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Abstract
Objective

To provide data classes and methods to facilitate the analysis of whole geasme a
ciation studies in the R language for statistical computing.

M ethods

We have implemented data classes in which each genotype call is stored giea sin
byte. At this density, data for single chromosomes derived from largéestiashd
new high-throughput gene chip platforms can be handled in memory. Whese
object—oriented programming model introduced with version 4 of the S-plls pa
age, usually termed “S4 methods”.

Results

At the current state of development the package only supports popwatised
studies, although we would hope to provide support for family—basedkestsdon.
Both quantitative and qualitative phenotypes may be analysed. Flexibleiatsso
testing functions are provided which can carry out single SNP tests whbiatnot

for potential confounding by quantitative and qualitative covariatessTegolving
several SNPs taken together as “tags” are also supported. Efficikntation of
pair-wise linkage disequilibrium measures is implemented and data input fusiction
include a function which can download data directly from the internationpM#g0
project website.
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| ntroduction

Most of the computational tools for analysis of genetic daw@implemented as “stand-
alone” programs and the practical analyst must become adeapterfacing these pro-
grams via intermediate files. There are, however, condiledvantages in integrating
such tools within a general-purpose statistical computimgronment which offers high
quality graphics and extensive data visualization tools.eWive were about to embark
on a very large scale whole-genome association study weettb take the opportunity
to attempt to design such a system. In this task we were aigedibexperience of a
whole—genome association study of some 13,000 non-synmungy8NPs in 4,000 cases
and 4,000 controls [1], a study which has taught us the needtically evaluate the data
using the full armoury of data analytic tools.

Although several statistical systems were possible cates] we chose the R lan-
guage and environment for statistical computational.rtq@oints in its favour were

1. it has great flexibility of the data structures it can handl
2. it supports object—oriented programming constructs,

3. it has a clearly defined “foreign language” interfacepwaihg inclusion of efficient
modules coded in Fortran, C oHG-,

4. there is an existing “genetics” package which offers mamgller scale tools,

5. it is widely used in bioinformatics due, in part, to the “Bamductor” project
(http://www.bioconductor.org),

6. finally, it is open—source software, distributed under@NU public licence
(http://www.gnu.org/copyleft/gpl.html).

However, there was one factor which argued against use of lRelgathat R requires
data to be held within RAM memory. Further, R, like its commailtgidistributed cousin
S-plus, is profligate in its use of memory to store data obje&treal concern was, there-
fore, whether R could deal with the large volumes of data gead by whole—genome
association studies. The current generation of whole-ger®NP chips yield approxi-
mately 500,000 SNP genotypes and association studies toolde as many as 10,000
subjects. Thus the data could extend up to B° genotypes. However, little would be
lost by storing the data by chromosome and this would redueeniaximum data object
size by an order of magnitude. Further, R has a data type €tefraw”, and only fully
implemented in versions 2.3 and later) which stores singte kariables. Use of this
data type reduces the maximum data object size to 500 Mb —witdiin the capacity of
modern computers and R’s current maximum vector length<2L ~ 2 x 10°. Since, a
SNP genotype could theoretically be stored in 2 bits, evegetadatasets could be stored
by packing 4 genotypes to each single byte variable, but dggd this to be unnecessary
at present.

| mplementation of the "snp.matrix" class

The usual object for storing datasets in R is tiaa frame. This is convenient in that
different types of variable (character, numeric, categgrifactors” etc.) may be held
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within the same object. However this carries a considerablesekeeping overhead. In-
stead we decided to store SNP data as a simple matrix, withgeanode “raw”. Rows
of the matrix correspond to samples (and, usually, to std)jemd columns correspond
with different SNPs. The row names of each matrix will be sgbfsample) identifiers
which provide a link to the row names of a data frame contginire rest of the subject
data, such as phenotype. We term this the “subject suppatid. Similarly the column
names of the SNP matrix are SNP identifiers which link to a “SNpport “ data frame,
which contains information about each SNP such as chromegmsition, RS number,
and so on.

