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Abstract

Objective

To provide data classes and methods to facilitate the analysis of whole genome asso-
ciation studies in the R language for statistical computing.

Methods

We have implemented data classes in which each genotype call is stored as a single
byte. At this density, data for single chromosomes derived from large studies and
new high-throughput gene chip platforms can be handled in memory. We usethe
object–oriented programming model introduced with version 4 of the S-plus pack-
age, usually termed “S4 methods”.

Results

At the current state of development the package only supports population–based
studies, although we would hope to provide support for family–based studies soon.
Both quantitative and qualitative phenotypes may be analysed. Flexible association
testing functions are provided which can carry out single SNP tests which control
for potential confounding by quantitative and qualitative covariates. Tests involving
several SNPs taken together as “tags” are also supported. Efficient calculation of
pair-wise linkage disequilibrium measures is implemented and data input functions
include a function which can download data directly from the international HapMap
project website.
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Introduction

Most of the computational tools for analysis of genetic dataare implemented as “stand-
alone” programs and the practical analyst must become adeptat interfacing these pro-
grams via intermediate files. There are, however, considerable advantages in integrating
such tools within a general-purpose statistical computingenvironment which offers high
quality graphics and extensive data visualization tools. When we were about to embark
on a very large scale whole-genome association study we decided to take the opportunity
to attempt to design such a system. In this task we were aided by our experience of a
whole–genome association study of some 13,000 non-synonymous SNPs in 4,000 cases
and 4,000 controls [1], a study which has taught us the need tocritically evaluate the data
using the full armoury of data analytic tools.

Although several statistical systems were possible candidates, we chose the R lan-
guage and environment for statistical computational. Strong points in its favour were

1. it has great flexibility of the data structures it can handle,

2. it supports object–oriented programming constructs,

3. it has a clearly defined “foreign language” interface, allowing inclusion of efficient
modules coded in Fortran, C or C++,

4. there is an existing “genetics” package which offers manysmaller scale tools,

5. it is widely used in bioinformatics due, in part, to the “Bioconductor” project
(http://www.bioconductor.org),

6. finally, it is open–source software, distributed under the GNU public licence
(http://www.gnu.org/copyleft/gpl.html).

However, there was one factor which argued against use of R, namely that R requires
data to be held within RAM memory. Further, R, like its commercially distributed cousin
S-plus, is profligate in its use of memory to store data objects. A real concern was, there-
fore, whether R could deal with the large volumes of data generated by whole–genome
association studies. The current generation of whole–genome SNP chips yield approxi-
mately 500,000 SNP genotypes and association studies couldinvolve as many as 10,000
subjects. Thus the data could extend up to 5×109 genotypes. However, little would be
lost by storing the data by chromosome and this would reduce the maximum data object
size by an order of magnitude. Further, R has a data type (termed “raw”, and only fully
implemented in versions 2.3 and later) which stores single byte variables. Use of this
data type reduces the maximum data object size to 500 Mb — wellwithin the capacity of
modern computers and R’s current maximum vector length (231−1≈ 2×109. Since, a
SNP genotype could theoretically be stored in 2 bits, even larger datasets could be stored
by packing 4 genotypes to each single byte variable, but we judged this to be unnecessary
at present.

Implementation of the "snp.matrix" class

The usual object for storing datasets in R is thedata frame. This is convenient in that
different types of variable (character, numeric, categorical “factors” etc.) may be held
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within the same object. However this carries a considerablehousekeeping overhead. In-
stead we decided to store SNP data as a simple matrix, with storage mode “raw”. Rows
of the matrix correspond to samples (and, usually, to subjects) and columns correspond
with different SNPs. The row names of each matrix will be subject (sample) identifiers
which provide a link to the row names of a data frame containing the rest of the subject
data, such as phenotype. We term this the “subject support “ frame. Similarly the column
names of the SNP matrix are SNP identifiers which link to a “SNPsupport “ data frame,
which contains information about each SNP such as chromosome position, RS number,
and so on.

