
Package ‘EBImage’
April 9, 2015

Version 4.8.3

Title Image processing and analysis toolbox for R

Author Andrzej Oles, Gregoire Pau, Mike Smith, Oleg Sklyar, Wolfgang Huber, with contribu-
tions from Joseph Barry and Philip A. Marais

Maintainer Andrzej Oles <andrzej.oles@embl.de>

Depends
Imports BiocGenerics (>= 0.7.1), methods, graphics, grDevices, stats,

abind, tiff, jpeg, png, locfit

Suggests BiocStyle

Description EBImage is an R package which provides general purpose functionality for the read-
ing, writing, processing and analysis of images. Furthermore, in the context of mi-
croscopy based cellular assays, EBImage offers tools to transform the images, seg-
ment cells and extract quantitative cellular descriptors.

License LGPL

LazyLoad true

biocViews Visualization

R topics documented:
bwlabel . 2
channel . 3
colorLabels . 5
combine . 6
computeFeatures . 7
display . 10
distmap . 11
drawCircle . 12
EBImage . 13
EBImage-defunct . 15
equalize . 16
fillHull . 17
filter2 . 18

1

2 bwlabel

floodFill . 19
gblur . 20
Image . 21
io . 23
localCurvature . 25
medianFilter . 27
morphology . 28
normalize . 30
ocontour . 31
otsu . 32
paintObjects . 33
propagate . 34
resize . 36
rmObjects . 38
stackObjects . 39
thresh . 41
tile . 42
transpose . 43
watershed . 44

Index 46

bwlabel Binary segmentation

Description

Labels connected (connected sets) objects in a binary image.

Usage

bwlabel(x)

Arguments

x An Image object or an array. x is considered as a binary image, whose pixels of
value 0 are considered as background ones and other pixels as foreground ones.

Details

All pixels for each connected set of foreground (non-zero) pixels in x are set to an unique increasing
integer, starting from 1. Hence, max(x) gives the number of connected objects in x.

Value

A Grayscale Image object or an array, containing the labelled version of x.

channel 3

Author(s)

Gregoire Pau, 2009

See Also

computeFeatures, propagate, watershed, paintObjects, colorLabels

Examples

simple example
x = readImage(system.file(images, shapes.png, package=EBImage))
x = x[110:512,1:130]
display(x, title=Binary)
y = bwlabel(x)
display(normalize(y), title=Segmented)

read nuclei images
x = readImage(system.file(images, nuclei.tif, package=EBImage))
display(x)

computes binary mask
y = thresh(x, 10, 10, 0.05)
y = opening(y, makeBrush(5, shape=disc))
display(y, title=Cell nuclei binary mask)

bwlabel
z = bwlabel(y)
display(normalize(z), title=Cell nuclei)
nbnuclei = apply(z, 3, max)
cat(Number of nuclei=, paste(nbnuclei, collapse=,),\n)

recolor nuclei in colors
cols = c(black, sample(rainbow(max(z))))
zrainbow = Image(cols[1+z], dim=dim(z))
display(zrainbow, title=Cell nuclei (recolored))

channel Color and image color mode conversions

Description

channel handles color space conversions between image modes. rgbImage combines Grayscale
images into a Color one. toRGB is a wrapper function for convenient grayscale to RGB color space
conversion; the call toRGB(x) returns the result of channel(x, rgb).

4 channel

Usage

channel(x, mode)
rgbImage(red, green, blue)
toRGB(x)

Arguments

x An Image object or an array.

mode A character value specifying the target mode for conversion. See Details.
red, green, blue

Image objects in Grayscale color mode or arrays of the same dimension. If
missing, a black image will be used.

Details

Conversion modes:

rgb Converts a Grayscale image or an array into a Color image, replicating RGB channels.

gray, grey Converts a Color image into a Grayscale image, using uniform 1/3 RGB weights.

luminance Luminance-preserving Color to Grayscale conversion using CIE 1931 luminance
weights: 0.2126 * R + 0.7152 * G + 0.0722 * B.

red, green, blue Extracts the red, green or blue channel from a Color image. Returns a
Grayscale image.

asred, asgreen, asblue Converts a Grayscale image or an array into a Color image of the
specified hue.

NOTE: channel changes the pixel intensities, unlike colorMode which just changes the way that
EBImage renders an image.

Value

An Image object or an array.

Author(s)

Oleg Sklyar, <osklyar@ebi.ac.uk>

See Also

colorMode

Examples

x = readImage(system.file("images", "shapes.png", package="EBImage"))
display(x)
y = channel(x, asgreen)
display(y)

colorLabels 5

rgbImage
x = readImage(system.file(images, nuclei.tif, package=EBImage))
y = readImage(system.file(images, cells.tif, package=EBImage))
display(x, title=Cell nuclei)
display(y, title=Cell bodies)

cells = rgbImage(green=1.5*y, blue=x)
display(cells, title=Cells)

colorLabels Color Code Labels

Description

Color codes the labels of object masks by a random permutation.

Usage

colorLabels(x, normalize = TRUE)

Arguments

x an Image object in Grayscale color mode or an array containing object masks.
Object masks are sets of pixels with the same unique integer value

normalize if TRUE normalizes the resulting color image

Details

Performs color coding of object masks, which are typically obtained using the bwlabel function.
Each label from x is assigned an unique color. The colors are distributed among the labels using
a random permutation. If normalize is set to TRUE the intensity values of the resulting image are
mapped to the [0,1] range.

Value

An Image object containing color coded objects of x.

Author(s)

Bernd Fischer, Andrzej Oles, 2013-2014

See Also

bwlabel, normalize

6 combine

Examples

x = readImage(system.file(images, shapes.png, package=EBImage))
x = x[110:512,1:130]
y = bwlabel(x)
z = colorLabels(y)
display(z, title=Colored segmentation)

combine Combining images

Description

Merges images to create image sequences.

Usage

combine(x, y, ...)

Arguments

x An Image object, an array, or a list of Image objects and arrays.

y An Image object or an array.

... Image objects or arrays.

Details

The function combine uses abind to merge multi-dimensional arrays along the dimension depend-
ing on the color mode of x. If x is a Grayscale image or an array, image objects are combined
along the third dimension, whereas when x is a Color image they are combined along the forth
dimension, leaving room on the third dimension for color channels.

Value

An Image object or an array.

Author(s)

Gregoire Pau, Andrzej Oles, 2013

See Also

Image

computeFeatures 7

Examples

combination of color images
img = readImage(system.file("images", "sample-color.png", package="EBImage"))[257:768,,]
x = combine(img, flip(img), flop(img))
display(x)

Blurred images
x = resize(img, 128, 128)
xt = list()
for (t in seq(0.1, 5, len=9)) xt=c(xt, list(gblur(x, s=t)))
xt = combine(xt)
display(xt, title=Blurred images)

computeFeatures Compute object features

Description

Computes morphological and texture features from image objects.

Usage

computeFeatures(x, ref, methods.noref=c("computeFeatures.moment", "computeFeatures.shape"),
methods.ref=c("computeFeatures.basic", "computeFeatures.moment", "computeFeatures.haralick"),
xname="x", refnames, properties=FALSE, expandRef=standardExpandRef, ...)

computeFeatures.basic(x, ref, properties=FALSE, basic.quantiles=c(0.01, 0.05, 0.5, 0.95, 0.99), xs, ...)
computeFeatures.shape(x, properties=FALSE, xs, ...)
computeFeatures.moment(x, ref, properties=FALSE, xs, ...)
computeFeatures.haralick(x, ref , properties=FALSE, haralick.nbins=32, haralick.scales=c(1, 2), xs, ...)
standardExpandRef(ref, refnames)

Arguments

x An Image object or an array containing labelled objects. Labelled objects are
pixel sets with the same unique integer value.

ref A matrix or a list of matrices, containing the intensity values of the reference
objects.

methods.noref A character vector containing the function names to be called to compute fea-
tures without reference intensities. Default is computeFeatures.moment and
computeFeatures.shape.

methods.ref A character vector containing the function names to be called to compute fea-
tures with reference intensities. Default is computeFeatures.basic, computeFeatures.moment
and computeFeatures.haralick.

xname A character string naming the object layer. Default is x.

refnames A character vector naming the reference intensity layers. Default are the names
of ref, if present. If not, reference intensity layers are named using lower-case
letters.