To facilitate use of such objects we employed the objearded programming fea-
tures implemented in the R “methods” package. These ardlyseéerred to as “S4
methods” since they were introduced in version 4 of the S-package. That implemen-
tation is described in the “green book” of Chambers[2]. Theent R implementation
differs from the original implementation in a number of wafgdly documented on the R
developers web siteh{tp://developer.r-project.org/). For the matrix holding SNP
data, we have defined the classp.matrix". This has storage mode raw, and inherits
methods from the simple matrix class. Elements are code&xq denoting missing data, or
1, 2 or 3 for the three possible genotypes (with homozygadedd or 3 and heterozygots
coded 2). For the X chromosome, we further defined"thiesnp .matrix" class. This
inherits from the"snp.matrix" class, but has an additional slot containing $e of
each subject. Females are coded in the same way as for aatioSbiAs, and males are
coded as if they were homozygous females. Finally we defieetby classes,snp" and
"X.snp" which hold single rows or columns of the corresponding mathjects.

Several standard R functions are overloaded to behavectlgrmeth the objects of
the new classes. These include the sub-setting operatawhich is used to extract por-
tions of a matrix, the functioas .na () which tests for missing values, and the functions
rbind(), cbind() which join matrices to make larger matrices. The generiction
summary () computes, for each SNP in the matrix, the call rate (propoif non-missing
values), the minor allele frequency, the genotype freqesnand az-test for Hardy-
Weinberg equilibrium. These results are returned as a dataef For speed, these com-
putations (and those in most other functions requiringresite numerical calculation)
were programmed in C. Using a 2.2GHz Opteron 275 processmgkt 1.5 seconds to
compute the summary of a test dataset with 13,549 autosonfas $heasured in 7,276
subjects. A simple illustrative example is shown below

summ <- summary(chroml)
chromla <- chroml[, summ$MAF>0.01]

Here,"chrom1" is the original SNP matrix and a new matrixhromia", is computed
containing only those SNPs with minor allele frequency exiveg 1%.

For integration with the rest of the R system, it is also neagsto define “coercion”
functions for conversion between the new classes of objetttee conventional R classes.
For S4 classes these functions take the féem(object, class)". We have defined
such functions to coerce SNP matrix objects to simple nwakand character matrix
types. We have also defined functions for coercion of sim@é&ioes and data frames to
SNP matrices although, because of the space requiremetiteée standard types, these
functions will probably only find a use for small illustragidatasets. Finally, we provide
coercion functions for objects of clagsnp" and"X.snp", representing single SNPs, to
objects of clas$genotype" in the R “genetics” package.
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Statistical tests of association

At present we have only implemented functions for testinggenotype—phenotype as-
sociation in population—based studies since the projeatiwfiormed the impetus for this
work is population—based. It is hoped that functions for ifghased studies will be

added at a later date.

The simplest and fastest function carries out 1 and 2 dedrizeemlom (df) tests for
association between phenotype and SNPs, taken one at aTtimael df test is the usual
Cochran-Armitage test and the 2 df test is the conventionatddaian chi-squared test
for the 3x 2 contingency table. An example of its use is

res <- single.snp.tests(cc, data=subject.data, snp.data=chroml)

Here,"cc" is a case-control indicator found in the subject suppom&#ésubject .data",
and the function call will compute 1 and 2 df associationgést every SNP in the SNP
matrix "chrom1". In our dataset of 13,549 SNPs in 7,276 subjects, these datigms
took 13.5 CPU seconds.

The "single.snp.tests" function will also compute “stratified” versions of these
tests. These test for genotype—phenotype associatiomvpidipulation strata defined by
a third variable. The 1 df test is a generalization of the Cachkrmitage test due to
Mantel[3] and the 2 df test is based on the same pringiplecalculating the “observed
minus expected” scores and their varianegthin strata and then summing both score
and variance across strata . In our hypothetical examplieifsubject support frame
also contained a categorical factaregion" giving geographical region of residence, we
could protect against a possible confounding effect okd#iht geographical distribution
of cases and controls by using the command

res <- single.snp.tests(cc, region, data=subject.data, snp.data=chroml)

This refinement adds scarcely at all to computing time. Irrealexample, the cases and
controls were distributed across 12 geographical regioh$hie stratified tests took only
13.6 CPU seconds.