To facilitate use of such objects we employed the object-oriented programming fea-
tures implemented in the R “methods” package. These are usually referred to as “S4
methods” since they were introduced in version 4 of the S-plus package. That implemen-
tation is described in the “green book” of Chambers[2]. The current R implementation
differs from the original implementation in a number of ways, fully documented on the R
developers web site (http://developer.r-project.org/). For the matrix holding SNP
data, we have defined the class"snp.matrix". This has storage mode raw, and inherits
methods from the simple matrix class. Elements are coded zero, denoting missing data, or
1, 2 or 3 for the three possible genotypes (with homozygots coded 1 or 3 and heterozygots
coded 2). For the X chromosome, we further defined the"X.snp.matrix" class. This
inherits from the"snp.matrix" class, but has an additional slot containing thesex of
each subject. Females are coded in the same way as for autosomal SNPs, and males are
coded as if they were homozygous females. Finally we defined vector classes,"snp" and
"X.snp" which hold single rows or columns of the corresponding matrix objects.

Several standard R functions are overloaded to behave correctly with the objects of
the new classes. These include the sub-setting operator[,] which is used to extract por-
tions of a matrix, the functionis.na() which tests for missing values, and the functions
rbind(), cbind() which join matrices to make larger matrices. The generic function
summary() computes, for each SNP in the matrix, the call rate (proportion of non-missing
values), the minor allele frequency, the genotype frequencies, and az-test for Hardy-
Weinberg equilibrium. These results are returned as a data frame. For speed, these com-
putations (and those in most other functions requiring extensive numerical calculation)
were programmed in C. Using a 2.2GHz Opteron 275 processor, ittook 1.5 seconds to
compute the summary of a test dataset with 13,549 autosomal SNPs measured in 7,276
subjects. A simple illustrative example is shown below

summ <- summary(chrom1)

chrom1a <- chrom1[, summ$MAF>0.01]

Here,"chrom1" is the original SNP matrix and a new matrix,"chrom1a", is computed
containing only those SNPs with minor allele frequency exceeding 1%.

For integration with the rest of the R system, it is also necessary to define “coercion”
functions for conversion between the new classes of object and the conventional R classes.
For S4 classes these functions take the form"as(object, class)". We have defined
such functions to coerce SNP matrix objects to simple numerical and character matrix
types. We have also defined functions for coercion of simple matrices and data frames to
SNP matrices although, because of the space requirements for these standard types, these
functions will probably only find a use for small illustrative datasets. Finally, we provide
coercion functions for objects of class"snp" and"X.snp", representing single SNPs, to
objects of class"genotype" in the R “genetics” package.
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Statistical tests of association

At present we have only implemented functions for testing for genotype–phenotype as-
sociation in population–based studies since the project which formed the impetus for this
work is population–based. It is hoped that functions for family-based studies will be
added at a later date.

The simplest and fastest function carries out 1 and 2 degree of freedom (df) tests for
association between phenotype and SNPs, taken one at a time.The 1 df test is the usual
Cochran-Armitage test and the 2 df test is the conventional Pearsonian chi-squared test
for the 3×2 contingency table. An example of its use is

res <- single.snp.tests(cc, data=subject.data, snp.data=chrom1)

Here,"cc" is a case-control indicator found in the subject support frame"subject.data",
and the function call will compute 1 and 2 df association tests for every SNP in the SNP
matrix "chrom1". In our dataset of 13,549 SNPs in 7,276 subjects, these computations
took 13.5 CPU seconds.

The"single.snp.tests" function will also compute “stratified” versions of these
tests. These test for genotype–phenotype association within population strata defined by
a third variable. The 1 df test is a generalization of the Cochran-Armitage test due to
Mantel[3] and the 2 df test is based on the same principlei.e. calculating the “observed
minus expected” scores and their varianceswithin strata and then summing both score
and variance across strata . In our hypothetical example, ifthe subject support frame
also contained a categorical factor"region" giving geographical region of residence, we
could protect against a possible confounding effect of different geographical distribution
of cases and controls by using the command

res <- single.snp.tests(cc, region, data=subject.data, snp.data=chrom1)

This refinement adds scarcely at all to computing time. In ourreal example, the cases and
controls were distributed across 12 geographical regions but the stratified tests took only
13.6 CPU seconds.