8 computeFeatures

properties A logical. If FALSE, the default, the function returns the feature matrix. If TRUE,
the function returns feature properties.

expandRef A function used to expand the reference images. Default is standardExpandRef.
See Details.

basic.quantiles

A numerical vector indicating the quantiles to compute.

haralick.nbins An integer indicating the number of bins using to compute the Haralick matrix.
See Details.

haralick.scales

A integer vector indicating the number of scales to use to compute the Haralick
features.

xs An optional temporary object created by computeFeatures used for perfor-
mance considerations.

... Optional arguments passed to the feature computation functions.

Details

Features are named x.y.f, where x is the object layer, y the reference image layer and f the feature
name. Examples include cell.dna.mean, indicating mean DNA intensity computed in the cell or
nucleus.tubulin.cx, indicating the x center of mass of tubulin computed in the nucleus region.

The function computeFeatures computes sets of features. Features are organized in 4 sets, each
computed by a different function. The function computeFeatures.basic computes spatial-independent
statistics on pixel intensities:

• b.mean: mean intensity

• b.sd: standard deviation intensity

• b.mad: mad intensity

• b.q*: quantile intensity

The function computeFeatures.shape computes features that quantify object shape:

• s.area: area size (in pixels)

• s.perimeter: perimeter (in pixels)

• s.radius.mean: mean radius (in pixels)

• s.radius.sd: standard deviation of the mean radius (in pixels)

• s.radius.max: max radius (in pixels)

• s.radius.min: min radius (in pixels)

The function computeFeatures.moment computes features related to object image moments, which
can be computed with or without reference intensities:

• m.cx: center of mass x (in pixels)

• m.cy: center of mass y (in pixels)

• m.majoraxis: elliptical fit major axis (in pixels)

• m.eccentricity: elliptical eccentricity defined by sqrt(1-minoraxis^2/majoraxis^2). Circle ec-
centricity is 0 and straight line eccentricity is 1.

computeFeatures 9

• m.theta: object angle (in radians)

The function computeFeatures.haralick computes features that quantify pixel texture. Features
are named according to Haralick’s original paper.

Value

If properties if FALSE (by default), computeFeatures returns a matrix of n cells times p features,
where p depends of the options given to the function. Returns NULL if no object is present.

If properties if TRUE, computeFeatures returns a matrix of p features times 2 properties (trans-
lation and rotation invariance). Feature properties are useful to filter out features that may not be
needed for specific tasks, e.g. cell position when doing cell classification.

Author(s)

Gregoire Pau, <gregoire.pau@embl.de>, 2011

References

R. M. Haralick, K Shanmugam and Its’Hak Deinstein (1979). Textural Features for Image Classi-
fication. IEEE Transactions on Systems, Man and Cybernetics.

See Also

bwlabel, propagate

Examples

load and segment nucleus
y = readImage(system.file("images", "nuclei.tif", package="EBImage"))[,,1]
x = thresh(y, 10, 10, 0.05)
x = opening(x, makeBrush(5, shape=disc))
x = bwlabel(x)
display(y, title="Cell nuclei")
display(x, title="Segmented nuclei")

compute shape features
fts = computeFeatures.shape(x)
fts

compute features
ft = computeFeatures(x, y, xname="nucleus")
cat("median features are:\n")
apply(ft, 2, median)

compute feature properties
ftp = computeFeatures(x, y, properties=TRUE, xname="nucleus")
ftp

10 display

display Image Display

Description

Displays images using an interactive JavaScript viewer or R’s built-in graphics capabilities.

Usage

display(x,
title = deparse(substitute(x), width.cutoff = 500L, nlines = 1),
method = if (interactive()) "browser" else "raster",
frame, all = FALSE)

Arguments

x an Image object or an array.

title a character string used as a window title.

method the method used to display images: either browser (default) for viewing images
in a WWW browser, or raster for viewing them as raster graphics using R’s
native functions.

frame a numeric indicating the frame number; only works in conjunction with method = "raster"
and all = FALSE.

all should all frames of a stacked image be displayed, or just a single frame?

Details

By default (method = "browser") images are displayed in a web browser using a JavaScript based
image browser. Multiple windows or tabs can be opened in this way. Pressing ’h’ displays a list of
available features along with corresponding mouse and keyboard actions.

If method = "raster" images are displayed using R’s built-in rasterImage function. By default
only the first frame of a stacked image is rendered; a different frame can be specified using frame.
When all = TRUE all frames are rendered side by side and automatically positioned in a grid. The
user coordinates of the plotting region are set to the image pixel coordinates with the origin (0, 0)
in the upper left corner.

Value

Invisible NULL.

Note

For viewing images in a web browser a compatible browser with JavaScript enabled is required (e.g.
Mozilla Firefox).

distmap 11

Author(s)

Andrzej Oles, <andrzej.oles@embl.de>, 2012

References

Mozilla Firefox

Examples

Display a single image
x = readImage(system.file("images", "sample-color.png", package="EBImage"))[257:768,,]
display(x, "Sample")

Display a thresholded sequence ...
y = readImage(system.file("images", "sample.png", package="EBImage"))
yt = list()
for (t in seq(0.1, 5, len=9)) yt=c(yt, list(gblur(y, s=t)))
yt = combine(yt)

... using the browser viewer ...
display(yt, "Blurred images")

... or using Rs build-in raster functions
display(resize(yt, 256, 256), method = "raster", all = TRUE)

Display the last frame
display(yt, method = "raster", frame = numberOfFrames(yt, type = "render"))

distmap Distance map transform

Description

Computes the distance map transform of a binary image. The distance map is a matrix which
contains for each pixel the distance to its nearest background pixel.

Usage

distmap(x, metric=c(euclidean, manhattan))

Arguments

x An Image object or an array. x is considered as a binary image, whose pixels of
value 0 are considered as background ones and other pixels as foreground ones.

metric A character indicating which metric to use, L1 distance (manhattan) or L2 dis-
tance (euclidean). Default is euclidean.

http://www.firefox.com

12 drawCircle

Details

A fast algorithm of complexity O(M*N*log(max(M,N))), where (M,N) are the dimensions of x, is
used to compute the distance map.

Value

An Image object or an array, with pixels containing the distances to the nearest background points.

Author(s)

Gregoire Pau, <gpau@ebi.ac.uk>, 2008

References

M. N. Kolountzakis, K. N. Kutulakos. Fast Computation of the Euclidean Distance Map for Binary
Images, Infor. Proc. Letters 43 (1992).

Examples

x = readImage(system.file("images", "shapes.png", package="EBImage"))
display(x)
dx = distmap(x)
display(dx/10, title=Distance map of x)

drawCircle Draw a circle on an image.

Description

Draw a circle on an image.

Usage

drawCircle(img, x, y, radius, col, fill=FALSE, z=1)

Arguments

img An Image object or an array.

x, y, radius numerics indicating the center and the radius of the circle.

col A numeric or a character string specifying the color of the circle.

fill A logical indicating whether the circle should be filled. Default is FALSE.

z A numeric indicating on which frame of the image the circle should be drawn.
Default is 1.

Value

An Image object or an array, containing the transformed version of img.

EBImage 13

Author(s)

Gregoire Pau, 2010

Examples

Simple white circle
x = matrix(0, nrow=300, ncol=300)
y = drawCircle(x, 100, 200, 47, col=1)
display(y)

Simple filled yellow circle
x = channel(y, rgb)
y = drawCircle(x, 200, 140, 57, col=yellow, fill=TRUE)
display(y)

EBImage Package overview

Description

EBImage is an image processing and analysis package for R. Its primary goal is to enable automated
analysis of large sets of images such as those obtained in high throughput automated microscopy.