The remaining two functions for association testing areedams score tests in gener-
alized linear models (GLMs)[4]. First, a “base” GLM, whicbrins the null hypothesis,
is fitted. A test for additional effects of new terms in the rabi$ then carried out by
computing the “score” vector and its variance. The scoréoras the first derivative of
the log likelihood function with respect to the additionalrameters to be introduced in
the model and an estimate of its variance is obtained fromntfoemation matrix. In
our implementation, the dependant variable may be assunrteal/e a distribution drawn
from one of the binomial, Poisson, Gaussian or gamma fasniied the “link” function
which relates the expected value of the dependent varialtleet linear model may be
one of the logit, log, identity or inverse functions.If desl, a variance estimate which
is robust against misspecification of the distribution fgrmay be used in place of the
model-based estimate[5]. This may be further extendedeimtainner usually described
as the “Huber-White” approach [6] to allow for the case in whimits are not mutually
independent but fall into “clusters” of correlated obseivas.

In the first function,"snp.rhs.tests", we enter SNPs into a GLM on the right hand
sidei.e. as predictor variables, with the phenotype as dependeiatblar We first fit a
base GLM, and then test for addition of each SNP into this md0ely the “additive”
component of the SNP is considered, so that each SNP is dateeequantitative variable
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coded 0, 1 or 2, providing a 1 df test. In the simplest cass,isiformally the same as the
Cochran-Armitage test. For example, in our hypotheticah®gda, these could be could
be calculated by the command

crude <- snp.rhs.tests(cc ~ 1, family="binomial",
data=subject.data, snp.data=chroml)

Here the argumentcc ~ 1" is a model formula indicating a base model containing only
an intercept. The stratified tests could be calculated by

res <- snp.rhs.tests(cc ~ strata(region), family="binomial",
data=subject.data, snp.data=chroml)

The use of the'strata" function in the base model formula is borrowed from the “sur-
vival” package in R. It allows the program to exploit a compiataal simplification which
can be achieved if the GLM contains a stratification. Thisgdification is particularly
dramatic if there are a large number of strata and if, as tieeemodel containsnly

a stratification. In this latter case, no iteration is thequieed to fit the base GLM by
maximum likelihood. If, instead, we were to invoke the fuantas follows:

res <- snp.rhs.tests(cc ~ region, family="binomial",

data=subject.data, snp.data=chroml)

where"region" is a factor onM levels, then region would enter the modelMs- 1
indicator variables and the computational effort in fittitng base model would be the
same as fitting a logistic regression with— 1 covariates. Computation times in this case
depend markedly on the proportion of genotype data that assimg. If there are no
missing genotypes, the base GLM needs only to be fitted onde@mputation is very
fast indeed. However, if genotypes are missing, the base Ghdld be refitted each
time, using only the subset of subjects with observed ggmstyln practise, we can skip
this refitting if the proportion of missing genotype datamsasl. The default behaviour
of the function is somewhat conservative, refitting if thegmrtion of missing genotypes
exceeds 1%). In our real example, which contained a largeiah@d missing genotypes,
calculation of the stratified tests took 21.7 seconds withaishe"strata" function and
258 seconds without.

The "snp.rhs.tests" function can also calculate tests for simultaneous inclusi
of several “tag” SNPs in the phenotype model, the null hypsit being that there is
no association with any of the SNPs. These tests are closklied to Hotelling’sT?
statistics[9] the use of which has been proposed by sevettabes [10, 11, 12, 13]. They
are specified by a further argument to the function, whiclvides alist of the sets of
SNPs to be tested. Thus suppose we wish to to test the grog#éRs in columng1, 2,
3}, {4, 6}, {5, 7, 9 etc., then this could be achieved by

taglist <- list(c(1,2,3), c(4,6), c(5, 7, 9, ...)
res <- snp.rhs.tests(cc ~ region, family="binomial",
data=subject.data, snp.data=chroml, tests=taglist)

Currently tag SNPs are entered only as “main effects”, sottimdegrees of freedom
for each test is equal to the number of SNPs in the group, sitihese is very strong lin-
ear dependency between them, when one or more will be droppeave have argued
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elsewhere[13], this is optimal when linkage disequilibni(LD), as measured by Lewon-
tin's D/, between SNPs within a group is close to one. If there are acammecombinant
haplotypes, however, power can be increased by additiomt#raction terms” and we
hope to allow for this in future releases. Sets of SNPs sudliuatrated by"taglist"

in the above example will not usually be entered by hand mrianner, but sets likely to
be informative if taken together will either be availablerfr the process used in design
of the genotyping chip, or can be calculated based on linkigggquilibrium measures.
Tools for analysis of linkage disequilibrium in large-se&NP data will be discussed in
the next section.