The remaining two functions for association testing are based on score tests in gener-
alized linear models (GLMs)[4]. First, a “base” GLM, which forms the null hypothesis,
is fitted. A test for additional effects of new terms in the model is then carried out by
computing the “score” vector and its variance. The score vector is the first derivative of
the log likelihood function with respect to the additional parameters to be introduced in
the model and an estimate of its variance is obtained from theinformation matrix. In
our implementation, the dependant variable may be assumed to have a distribution drawn
from one of the binomial, Poisson, Gaussian or gamma families, and the “link” function
which relates the expected value of the dependent variable to the linear model may be
one of the logit, log, identity or inverse functions.If desired, a variance estimate which
is robust against misspecification of the distribution family may be used in place of the
model–based estimate[5]. This may be further extended in the manner usually described
as the “Huber-White” approach [6] to allow for the case in which units are not mutually
independent but fall into “clusters” of correlated observations.

In the first function,"snp.rhs.tests", we enter SNPs into a GLM on the right hand
side i.e. as predictor variables, with the phenotype as dependent variable. We first fit a
base GLM, and then test for addition of each SNP into this model. Only the “additive”
component of the SNP is considered, so that each SNP is entered as a quantitative variable
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coded 0, 1 or 2, providing a 1 df test. In the simplest case, this is formally the same as the
Cochran-Armitage test. For example, in our hypothetical example, these could be could
be calculated by the command

crude <- snp.rhs.tests(cc ~ 1, family="binomial",

data=subject.data, snp.data=chrom1)

Here the argument"cc ∼ 1" is a model formula indicating a base model containing only
an intercept. The stratified tests could be calculated by

res <- snp.rhs.tests(cc ~ strata(region), family="binomial",

data=subject.data, snp.data=chrom1)

The use of the"strata" function in the base model formula is borrowed from the “sur-
vival” package in R. It allows the program to exploit a computational simplification which
can be achieved if the GLM contains a stratification. This simplification is particularly
dramatic if there are a large number of strata and if, as here,the model containsonly
a stratification. In this latter case, no iteration is then required to fit the base GLM by
maximum likelihood. If, instead, we were to invoke the function as follows:

res <- snp.rhs.tests(cc ~ region, family="binomial",

data=subject.data, snp.data=chrom1)

where"region" is a factor onM levels, then region would enter the model asM − 1
indicator variables and the computational effort in fittingthe base model would be the
same as fitting a logistic regression withM−1 covariates. Computation times in this case
depend markedly on the proportion of genotype data that are missing. If there are no
missing genotypes, the base GLM needs only to be fitted once and computation is very
fast indeed. However, if genotypes are missing, the base GLMshould be refitted each
time, using only the subset of subjects with observed genotypes. In practise, we can skip
this refitting if the proportion of missing genotype data is small. The default behaviour
of the function is somewhat conservative, refitting if the proportion of missing genotypes
exceeds 1%). In our real example, which contained a large amount of missing genotypes,
calculation of the stratified tests took 21.7 seconds with use of the"strata" function and
258 seconds without.

The "snp.rhs.tests" function can also calculate tests for simultaneous inclusion
of several “tag” SNPs in the phenotype model, the null hypothesis being that there is
no association with any of the SNPs. These tests are closely related to Hotelling’sT 2

statistics[9] the use of which has been proposed by several authors [10, 11, 12, 13]. They
are specified by a further argument to the function, which provides alist of the sets of
SNPs to be tested. Thus suppose we wish to to test the groups ofSNPs in columns{1, 2,
3}, {4, 6}, {5, 7, 9} etc., then this could be achieved by

taglist <- list(c(1,2,3), c(4,6), c(5, 7, 9), ...)

res <- snp.rhs.tests(cc ~ region, family="binomial",

data=subject.data, snp.data=chrom1, tests=taglist)

Currently tag SNPs are entered only as “main effects”, so thatthe degrees of freedom
for each test is equal to the number of SNPs in the group, unless there is very strong lin-
ear dependency between them, when one or more will be dropped. As we have argued
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elsewhere[13], this is optimal when linkage disequilibrium (LD), as measured by Lewon-
tin’s D′, between SNPs within a group is close to one. If there are common recombinant
haplotypes, however, power can be increased by addition of “interaction terms” and we
hope to allow for this in future releases. Sets of SNPs such asillustrated by"taglist"
in the above example will not usually be entered by hand in this manner, but sets likely to
be informative if taken together will either be available from the process used in design
of the genotyping chip, or can be calculated based on linkagedisequilibrium measures.
Tools for analysis of linkage disequilibrium in large-scale SNP data will be discussed in
the next section.