EBImage relies on the Image object to store and process images but also works on multi-dimensional
arrays.

Package content

Image methods

• Image

• as.Image, is.Image, as.raster

• colorMode, imageData

• getFrame, numberOfFrames

Image I/O, display

• readImage, writeImage

• display

• image

Spatial transforms

• resize, flip, flop, transpose

• rotate, translate, affine

Image segmentation, objects manipulation

• thresh, bwlabel, otsu

14 EBImage

• watershed, propagate

• ocontour

• paintObjects, rmObjects, reenumerate

Image enhancement, filtering

• normalize

• filter2, gblur, medianFilter

Morphological operations

• makeBrush

• erode, dilate, opening, closing

• erodeGreyScale, dilateGreyScale, openingGreyScale, closingGreyScale

• whiteTopHatGreyScale, blackTopHatGreyScale, selfcomplementaryTopHatGreyScale

• distmap

• floodFill, fillHull

Color space manipulation

• rgbImage, channel, toRGB

Image stacking, combining, tiling

• stackObjects

• combine

• tile, untile

Drawing on images

• drawCircle

Features extraction

• computeFeatures

• computeFeatures.basic, computeFeatures.moment, computeFeatures.shape, computeFeatures.haralick

• standardExpandRef

Defunct

• blur, equalize

• drawtext, drawfont

• getFeatures, hullFeatures, zernikeMoments

• edgeProfile, edgeFeatures,

• haralickFeatures, haralickMatrix

• moments, cmoments, smoments, rmoments

EBImage-defunct 15

Authors

Oleg Sklyar, <osklyar@ebi.ac.uk>, Copyright 2005-2007

Gregoire Pau, <gpau@ebi.ac.uk>

Wolfgang Huber, <huber@ebi.ac.uk>

Andrzej Oles, <andrzej.oles@embl.de>

Mike Smith, <msmith@ebi.ac.uk>

European Bioinformatics Institute
European Molecular Biology Laboratory
Wellcome Trust Genome Campus
Hinxton
Cambridge CB10 1SD
UK

The code of propagate is based on the CellProfiler with permission granted to distribute this
particular part under LGPL, the corresponding copyright (Jones, Carpenter) applies.

The source code is released under LGPL (see the LICENSE file in the package root for the complete
license wording).

This library is free software; you can redistribute it and/or modify it under the terms of the GNU
Lesser General Public License as published by the Free Software Foundation; either version 2.1
of the License, or (at your option) any later version. This library is distributed in the hope that it
will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See the GNU Lesser General Public License for more details. For LGPL license wording see
http://www.gnu.org/licenses/lgpl.html

Examples

example(readImage)
example(display)
example(rotate)
example(propagate)

EBImage-defunct EBImage defunct functions

Description

These following functions are defunct and will be removed in the next Bioconductor release.

http://www.gnu.org/licenses/lgpl.html

16 equalize

Usage

blur(...)
drawtext(...)
drawfont(...)
getFeatures(...)
hullFeatures(...)
zernikeMoments(...)
edgeProfile(...)
edgeFeatures(...)
haralickFeatures(...)
haralickMatrix(...)
moments(...)
rmoments(...)
smoments(...)
cmoments(...)

Arguments

... Defunct arguments.

equalize Histogram Equalization

Description

Equalize the image histogram to a specified range and number of levels.

Usage

equalize(x, range = c(0, 1), levels = 256)

Arguments

x an Image object or an array

range numeric vector of length 2, the output range of the equalized histogram

levels number of grayscale levels (Grayscale images) or intensity levels of each chan-
nel (Color images)

Details

Individual channels of Color images and frames of image stacks are equalized separately.

Value

An Image object or an array, containing the transformed version of x.

fillHull 17

Author(s)

Andrzej Oles, <andrzej.oles@embl.de>, 2014

Examples

x = readImage(system.file(images, cells.tif, package=EBImage))
hist(x)
y = equalize(x)
hist(y)
display(y, title=Equalized Grayscale Image)

x = readImage(system.file(images, sample-color.png, package=EBImage))
hist(x)
y = equalize(x)
hist(y)
display(y, title=Equalized Grayscale Image)

fillHull Fill holes in objects

Description

Fill holes in objects.

Usage

fillHull(x)

Arguments

x An Image object or an array.

Details

fillHull fills holes in the objects defined in x, where objects are sets of pixels with the same
unique integer value.

Value

An Image object or an array, containing the transformed version of x.

Author(s)

Gregoire Pau, Oleg Sklyar; 2007

See Also

bwlabel

18 filter2

Examples

x = readImage(system.file(images, nuclei.tif, package=EBImage))
display(x)

y = thresh(x, 10, 10, 0.05)
display(y, title=Cell nuclei)

y = fillHull(y)
display(y, title=Cell nuclei without holes)

filter2 2D Convolution Filter

Description

Filters an image using the fast 2D FFT convolution product.

Usage

filter2(x, filter)

Arguments

x An Image object or an array.

filter An Image object or an array, with odd spatial dimensions. Must contain only
one frame.

Details

Linear filtering is useful to perform low-pass filtering (to blur images, remove noise...) and high-
pass filtering (to detect edges, sharpen images). The function makeBrush is useful to generate
filters.

Data is reflected around borders.

If x contains multiple frames, the filter will be applied one each frame.

Value

An Image object or an array, containing the filtered version of x.

Author(s)

Gregoire Pau, <gpau@ebi.ac.uk>

See Also

makeBrush, convolve, fft, blur

floodFill 19

Examples

x = readImage(system.file("images", "sample-color.png", package="EBImage"))
display(x, title=Sample)

Low-pass disc-shaped filter
f = makeBrush(21, shape=disc, step=FALSE)
display(f, title=Disc filter)
f = f/sum(f)
y = filter2(x, f)
display(y, title=Filtered image)

High-pass Laplacian filter
la = matrix(1, nc=3, nr=3)
la[2,2] = -8
y = filter2(x, la)
display(y, title=Filtered image)

floodFill Region filling

Description

Fill regions in images.

Usage

floodFill(x, pt, col, tolerance=0)

Arguments

x An Image object or an array.

pt Coordinates of the start filling point.

col Fill color. This argument should be a numeric for Grayscale images and an R
color for Color images.

tolerance Color tolerance used during the fill.

Details

Flood fill is performed using the fast scan line algorithm. Filling starts at pt and grows in connected
areas where the absolute difference of the pixels intensities (or colors) remains below tolerance.

Value

An Image object or an array, containing the transformed version of x.

Author(s)

Gregoire Pau, Oleg Sklyar; 2007

20 gblur

Examples

x = readImage(system.file("images", "shapes.png", package="EBImage"))
y = floodFill(x, c(67, 146), 0.5)
display(y)

y = channel(y, rgb)
y = floodFill(y, c(48, 78), red)
y = floodFill(y, c(156, 52), orange)
display(y)

x = readImage(system.file("images", "sample.png", package="EBImage"))
y = floodFill(x, c(226, 121), 1, tolerance=0.1)
display(y)

gblur Low-pass Gaussian filter

Description

Filters an image with a low-pass Gaussian filter.

Usage

gblur(x, sigma, radius = 2 * ceiling(3 * sigma) + 1)

Arguments

x An Image object or an array.

sigma A numeric denoting the standard deviation of the Gaussian filter used for blur-
ring.

radius The radius of the filter in pixels. Default is 2*ceiling(3*sigma)+1).

Details

The Gaussian filter is created with the function makeBrush.

Value

An Image object or an array, containing the filtered version of x.