The second function for GLM-based testsnpp. lhs.tests", as its name suggests,
considers each SNP on the left hand side of a GléMas the dependent variable. Each
autosomal SNP genotype is treated as a binomial variate twith“trials”. The logit
link function is used so that the GLM is formally the same as libgistic regression
model. Note that this assumption implies Hardy-Weinbengjldayium conditional upon
any covariates fitted in the base model, but this assump#arbe relaxed by use of the
robust variance estimate. The "base” model and additi@nalg to be tested are specified
using model formulae which omit the dependent variable. tRersimplest case of an
unstratified 1 df test similar to the Cochran-Armitage tds, ise of the function would
be as follows:

res <- snp.lhs.tests(chroml, ~ 1, ~ cc, data=subject.data,
robust=TRUE)

This tests the effect of adding the case/control indicadaa base logistic model which
takes each SNP genotype as dependent variable and inclolgesnantercept term. The
equivalent stratified tests would be produced by

res <- snp.lhs.tests(chroml, ~ strata(region), ~ cc,
data=subject.data, robust=TRUE)

or, at much greater computational expense, by

res <- snp.lhs.tests(chroml, ~ region, ~ cc,
data=subject.data, robust=TRUE)

In our real example, the times taken for these commands wkfe ghd 280 seconds
respectively.

A natural question is which of the two GLM tests is the “cotteamne? It is well-
known in epidemiology that, even when subjects are samearding to disease status,
as in case—control studies, a logistic regression modetiwtneats disease status as the
outcome variable reproduces identical estimates andn@esfor odds ratios for categor-
ical exposures[7]. In this case, both directions of arguntesad to identical conclusions.
In general, both approaches are valid and the choice bettheem should be made on
pragmatic grounds. For case—control studies, even thdiuggems unnatural, the logis-
tic regression model with disease status as outcome is almasiably preferred since
it avoids complex or restrictive models for potentially idriate risk factors. In our
setting, pragmatic considerations should also apply. tigg@henotype as outcome au-
tomatically avoids the assumption of Hardy-Weinberg elguum for the distribution of
genotype, and easily implements generalized multi—loests phenotype on the left hand
side of the model formula is to carry out multi-locus testéile; when SNP genotype is
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the outcome variable, avoidance of this assumption regjtine use of “robust” variance
estimates. the discussion of these issues in relation tplsagrbased on the values of
guantitative phenotypes has been discussed by Wadtate[8].

Of course, it is better to carry out these crude and stratifigftests using the simpler
and faster'single.snp.tests" function. However, the GLM tests are more flexible.
For example, they would allow adjustment for populationstiixture using continuous
scores derived from principle components analysis[14]othar example of this greater
flexibility is that "snp. 1hs.tests" could be used to test for allele frequency differences
between geographical regions:

res <- snp.lhs.tests(chroml, ~ strata(cc), ~ region,
data=subject.data, robust=TRUE)

Linkage disequilibrium

Much has been written concerning calculation of measuréslaige disequilibrium be-
tween pairs of SNPs. The main computational problem is uéisol of unknown haplo-
type phase. In a population-based study we observe &&ntingency table of genotype
counts, while we would like to have thex22 table of haplotype counts. This is usually
approached by maximum likelihood estimation using the E§pathm [15] but we use a
different computational method, briefly outlined below.

The genotype and haplotype frequencies are illustratedleTl. It is thee subjects
who are heterozygous at both loci that have unknown haptgtyyase. Assuming Hardy—
Weinberg equilibrium in the population, the multinomiabpabilities for the % 2 table
of haplotype frequencies may be estimated by maximum hkeld and, in common with
many “missing data” problems, at the solution the uncendiservations are distributed
between possible states acording to expectation. Thuse iexpected proportion of the
doubly heterozygous subjects to carry the haplotypes, U-V) is p, andg = (1— p)
is the expected proportion to carny{/, U—v) then, at the maximum likelihood solution,
the ratiop/q is equal to the odds ratio in thex22 table of haplotype frequencies. Thus
we have

A = 2a+b+d+pe
B = 2c+b+f+qe
C = 29+h+d+qge
D = 2i+h+f+pe

p/a = (AD)/(BC)

This leads to a cubic equation pwhich may be solved directly using standard methods
available in the GNU Scientific Libraryhtp: //www.gnu.org/software/gsl/). This is
not only computational faster than the EM algorithm, whisliterative, but the presence
of multiple roots is immediately obvious and it is trivial $elect the root with the larger
likelihood. Once we have solved fgrand computed the table of haplotype frequencies,
it is trivial to calculate any measure of disequilibriumydifich the most important aif@’
andr?[16].

