                                                 plot, RTCA-method (RTCA-class), 16
alphaNames, 2
                                                 plotGridEffect, 13
alphaNames2Pos (alphaNames), 2
                                                 plotRTCA, RTCA-method (RTCA-class), 16
approx, 8
                                                 ratioTransform, 5, 8, 14, 16, 20
combineRTCA, 3
                                                 ratioTransform,RTCA-method
controlView, 4
                                                          (RTCA-class), 16
                                                 read.table,10
derivativeTransform, 6, 14, 16, 20
                                                 relevels.7
derivativeTransform,RTCA-method
                                                 relevels (factor2numeric), 7
        (RTCA-class), 16
                                                 repairAlphaName (alphaNames), 2
expID (RTCA-class), 16
                                                 reset (RTCAtimeline-class), 18
```

reset, RTCAtimeline-method (RTCAtimeline-class), 18 rgrTransform, 6, 8, 14, 15, 15, 20 rgrTransform,RTCA-method (RTCA-class), 16 rmAction (RTCAtimeline-class), 18 rmAction,RTCA,numeric-method (RTCA-class), 16 rmAction,RTCAtimeline,numeric-method (RTCAtimeline-class), 18 rowcol2pos(alphaNames), 2 RTCA, 4-6, 8-10, 12-15, 18-20 RTCA-class, 16 RTCAtimeline, RTCA-method (RTCA-class), 16 RTCAtimeline-class, 18 RTCAtimeline<-,RTCA-method (RTCA-class), 16

show,RTCA-method(RTCA-class), 16 sliceRTCA. 19 smooth.spline, 20smoothTransform, 6, 8, 15, 16, 20 smoothTransform,RTCA,ANY-method (RTCA-class), 16 smoothTransform,RTCA,missing-method (RTCA-class), 16 spectramaxImport, 21 spline, 8startTime (RTCAtimeline-class), 18 startTime,RTCAtimeline-method (RTCAtimeline-class), 18 startTime<- (RTCAtimeline-class), 18</pre> startTime<-,RTCAtimeline,POSIXct-method</pre> (RTCAtimeline-class), 18

```
time,RTCA-method (RTCA-class), 16
timeline (RTCA-class), 16
timeline,RTCA-method (RTCA-class), 16
timeline<- (RTCA-class), 16
timeline<-,RTCA-method (RTCA-class), 16
timepoints,9
timepoints (RTCA-class), 16
timepoints<- (RTCA-class), 16
timepoints<-,RTCA-method (RTCA-class), 16
timepoints<-,RTCA-method (RTCA-class), 16
timepoints<-,RTCA-method (RTCA-class), 16
timepoints<-,RTCA-method (RTCA-class), 16
timeUnit (RTCAtimeline-class), 18</pre>
```

timeUnit,RTCAtimeline-method
 (RTCAtimeline-class), 18
timeUnit<- (RTCAtimeline-class), 18
timeUnit<-,RTCAtimeline,character-method
 (RTCAtimeline-class), 18</pre>

updateAction (RTCAtimeline-class), 18
updateAction, RTCA, numeric, character-method
 (RTCA-class), 16
updateAction, RTCAtimeline, numeric, character-method
 (RTCAtimeline-class), 18