Author(s)

Oleg Sklyar, <osklyar@ebi.ac.uk>, 2005-2007

See Also

filter2, makeBrush

Image 21

Examples

x = readImage(system.file("images", "sample.png", package="EBImage"))
display(x)

y = gblur(x, sigma=8)
display(y, title=gblur(x, sigma=8))

Image Image class

Description

EBImage uses the Image class to store and process images. Images are stored as multi-dimensional
arrays containing the pixel intensities. Image extends the base class array and uses the colormode
slot to store how the color information of the multi-dimensional data is handled.

The colormode slot can be either Grayscale or Color. In either mode, the first two dimensions of
the underlying array are understood to be the spatial dimensions of the image. In the Grayscale
mode the remaining dimensions contain other image frames. In the Color mode, the third dimen-
sion contains color channels of the image, while higher dimensions contain image frames. The
number of channels is not limited and can be any number >= 1; these can be, for instance, the red,
green, blue and, possibly, alpha channel. Note that grayscale images containing an alpha channel
are stored with colormode=Color.

All methods from the EBImage package work either with Image objects or multi-dimensional arrays.
In the latter case, the color mode is assumed to be Grayscale.

Usage

Image(data, dim, colormode)
as.Image(x)
is.Image(x)

S3 method for class Image
as.array(x, ...)
S3 method for class Image
as.raster(x, i = 1, ...)

colorMode(y)
colorMode(y) <- value

imageData(y)
imageData(y) <- value

getFrame(y, i, type = c(total, render))
numberOfFrames(y, type = c(total, render))

22 Image

Arguments

data A vector or array containing the pixel intensities of an image. If missing, the
default 1x1 zero-filled array is used.

dim A vector containing the final dimensions of an Image object. If missing, equals
to dim(data).

colormode A numeric or a character string containing the color mode which can be either
Grayscale or Color. If missing, equals to Grayscale.

x An R object.

y An Image object or an array.

i Number of frame.

value For colorMode, a numeric or a character string containing the color mode which
can be either Grayscale or Color. For imageData, an Image object or an array.

type A character string containing total or render. Default is total.

... further arguments passed to or from other methods.

Details

Depending on type, numberOfFrames returns the total number of frames contained in the object y
or the number of rendered frames. The total number of frames is independent of the color mode
and equals to the product of all the dimensions except the two first ones. The number of rendered
frames is equal to the total number of frames in the Grayscale color mode, or to the product of all
the dimensions except the three first ones in the Color color mode.

getFrame returns the i-th frame contained in the image y. If type is total, the function is unaware
of the color mode and returns an xy-plane. For type=render, the function returns the i-th image as
shown by the display function.

Value

Image and as.Image return a new Image object.

is.Image returns TRUE if x is an Image object and FALSE otherwise.

as.raster coerces an Image object to its raster representation. For stacked images the i-th frame
is returned (by default the first one).

colorMode returns the color mode of y and colorMode<- changes the color mode of y.

imageData returns the array contained in an Image object.

Author(s)

Oleg Sklyar, <osklyar@ebi.ac.uk>, 2005-2007

See Also

readImage, writeImage, display

io 23

Examples

s1 = exp(12i*pi*seq(-1, 1, length=300)^2)
y = Image(outer(Im(s1), Re(s1)))
display(normalize(y))

x = Image(rnorm(300*300*3),dim=c(300,300,3), colormode=Color)
display(x)

w = matrix(seq(0, 1, len=300), nc=300, nr=300)
m = abind::abind(w, t(w), along=3)
z = Image(m, colormode=Color)
display(normalize(z))

y = Image(c(red, violet, #ff51a5, yellow), dim=c(71, 71))
display(y)

colorMode example
x = readImage(system.file(images, nuclei.tif, package=EBImage))
x = x[,,1:3]
display(x, title=Cell nuclei)
colorMode(x) = Color
display(x, title=Cell nuclei in RGB)

io Image I/O

Description

Read and write images from/to files and URLs.

Usage

readImage(files, type, all = TRUE, names = sub("\\.[^.]*$", "", basename(files)), ...)
writeImage(x, files, type, quality = 100, bits.per.sample, compression = "none", ...)

Arguments

files a character vector of file names or URLs.

type image type (optional). Supported values are: jpeg, png, and tiff. If missing,
file format is automatically determined by file name extension.

all logical: when the file contains more than one image should all frames be read,
or only the first one?

names a character vector used for frame names. Should have the same length as files.

x an Image object or an array.
bits.per.sample

a numeric scalar specifying the number of bits per sample (only for tiff files).
Supported values are 8 and 16.

24 io

compression the desired compression algorithm (only for tiff files). For a list of supported
values consult the documentation of the writeTIFF function from the tiff pack-
age.

quality a numeric ranging from 1 to 100 (default) controlling the quality of the JPEG
output.

... arguments passed to the corresponding functions from the jpeg, png, and tiff
packages.

Details

readImage loads all images from the files vector and returns them stacked into a single Image
object containing an array of doubles ranging from 0 (black) to 1 (white). All images need to be of
the same type and have the same dimensions and color mode. If type is missing, the appropriate
file format is determined from file name extension. Color mode is determined automatically based
on the number of channels. When the function fails to read an image it skips to the next element of
the files vector issuing a warning message. Non-local files can be read directly from a valid URL.

writeImage writes images into files specified by files, were the number of files needs to be
equal 1 or the number of frames. Given an image containing multiple frames and a single file name
either the whole stack is written into a single TIFF file, or each frame is saved to an individual
JPEG/PNG file (for files = "image.*" frames are saved into image-X.* files, where X equals the
frame number less one; for an image containing n frames this results in file names numbered from
0 to n-1).

When writing JPEG files the compression quality can be specified using quality. Valid val-
ues range from 100 (highest quality) to 1 (lowest quality). For TIFF files additional information
about the desired number of bits per sample (bits.per.sample) and the compression algorithm
(compression) can be provided. For a complete list of supported values please consult the docu-
mentation of the tiff package.

Value

readImage returns a new Image object.

writeImage returns an invisible vector of file names.

Note

Image formats have a limited dynamic range (e.g. JPEG: 8 bit, TIFF: 16 bit) and writeImage may
cause some loss of accuracy. In specific, writing 16 bit image data to formats other than TIFF will
strip the 8 LSB. When writing TIFF files a dynamic range check is performed and an appropriate
value of bits.per.sample is set automatically.

Author(s)

Andrzej Oles, <andrzej.oles@embl.de>, 2012

See Also

Image, display, readJPEG/writeJPEG, readPNG/writePNG, readTIFF/writeTIFF

localCurvature 25

Examples

Read and display an image
f = system.file("images", "sample-color.png", package="EBImage")
x = readImage(f)
display(x)

Read and display a multi-frame TIFF
y = readImage(system.file("images", "nuclei.tif", package="EBImage"))
display(y)

Read an image directly from a remote location by specifying its URL
try({

im = readImage("http://www-huber.embl.de/EBImage/ExampleImages/berlin.tif")
display(im, title = "Berlin Impressions")

})

Convert a PNG file into JPEG
tempfile = tempfile("", , ".jpeg")
writeImage(x, tempfile, quality = 85)
cat("Converted ", f, " into ", tempfile, ".\n", sep="")

Save a frame sequence
files = writeImage(y, tempfile("", , ".jpeg"), quality = 85)
cat("Files created: ", files, sep="\n")

localCurvature Local Curvature

Description

Computes signed curvature along a line.

Usage

localCurvature(x, h, maxk)

Arguments

x A data frame or matrix of dimensions N x 2 containing the coordinates of the
line, where N is the number of points. The points should be ordered according to
their position on the line. The columns should contain the x and y coordinates.
The curvature calculation is unaffected by any permutation of the columns. Di-
rectly accepts a list element from ocontour.

h Specifies the length of the smoothing window. See locfit::lp for more details.

maxk See locfit::locfit.raw for details.

26 localCurvature

Details

localCurvature fits a local non-parametric smoothing line (polynomial of degree 2) at each point
along the line segment, and computes the curvature locally using numerical derivatives.