The second function for GLM–based tests,"snp.lhs.tests", as its name suggests,
considers each SNP on the left hand side of a GLMi.e. as the dependent variable. Each
autosomal SNP genotype is treated as a binomial variate withtwo “trials”. The logit
link function is used so that the GLM is formally the same as the logistic regression
model. Note that this assumption implies Hardy-Weinberg equilibrium conditional upon
any covariates fitted in the base model, but this assumption can be relaxed by use of the
robust variance estimate. The ”base” model and additional terms to be tested are specified
using model formulae which omit the dependent variable. Forthe simplest case of an
unstratified 1 df test similar to the Cochran-Armitage test, the use of the function would
be as follows:

res <- snp.lhs.tests(chrom1, ~ 1, ~ cc, data=subject.data,

robust=TRUE)

This tests the effect of adding the case/control indicator to a base logistic model which
takes each SNP genotype as dependent variable and includes only an intercept term. The
equivalent stratified tests would be produced by

res <- snp.lhs.tests(chrom1, ~ strata(region), ~ cc,

data=subject.data, robust=TRUE)

or, at much greater computational expense, by

res <- snp.lhs.tests(chrom1, ~ region, ~ cc,

data=subject.data, robust=TRUE)

In our real example, the times taken for these commands were 21.3 and 280 seconds
respectively.

A natural question is which of the two GLM tests is the “correct” one? It is well-
known in epidemiology that, even when subjects are sampled according to disease status,
as in case–control studies, a logistic regression model which treats disease status as the
outcome variable reproduces identical estimates and variances for odds ratios for categor-
ical exposures[7]. In this case, both directions of argument lead to identical conclusions.
In general, both approaches are valid and the choice betweenthem should be made on
pragmatic grounds. For case–control studies, even though it seems unnatural, the logis-
tic regression model with disease status as outcome is almost invariably preferred since
it avoids complex or restrictive models for potentially multivariate risk factors. In our
setting, pragmatic considerations should also apply. Treating phenotype as outcome au-
tomatically avoids the assumption of Hardy-Weinberg equilibrium for the distribution of
genotype, and easily implements generalized multi–locus tests phenotype on the left hand
side of the model formula is to carry out multi-locus tests. while, when SNP genotype is
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the outcome variable, avoidance of this assumption requires the use of “robust” variance
estimates. the discussion of these issues in relation to sampling based on the values of
quantitative phenotypes has been discussed by Wallaceet al. [8].

Of course, it is better to carry out these crude and stratified1 df tests using the simpler
and faster"single.snp.tests" function. However, the GLM tests are more flexible.
For example, they would allow adjustment for population substructure using continuous
scores derived from principle components analysis[14]. Another example of this greater
flexibility is that"snp.lhs.tests" could be used to test for allele frequency differences
between geographical regions:

res <- snp.lhs.tests(chrom1, ~ strata(cc), ~ region,

data=subject.data, robust=TRUE)

Linkage disequilibrium

Much has been written concerning calculation of measures oflinkage disequilibrium be-
tween pairs of SNPs. The main computational problem is resolution of unknown haplo-
type phase. In a population-based study we observe a 3×3 contingency table of genotype
counts, while we would like to have the 2×2 table of haplotype counts. This is usually
approached by maximum likelihood estimation using the EM algorithm [15] but we use a
different computational method, briefly outlined below.

The genotype and haplotype frequencies are illustrated in Table 1. It is thee subjects
who are heterozygous at both loci that have unknown haplotype phase. Assuming Hardy–
Weinberg equilibrium in the population, the multinomial probabilities for the 2×2 table
of haplotype frequencies may be estimated by maximum likelihood and, in common with
many “missing data” problems, at the solution the uncertainobservations are distributed
between possible states acording to expectation. Thus, if the expected proportion of the
doubly heterozygous subjects to carry the haplotypes (u–v, U–V ) is p, andq = (1− p)
is the expected proportion to carry (u–V , U–v) then, at the maximum likelihood solution,
the ratiop/q is equal to the odds ratio in the 2×2 table of haplotype frequencies. Thus
we have

A = 2a+b+d + p.e

B = 2c+b+ f +q.e

C = 2g+h+d +q.e

D = 2i+h+ f + p.e

p/q = (A.D)/(B.C)