The R function which performs these calculation8lg. snp". Its simplest use is
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res <- 1d.snp(chroml, depth = 100)

This calculates LD measures between each SNP and the 10thoeig on either side of
it. The result, heréres", is an object of clas$snp . dprime"; this basically a list of four
band—diagonal matrices, in compact storage mode, holdihges ofD’, r2, r, and LOD
(the log likelihood ratio comparing the hypotheses of asgmn and no associonation
between loci). We envisage that the major use of these fumivill be, in conjunction
with data from the HapMap project[17], calculation of “ta§NPs for defined regions,
and identification of clusters of SNPs for use in multipleFSassociation tests. When ap-
plied to the HapMap data for 30 trios from the CentrEtdde du Polymorphism Humain
collection (CEU), treated as unrelated individuals, thewalion of LD measures for the
300,000 SNPs on chromosome 1 to depth 100 took 73 seconds.

For visualization, we provide the functidplot. snp.dprime", which displays a di-
agram similar to that available from the familiar Haplovisaftware[18]
(http://www.broad.mit.edu/mpg/haploview/) as an encapsulated postscript (eps) file.
Optionally, this can include annotation which, after casien of the eps file to portable
document format (pdf), can be displayed by Acrobat Reader
(http://www.adobe.com/products/acrobat/) (although not, currently, by other pdf view-
ers).

Extension of the computations to deal with data from nucfaarilies 9. case—
parent trios) should not be difficult; one would use only p&sd.e. founders), for estima-
tion of the two-SNP haplotype frequencies, but the phaseasfynof thee heterozygous
genotypes of Table 1 will be resolvable given offspring ggpe. For the remainder, the
same method as outlined above should be satisfactory. Howéis is not implemented
at the time of writing.

Data input and output

Eventually the package will need to include data input reegifor a number of input
file layouts and formats. Currently we have three input raginThe most flexible is
"read.snp.long". This reads a “long” data file in which each SNP call is on alging
line, preceded by sample and snp identifiers. Each line canantain a confidence
score, allowing filtering of calls to be treated as valid.

Two commonly used “wide” formats are also supported. Thetion"read.snp.pedfile"
reads “pedfiles” in which there is one line of data per subgmihmencing with six stan-
dard fields describing relationship between subjects {ij,asex, and disease status, and
followed by genotypes, coded as pairs of alleles. The thipdt routine reads “HapMap”
style input files, in which there is one line of data for eaclPS8bmmencing with some
data about the SNP, and followed by the genotypes recorded the subjects in the col-
lection. Since a major use of this function will be to readadadm the HapMap project,
and these data are still somewhat volatile, this functiam @awnload data direct from
the HapMap web site hftp://www.hapmap.org/). Thus, to download and read in the
chromosome 1 data for the CEU trios:

folder <- "http://www.hapmap.org/genotypes/latest/fwd_strand/non-redundant"
file <- "genotypes_chrl_CEU_r21 _nr_fwd.txt.gz"
ceu.l <- read.HapMap.data(paste(folder, file, sep="/"))
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(to avoid an inordinately long line, the folder and file nanh@se been entered as two
strings and “pasted” together). The resukteu. 1", will contain a list with two elements
containing the SNP matrix and a SNP support data frame (&susyjipport file for the
CEU trios would have to be downloaded separately). Thesecdaizern approximately
300,000 SNPs in 90 subjects; the resultasiip.matrix" data object occupies about
40Mb.

The package contains one output functidwrite.snp.matrix", modelled closely
on the standard R functionwrite.table", which writes a data frame as a text file.
Currently genotypes are written as single numbers (0, 1,;agr2pter flexibility will be
Incorporated as necessary. The main use of this functianfectlitate export of data to
other programs.

Discussion

As is apparent from the above description, further work iseissary for this package to
provide a truly comprehensive set of tools for the analysislmle—genome association
studies. Nevertheless, even in its present state it prevatds to do much of what is re-

quired, at least for population—based studies and new igebs can be added with little
difficulty. The current version of the p[ackage, provisitywaamed"snpMatrix", may

be downloaded from the web site of the first auth@ktp : / /www-gene . cimr.cam.ac.uk/clayton/).
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Tablesand Figures
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Table 1: Genotype and haplotype frequencies for two SNPs