Value

Returns a list containing the contour coordinates x, the signed curvature at each point curvature
and the arc length of the contour length.

Author(s)

Joseph Barry, Wolfgang Huber, 2013

See Also

ocontour

Examples

curvature goes as the inverse of the radius of a circle
range=seq(3.5,33.5,by=2)
plotRange=seq(0.5,33.5,length=100)
circleRes=array(dim=length(range))
names(circleRes)=range
for (i in seq_along(1:length(range))) {
y=as.Image(makeBrush(disc, size=2*range[i]))
y=ocontour(y)[[1]]
circleRes[i]=abs(mean(localCurvature(x=y,h=range[i])$curvature, na.rm=TRUE))
}
plot(range, circleRes, ylim=c(0,max(circleRes, na.rm=TRUE)), xlab=Circle Radius, ylab=Curvature, type=p, xlim=range(plotRange))
points(plotRange, 1/plotRange, type=l)

Calculate curvature
f=system.file("images", "sample.png", package="EBImage")
x=readImage(f)
mk=makeBrush(size=21, shape="Gaussian", sigma=9)
x2=filter2(x, filter=mk)
x2=thresh(x2, w=50, h=50)
x2=bwlabel(x2)
contours=ocontour(x2)
curv=localCurvature(x=contours[[2]], h=11)$curvature
I=Image(0, dim=dim(x))
imageData(I)[contours[[2]]+1]=abs(curv)
x2[x2!=2]=0
display(combine(x2, 10*I), title = "Image curvature")

medianFilter 27

medianFilter 2D constant time median filtering

Description

Filters a 16-bit image using Perreault’s modern constant time median filtering algorithm [1].

Usage

medianFilter(x, size, cacheSize=512)

Arguments

x An Image object or an array.

size The sizelength of the square median filter in units of pixels.

cacheSize The L2 cache size of the system CPU in kB.

Details

Median filtering is useful as a smoothing technique, e.g. in the removal of speckling noise.

If x contains multiple frames, the filter will be applied on each frame.

Value

An Image object or an array, containing the filtered version of x.

Author(s)

Joseph Barry, <joseph.barry@embl.de>, 2012

References

[1] S. Perreault and P. Hebert, "Median Filtering in Constant Time", IEEE Trans Image Process
16(9), 2389-2394, 2007

See Also

makeBrush, fft, gblur

Examples

x = readImage(system.file("images", "nuclei.tif", package="EBImage"))
display(x, title=Nuclei)
y = medianFilter(x, 5)
display(y, title=Filtered nuclei)

28 morphology

morphology Perform morphological operations on images

Description

Functions to perform morphological operations on binary images.

Usage

dilate(x, kern)
erode(x, kern)
opening(x, kern)
closing(x, kern)
dilateGreyScale(x, kern)
erodeGreyScale(x, kern)
openingGreyScale(x, kern)
closingGreyScale(x, kern)
whiteTopHatGreyScale(x, kern)
blackTopHatGreyScale(x, kern)
selfcomplementaryTopHatGreyScale(x, kern)

makeBrush(size, shape=c(box, disc, diamond, Gaussian, line), step=TRUE, sigma=0.3, angle=45)

Arguments

x An Image object or an array. x is considered as a binary image, whose pixels of
value 0 are considered as background ones and other pixels as foreground ones.

kern An Image object or an array, containing the structuring element. kern is consid-
ered as a binary image, whose pixels of value 0 are considered as background
ones and other pixels as foreground ones.

size A numeric containing the size of the brush in pixels. This should be an odd
number; even numbers are rounded to the next odd one, i.e., size = 4 has the
same effect as size = 5. If shape is line, size represents the length of the line.

shape A character vector indicating the shape of the brush. Can be box, disc, diamond,
Gaussian or line. Default is box.

step a logical indicating if the brush is binary. Default is TRUE. The argument is
relevant only for the disc and diamond shapes.

sigma An optional numeric containing the standard deviation of the Gaussian shape.
Default is 0.3.

angle An optional numeric containing the angle at which the line should be drawn.
The angle is one between the top of the image and the line.

morphology 29

Details

dilate applies the mask positioning its center over every background pixel (0), every pixel which
is not covered by the mask is reset to foreground (1).

erode applies the mask positioning its center over every foreground pixel (!=0), every pixel which
is not covered by the mask is reset to background (0).

opening is an erosion followed by a dilation and closing is a dilation followed by an erosion. The
same goes for the grayscale versions.

dilateGreyScale applies the mask positioning its center over every pixel of the Image, the output
value of the pixel is the maximum value of the Image covered by the mask.

erodeGreyScale applies the mask positioning its center over every pixel of the Image, the output
value of the pixel is the minimum value of the Image covered by the mask.

whiteTopHatGreyScale subtracts the opening of the Image from the Image

blackTopHatGreyScale subtracts the Image from the closing of the Image

selfcomplementaryTopHatGreyScale is the sum of a white top-hat and a black top-hat, simplified
the difference between closing and opening of the Image

makeBrush generates brushes of various sizes and shapes that can be used as structuring elements.

Operations on grayscale images use an implementation of the Urbach-Wilkinson algorithm[1] and
can only handle flat (i.e. binary) brushes.

Value

dilate, erode, opening, closing, dilateGreyScale, erodeGreyScale, openingGreyScale,
closingGreyScale, whiteTopHatGreyScale, blackTopHatGreyScale and selfcomplementaryTopHatGreyScale
return the transformed Image object or array, after the corresponding morphological operation.

makeBrush generates a 2D matrix containing the desired brush.

Author(s)

Oleg Sklyar, <osklyar@ebi.ac.uk>, 2006 Ilia Kats, <ilia-kats@gmx.net>, 2012

References

[1] E. R. Urbach and M.H.F. Wilkinson, "Efficient 2-D grayscale morphological transformations
with arbitrary flat structuring elements", IEEE Trans Image Process 17(1), 1-8, 2008

Examples

x = readImage(system.file("images", "shapes.png", package="EBImage"))
kern = makeBrush(5, shape=diamond)

display(x)
display(kern, title=Structuring element)
display(erode(x, kern), title=Erosion of x)
display(dilate(x, kern), title=Dilatation of x)

30 normalize

makeBrush
display(makeBrush(99, shape=diamond))
display(makeBrush(99, shape=disc, step=FALSE))
display(2000*makeBrush(99, shape=Gaussian, sigma=10))

normalize Intensity values linear scaling

Description

Linearly scale the intensity values of an image to a specified range.

Usage

S4 method for signature Image
normalize(object, separate=TRUE, ft=c(0,1), inputRange)

S4 method for signature array
normalize(object, separate=TRUE, ft=c(0,1), inputRange)

Arguments

object an Image object or an array

separate if TRUE, normalizes each frame separately

ft a numeric vector of 2 values, target minimum and maximum intensity values
after normalization

inputRange a numeric vector of 2 values, sets the range of the input intensity values; values
exceeding this range are clipped

Details

normalize performs linear interpolation of the intensity values of an image to the specified range
ft. If inputRange is not set the whole dynamic range of the image is used as input. By specifying
inputRange the input intensity range of the image can be limited to [min, max]. Values exceeding
this range are clipped, i.e. intensities lower/higher than min/max are set to min/max.

Value

An Image object or an array, containing the transformed version of object.

Author(s)

Oleg Sklyar, <osklyar@ebi.ac.uk>, 2006-2007 Andrzej Oles, <andrzej.oles@embl.de>, 2013

ocontour 31

Examples

x = readImage(system.file(images, shapes.png, package=EBImage))
x = x[110:512,1:130]
y = bwlabel(x)
display(x, title=Original)

print(range(y))
y = normalize(y)
print(range(y))
display(y, title=Segmented)

ocontour Oriented contours

Description

Computes the oriented contour of objects.

Usage

ocontour(x)

Arguments

x An Image object or an array, containing objects. Only integer values are consid-
ered. Pixels of value 0 constitute the background. Each object is a set of pixels
with the same unique integer value. Objects are assumed connected.

Value

A list of matrices, containing the coordinates of object oriented contours.

Author(s)

Gregoire Pau, <gpau@ebi.ac.uk>, 2008

Examples

x = readImage(system.file("images", "shapes.png", package="EBImage"))
x = x[1:120,50:120]
display(x)
oc = ocontour(x)
plot(oc[[1]], type=l)
points(oc[[1]], col=2)

32 otsu

otsu Calculate Otsu’s threshold

Description

Returns a threshold value based on Otsu’s method, which can be then used to reduce the grayscale
image to a binary image.

Usage

otsu(x, range = c(0, 1), levels = 256)

Arguments

x A Grayscale Image object or an array.

range Numeric vector of length 2 specifying the histogram range used for thresholding.

levels Number of grayscale levels.

Details

Otsu’s thresholding method [1] is useful to automatically perform clustering-based image thresh-
olding. The algorithm assumes that the distribution of image pixel intensities follows a bi-modal
histogram, and separates those pixels into two classes (e.g. foreground and background). The
optimal threshold value is determined by minimizing the combined intra-class variance.

The threshold value is calculated for each image frame separately resulting in a output vector of
length equal to the total number of frames in the image.

The default number of levels corresponds to the number of gray levels of an 8bit image. It is
recommended to adjust this value according to the bit depth of the processed data, i.e. set levels
to 2^16 = 65536 when working with 16bit images.

Value

A vector of length equal to the total number of frames in x. Each vector element contains the Otsu’s
threshold value calculated for the corresponding image frame.

Author(s)

Philip A. Marais <philipmarais@gmail.com>, Andrzej Oles <andrzej.oles@embl.de>, 2014

References

[1] Nobuyuki Otsu, "A threshold selection method from gray-level histograms". IEEE Trans. Sys.,
Man., Cyber. 9 (1): 62-66. doi:10.1109/TSMC.1979.4310076 (1979)

See Also

thresh

paintObjects 33

Examples

x = readImage(system.file("images", "sample.png", package="EBImage"))
display(x)

threshold using Otsus method
y = x > otsu(x)
display(y)

paintObjects Marks objects in images

Description

This function marks objects in images.

Usage

paintObjects(x, tgt, opac=c(1, 1), col=c(red, NA), thick=FALSE)

Arguments

x An Image object in Grayscale color mode or an array containing object masks.
Object masks are sets of pixels with the same unique integer value.

tgt An Image object or an array, containing the intensity values of the objects.

opac A numeric vector of two opacity values for drawing object boundaries and object
bodies. Opacity ranges from 0 to 1, with 0 being fully transparent and 1 fully
opaque.

col A character vector of two R colors for drawing object boundaries and object
bodies. By default, object boundaries are painted in red while object bodies are
not painted.

thick A logical indicating whether to use thick boundary contours. Default is FALSE.

Value

An Image object or an array, containing the painted version of tgt.

Author(s)

Oleg Sklyar, <osklyar@ebi.ac.uk>, 2006-2007

See Also

bwlabel, watershed, computeFeatures, colorLabels

34 propagate

Examples

load images
nuc = readImage(system.file(images, nuclei.tif, package=EBImage))
cel = readImage(system.file(images, cells.tif, package=EBImage))
img = rgbImage(green=cel, blue=nuc)
display(img, title=Cells)

segment nuclei
nmask = thresh(nuc, 10, 10, 0.05)
nmask = opening(nmask, makeBrush(5, shape=disc))
nmask = fillHull(nmask)
nmask = bwlabel(nmask)
display(normalize(nmask), title=Cell nuclei mask)

segment cells, using propagate and nuclei as seeds
ctmask = opening(cel>0.1, makeBrush(5, shape=disc))
cmask = propagate(cel, nmask, ctmask)
display(normalize(cmask), title=Cell mask)

using paintObjects to highlight objects
res = paintObjects(cmask, img, col=#ff00ff)
res = paintObjects(nmask, res, col=#ffff00)
display(res, title=Segmented cells)

propagate Voronoi-based segmentation on image manifolds

Description

Find boundaries between adjacent regions in an image, where seeds have been already identified
in the individual regions to be segmented. The method finds the Voronoi region of each seed on
a manifold with a metric controlled by local image properties. The method is motivated by the
problem of finding the borders of cells in microscopy images, given a labelling of the nuclei in the
images.

Algorithm and implementation are from Jones et al. [1].

Usage

propagate(x, seeds, mask=NULL, lambda=1e-4)

Arguments

x An Image object or an array, containing the image to segment.

seeds An Image object or an array, containing the seeding objects of the already iden-
tified regions.

mask An optional Image object or an array, containing the binary image mask of the
regions that can be segmented. If missing, the whole image is segmented.

propagate 35

lambda A numeric value. The regularization parameter used in the metric, determining
the trade-off between the Euclidean distance in the image plane and the contri-
bution of the gradient of x. See details.

Details

The method operates by computing a discretized approximation of the Voronoi regions for given
seed points on a Riemann manifold with a metric controlled by local image features.

Under this metric, the infinitesimal distance d between points v and v+dv is defined by:

d^2 = ((t(dv)*g)^2 + lambda*t(dv)*dv)/(lambda + 1)

, where g is the gradient of image x at point v.

lambda controls the weight of the Euclidean distance term. When lambda tends to infinity, d tends
to the Euclidean distance. When lambda tends to 0, d tends to the intensity gradient of the image.

The gradient is computed on a neighborhood of 3x3 pixels.

Segmentation of the Voronoi regions in the vicinity of flat areas (having a null gradient) with small
values of lambda can suffer from artifacts coming from the metric approximation.

Value

An Image object or an array, containing the labelled objects.

License

The implementation is based on CellProfiler C++ source code [2, 3]. An LGPL license was granted
by Thouis Jones to use this part of CellProfiler’s code for the propagate function.

Author(s)

The original CellProfiler code is from Anne Carpenter <carpenter@wi.mit.edu>, Thouis Jones
<thouis@csail.mit.edu>, In Han Kang <inthek@mit.edu>. Responsible for this implementation:
Greg Pau.

References

[1] T. Jones, A. Carpenter and P. Golland, "Voronoi-Based Segmentation of Cells on Image Mani-
folds", CVBIA05 (535-543), 2005

[2] A. Carpenter, T.R. Jones, M.R. Lamprecht, C. Clarke, I.H. Kang, O. Friman, D. Guertin, J.H.
Chang, R.A. Lindquist, J. Moffat, P. Golland and D.M. Sabatini, "CellProfiler: image analysis
software for identifying and quantifying cell phenotypes", Genome Biology 2006, 7:R100

[3] CellProfiler: http://www.cellprofiler.org

See Also

bwlabel, watershed

36 resize

Examples

a paraboloid mountain in a plane
n = 400
x = (n/4)^2 - matrix(

(rep(1:n, times=n) - n/2)^2 + (rep(1:n, each=n) - n/2)^2,
nrow=n, ncol=n)

x = normalize(x)

4 seeds
seeds = array(0, dim=c(n,n))
seeds[51:55, 301:305] = 1
seeds[301:305, 101:105] = 2
seeds[201:205, 141:145] = 3
seeds[331:335, 351:355] = 4

lambda = 10^seq(-8, -1, by=1)
segmented = Image(dim=c(dim(x), length(lambda)))

for(i in seq_along(lambda)) {
prop = propagate(x, seeds, lambda=lambda[i])
prop = prop/max(prop)
segmented[,,i] = prop

}

display(x, title=Image)
display(seeds/max(seeds), title=Seeds)
display(segmented, title="Voronoi regions")

resize Spatial linear transformations

Description

The following functions perform all spatial linear transforms: reflection, rotation, translation, resiz-
ing, and general affine transform.

Usage

flip(x)
flop(x)
rotate(x, angle, filter = "bilinear", output.origin = c(0, 0), ...)
translate(x, v, filter = "none", ...)
resize(x, w, h, filter = "bilinear", output.dim = c(w, h), output.origin = c(0, 0), ...)

affine(x, m, filter = c("bilinear", "none"), output.dim, bg.col = "black")

resize 37

Arguments

x An Image object or an array.

angle A numeric specifying the image rotation angle in degrees.

v A vector of 2 numbers denoting the translation vector in pixels.

w, h Width and height of the resized image. One of these arguments can be missing
to enable proportional resizing.

filter A character string indicating the interpolating sampling filter. Valid values are
’none’ or ’bilinear’. See Details.

output.dim A vector of 2 numbers indicating the dimension of the output image. Default is
dim(x) in all transforms except in resize, where it is c(w, h).

output.origin A vector of 2 numbers indicating the output coordinates of the origin in pixels.
Default is c(0, 0).

m A 3x2 matrix describing the affine transformation. See Details.

bg.col Color used to fill the background pixels. The default is "black".

... Arguments to be passed to the affine function, such as output.dim or bg.col

Details

flip mirrors x across the central horizontal (x-)axis.

flop mirrors x across the central vertical (y-)axis.

rotate rotates the image clockwise by the specified angle around the origin. The rotation ori-
gin defaults to the center of the input image and can by changed by modifying the argument
output.origin.

resize resizes the image x to desired dimensions. Resizing center is changed by modifying the
argument output.origin. Zooming, without changing the output dimension, is achieved by setting
the arguments w and h to values different from output.dim.

affine returns the affine transformation of x, where pixels coordinates, denoted by the matrix px,
are transformed to cbind(px, 1)%*%m.

All spatial transformations except flip and flop are based on the general affine transformation.
Spatial interpolation can be one of the following types: none, also called nearest neighbor, where
the interpolated pixel value equals to the closest pixel value, or bilinear, where the interpolated
pixel value is computed by bilinear approximation of the 4 neighboring pixels. The bilinear filter
gives smoother results.

Value

An Image object or an array, containing the transformed version of x.

Author(s)

Gregoire Pau, 2012

See Also

transpose

38 rmObjects

Examples

x <- readImage(system.file("images", "sample.png", package="EBImage"))
display(x)

display(flip(x))
display(flop(x))
display(resize(x, 128))
display(rotate(x, 30))
display(translate(x, c(120, -20)))

m <- matrix(c(0.6, 0.2, 0, -0.2, 0.3, 300), nrow=3)
display(affine(x, m))

rmObjects Object removal and re-indexation

Description

The rmObjects functions deletes objects from an image by setting their pixel intensity values to 0.
reenumerate re-enumerates all objects in an image from 0 (background) to the actual number of
objects.

Usage

rmObjects(x, index, reenumerate = TRUE)

reenumerate(x)

Arguments

x An Image object in Grayscale color mode or an array containing object masks.
Object masks are sets of pixels with the same unique integer value.

index A numeric vector (or a list of vectors if x contains multiple frames) containing
the indexes of objects to remove in the frame.

reenumerate Logical, should all the objects in the image be re-indexed afterwards (default).

Value

An Image object or an array, containing the new objects.

Author(s)

Oleg Sklyar, <osklyar@ebi.ac.uk>, 2006-2007

See Also

bwlabel, watershed

stackObjects 39

Examples

make objects
x = readImage(system.file(images, shapes.png, package=EBImage))
x = x[110:512,1:130]
y = bwlabel(x)

number of objects found
max(y)

display(normalize(y), title=Objects)

remove every second letter
objects = list(

seq.int(from = 2, to = max(y), by = 2),
seq.int(from = 1, to = max(y), by = 2)
)

z = rmObjects(combine(y, y), objects)

display(normalize(z), title=Object removal)

the number of objects left in each image
apply(z, 3, max)

perform object removal without re-enumerating
z = rmObjects(y, objects, reenumerate = FALSE)

labels of objects left
unique(as.vector(z))[-1L]

re-index objects
z = reenumerate(z)
unique(as.vector(z))[-1L]

stackObjects Places detected objects into an image stack

Description

Places detected objects into an image stack.

Usage

stackObjects(x, ref, combine=TRUE, bg.col=black, ext)

Arguments

x An Image object or an array containing object masks. Object masks are sets of
pixels with the same unique integer value.

ref An Image object or an array, containing the intensity values of the objects.

40 stackObjects

combine If x contains multiple images, specifies if the resulting list of image stacks with
individual objects should be combined using combine into a single image stack.

bg.col Background pixel color.

ext A numeric controlling the size of the output image. If missing, ext is estimated
from data. See details.

Details

stackObjects creates a set of nbobj images of size (2*ext+1, 2*ext+1), where nbobj is the
number of objects in x, and places each object of x in this set.

If not specified, ext is estimated using the 95% quantile of 2*sqrt(g.l1), where g.l1 is the semi-
major axis descriptor extracted from computeFeatures.moment, taken over all the objects of the
image x.

Value

An Image object containing the stacked objects contained in x. If x contains multiple images and if
combine is TRUE, stackObjects returns a list of Image objects.

Author(s)

Oleg Sklyar, <osklyar@ebi.ac.uk>, 2006-2007

See Also

combine, tile, computeFeatures.moment

Examples

simple example
x = readImage(system.file(images, shapes.png, package=EBImage))
x = x[110:512,1:130]
y = bwlabel(x)
display(normalize(y), title=Objects)
z = stackObjects(y, normalize(y))
display(z, title=Stacked objects)

load images
nuc = readImage(system.file(images, nuclei.tif, package=EBImage))
cel = readImage(system.file(images, cells.tif, package=EBImage))
img = rgbImage(green=cel, blue=nuc)
display(img, title=Cells)

segment nuclei
nmask = thresh(nuc, 10, 10, 0.05)
nmask = opening(nmask, makeBrush(5, shape=disc))
nmask = fillHull(bwlabel(nmask))

segment cells, using propagate and nuclei as seeds
ctmask = opening(cel>0.1, makeBrush(5, shape=disc))

thresh 41

cmask = propagate(cel, nmask, ctmask)

using paintObjects to highlight objects
res = paintObjects(cmask, img, col=#ff00ff)
res = paintObjects(nmask, res, col=#ffff00)
display(res, title=Segmented cells)

stacked cells
st = stackObjects(cmask, img)
display(st, title=Stacked objects)

thresh Adaptive thresholding

Description

Thresholds an image using a moving rectangular window.

Usage

thresh(x, w=5, h=5, offset=0.01)

Arguments

x An Image object or an array.

w, h Width and height of the moving rectangular window.

offset Thresholding offset from the averaged value.

Details

This function returns the binary image resulting from the comparison between an image and its fil-
tered version with a rectangular window. It is equivalent of doing {f = matrix(1, nc=2*w+1, nr=2*h+1) ; f=f/sum(f) ; x>(filter2(x, f)+offset)}
but slightly faster. The function filter2 provides hence more flexibility than thresh.

Value

An Image object or an array, containing the transformed version of x.

Author(s)

Oleg Sklyar, <osklyar@ebi.ac.uk>, 2005-2007

See Also

filter2

42 tile

Examples

x = readImage(system.file(images, nuclei.tif, package=EBImage))
display(x)
y = thresh(x, 10, 10, 0.05)
display(y)

tile Tiling/untiling images

Description

Given a sequence of frames, tile generates a single image with frames tiled. untile is the inverse
function and divides an image into a sequence of images.

Usage

tile(x, nx=10, lwd=1, fg.col="#E4AF2B", bg.col="gray")
untile(x, nim, lwd=1)

Arguments

x An Image object, an array or a list of these objects.

nx The number of tiled images in a row.

lwd The width of the grid lines between tiled images, can be 0.

fg.col The color of the grid lines.

bg.col The color of the background for extra tiles.

nim A numeric vector of 2 elements for the number of images in both directions.

Details

After object segmentation, tile is a useful addition to stackObjects to have an overview of the
segmented objects.

Value

An Image object or an array, containing the tiled/untiled version of x.

Author(s)

Oleg Sklyar, <osklyar@ebi.ac.uk>, 2006-2007

See Also

stackObjects

transpose 43

Examples

make a set of blurred images
img = readImage(system.file("images", "sample-color.png", package="EBImage"))[257:768,,]
x = resize(img, 128, 128)
xt = list()
for (t in seq(0.1, 5, len=9)) xt=c(xt, list(gblur(x, s=t)))
xt = combine(xt)
display(xt, title=Blurred images)

tile
xt = tile(xt, 3)
display(xt, title=Tiles)

untile
xu = untile(img, c(3, 3))
display(xu, title=Blocks)

transpose Image Transposition

Description

Transposes an image by swapping its first two, i.e., spatial dimensions.

Usage

transpose(x, coerce = FALSE)

Arguments

x an Image object or an array.

coerce controls the coercion of x. By default the output is of the same class as the input.
If coerce = TRUE then x becomes coerced to an array.

Details

The transposition of an image is performed by swapping the X and Y indices of its array represen-
tation.

Value

An Image object or an array, containing x with its XY dimensions transposed. When coerce = TRUE
the output is coerced to an array.

44 watershed

Note

transpose is particularly useful when converting between different representations of image data
in which the X and Y dimensions are swapped. Typically, in such context only the actual pixel
data matters. For performance reasons it is best practice to issue the function directly on an Image
object with coerce = TRUE rather than to extract its image data first and only then perform the
transposition, or to transpose the Image object and coerce it to an array afterwards.

Author(s)

Andrzej Oles, <andrzej.oles@embl.de>, 2012

See Also

flip, flop, rotate

Examples

x = readImage(system.file("images", "sample-color.png", package="EBImage"))
y = transpose(x)

display(x, title=Original)
display(y, title=Transposed)

performing the transposition of an image twice should result in the original image
z = transpose(y)
identical(x, z)

watershed Watershed transformation and watershed based object detection

Description

Watershed transformation and watershed based object detection.

Usage

watershed(x, tolerance=1, ext=1)

Arguments

x An Image object or an array.
tolerance The minimum height of the object in the units of image intensity between its

highest point (seed) and the point where it contacts another object (checked for
every contact pixel). If the height is smaller than the tolerance, the object will
be combined with one of its neighbors, which is the highest. Tolerance should
be chosen according to the range of x. Default value is 1, which is a reasonable
value if x comes from distmap.

ext Radius of the neighborhood in pixels for the detection of neighboring objects.
Higher value smooths out small objects.

watershed 45

Details

The algorithm identifies and separates objects that stand out of the background (zero). After the
water fill, the source image is flipped upside down and the resulting valleys (values with higher
intensities) are filled in first until another object or background is met. The deepest valleys (pixels
with highest intensity) become indexed first, starting from 1.

The function bwlabel is a simpler, faster alternative to segment connected objects from binary
images.

Value

An Grayscale Image object or an array, containing the labelled version of x.

Author(s)

Oleg Sklyar, <osklyar@ebi.ac.uk>, 2007

See Also

bwlabel, propagate

Examples

x = readImage(system.file(images, shapes.png, package=EBImage))
x = x[110:512,1:130]
display(x, title=Binary)
y = distmap(x)
display(normalize(y), title=Distance map)
w = watershed(y)
display(normalize(w), title=Watershed)

Index

∗Topic manip
otsu, 32
thresh, 41
tile, 42
watershed, 44

∗Topic package
EBImage, 13
EBImage-defunct, 15

[,Image,ANY,ANY,ANY-method (Image), 21
[,Image-method (Image), 21

affine (resize), 36
as.array.Image (Image), 21
as.Image (Image), 21
as.raster.Image (Image), 21

blackTopHatGreyScale (morphology), 28
blur, 18
blur (EBImage-defunct), 15
bwlabel, 2, 5, 9, 17, 33, 35, 38, 45

channel, 3
closing (morphology), 28
closingGreyScale (morphology), 28
cmoments (EBImage-defunct), 15
Color (Image), 21
colorLabels, 3, 5, 33
colorMode, 4
colorMode (Image), 21
colormode (Image), 21
colorMode<- (Image), 21
combine, 6, 40
combine,array,array-method (combine), 6
combine,Image,Image-method (combine), 6
combine,list,missing-method (combine), 6
combine,matrix,matrix-method (combine),

6
computeFeatures, 3, 7, 33
computeFeatures.moment, 40
convolve, 18

dilate (morphology), 28
dilateGreyScale (morphology), 28
display, 10, 22, 24
distmap, 11
drawCircle, 12
drawfont (EBImage-defunct), 15
drawtext (EBImage-defunct), 15

EBImage, 13
EBImage-defunct, 15
edgeFeatures (EBImage-defunct), 15
edgeProfile (EBImage-defunct), 15
equalize, 16
erode (morphology), 28
erodeGreyScale (morphology), 28

fft, 18, 27
fillHull, 17
filter2, 18, 20
flip, 44
flip (resize), 36
floodFill, 19
flop, 44
flop (resize), 36

gblur, 20, 27
getFeatures (EBImage-defunct), 15
getFrame (Image), 21
getNumberOfFrames (Image), 21
Grayscale (Image), 21

haralickFeatures (EBImage-defunct), 15
haralickMatrix (EBImage-defunct), 15
hist,Image-method (Image), 21
hullFeatures (EBImage-defunct), 15

Image, 6, 21, 24
image,Image-method (Image), 21
Image-class (Image), 21
imageData (Image), 21
imageData<- (Image), 21

46

INDEX 47

io, 23
is.Image (Image), 21

localCurvature, 25

makeBrush, 18, 20, 27
makeBrush (morphology), 28
Math2,Image-method (Image), 21
median.Image (Image), 21
medianFilter, 27
moments (EBImage-defunct), 15
morphology, 28

normalize, 5, 30
normalize,array-method (normalize), 30
normalize,Image-method (normalize), 30
normalize,matrix-method (normalize), 30
numberOfFrames (Image), 21

ocontour, 26, 31
opening (morphology), 28
openingGreyScale (morphology), 28
Ops,Image,Image-method (Image), 21
Ops,Image,numeric-method (Image), 21
Ops,numeric,Image-method (Image), 21
otsu, 32

paintObjects, 3, 33
print.Image (Image), 21
propagate, 3, 9, 15, 34, 45

quantile.Image (Image), 21

readImage, 22
readImage (io), 23
readJPEG, 24
readPNG, 24
readTIFF, 24
reenumerate (rmObjects), 38
resize, 36
rgbImage (channel), 3
rmObjects, 38
rmoments (EBImage-defunct), 15
rotate, 44
rotate (resize), 36

selfcomplementaryTopHatGreyScale
(morphology), 28

show,Image-method (Image), 21
smoments (EBImage-defunct), 15

stackObjects, 39, 42
standardExpandRef (computeFeatures), 7

thresh, 32, 41
tile, 40, 42
toRGB (channel), 3
translate (resize), 36
transpose, 37, 43

untile (tile), 42

watershed, 3, 33, 35, 38, 44
whiteTopHatGreyScale (morphology), 28
writeImage, 22
writeImage (io), 23
writeJPEG, 24
writePNG, 24
writeTIFF, 24

zernikeMoments (EBImage-defunct), 15

	bwlabel
	channel
	colorLabels
	combine
	computeFeatures
	display
	distmap
	drawCircle
	EBImage
	EBImage-defunct
	equalize
	fillHull
	filter2
	floodFill
	gblur
	Image
	io
	localCurvature
	medianFilter
	morphology
	normalize
	ocontour
	otsu
	paintObjects
	propagate
	resize
	rmObjects
	stackObjects
	thresh
	tile
	transpose
	watershed
	Index