This leads to a cubic equation inp which may be solved directly using standard methods
available in the GNU Scientific Library (http://www.gnu.org/software/gsl/). This is
not only computational faster than the EM algorithm, which is iterative, but the presence
of multiple roots is immediately obvious and it is trivial toselect the root with the larger
likelihood. Once we have solved forp and computed the table of haplotype frequencies,
it is trivial to calculate any measure of disequilibrium, ofwhich the most important areD′

andr2[16].
The R function which performs these calculations is"ld.snp". Its simplest use is
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res <- ld.snp(chrom1, depth = 100)

This calculates LD measures between each SNP and the 100 neighbours on either side of
it. The result, here"res", is an object of class"snp.dprime"; this basically a list of four
band–diagonal matrices, in compact storage mode, holding values ofD′, r2, r, and LOD
(the log likelihood ratio comparing the hypotheses of association and no associonation
between loci). We envisage that the major use of these functions will be, in conjunction
with data from the HapMap project[17], calculation of “tag”SNPs for defined regions,
and identification of clusters of SNPs for use in multiple-SNP association tests. When ap-
plied to the HapMap data for 30 trios from the Centre d’Étude du Polymorphism Humain
collection (CEU), treated as unrelated individuals, the calculation of LD measures for the
300,000 SNPs on chromosome 1 to depth 100 took 73 seconds.

For visualization, we provide the function"plot.snp.dprime", which displays a di-
agram similar to that available from the familiar Haploviewsoftware[18]
(http://www.broad.mit.edu/mpg/haploview/) as an encapsulated postscript (eps) file.
Optionally, this can include annotation which, after conversion of the eps file to portable
document format (pdf), can be displayed by Acrobat Reader
(http://www.adobe.com/products/acrobat/) (although not, currently, by other pdf view-
ers).

Extension of the computations to deal with data from nuclearfamilies (e.g. case–
parent trios) should not be difficult; one would use only parents (i.e. founders), for estima-
tion of the two-SNP haplotype frequencies, but the phase of many of thee heterozygous
genotypes of Table 1 will be resolvable given offspring genotype. For the remainder, the
same method as outlined above should be satisfactory. However, this is not implemented
at the time of writing.

Data input and output

Eventually the package will need to include data input routines for a number of input
file layouts and formats. Currently we have three input routines. The most flexible is
"read.snp.long". This reads a “long” data file in which each SNP call is on a single
line, preceded by sample and snp identifiers. Each line can also contain a confidence
score, allowing filtering of calls to be treated as valid.

Two commonly used “wide” formats are also supported. The function"read.snp.pedfile"
reads “pedfiles” in which there is one line of data per subject, commencing with six stan-
dard fields describing relationship between subjects (if any), sex, and disease status, and
followed by genotypes, coded as pairs of alleles. The third input routine reads “HapMap”
style input files, in which there is one line of data for each SNP, commencing with some
data about the SNP, and followed by the genotypes recorded for all the subjects in the col-
lection. Since a major use of this function will be to read data from the HapMap project,
and these data are still somewhat volatile, this function can download data direct from
the HapMap web site (http://www.hapmap.org/). Thus, to download and read in the
chromosome 1 data for the CEU trios:

folder <- "http://www.hapmap.org/genotypes/latest/fwd_strand/non-redundant"

file <- "genotypes_chr1_CEU_r21_nr_fwd.txt.gz"

ceu.1 <- read.HapMap.data(paste(folder, file, sep="/"))
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(to avoid an inordinately long line, the folder and file nameshave been entered as two
strings and “pasted” together). The result."ceu.1", will contain a list with two elements
containing the SNP matrix and a SNP support data frame (a subject support file for the
CEU trios would have to be downloaded separately). These dataconcern approximately
300,000 SNPs in 90 subjects; the resultant"snp.matrix" data object occupies about
40Mb.

The package contains one output function,"write.snp.matrix", modelled closely
on the standard R function,"write.table", which writes a data frame as a text file.
Currently genotypes are written as single numbers (0, 1, or 2); greater flexibility will be
Incorporated as necessary. The main use of this function is to facilitate export of data to
other programs.

Discussion

As is apparent from the above description, further work is necessary for this package to
provide a truly comprehensive set of tools for the analysis of whole–genome association
studies. Nevertheless, even in its present state it provides tools to do much of what is re-
quired, at least for population–based studies and new techniques can be added with little
difficulty. The current version of the p[ackage, provisionally named"snpMatrix", may
be downloaded from the web site of the first author, (http://www-gene.cimr.cam.ac.uk/clayton/).
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Tables and Figures

SNP SNP V
U vv V v VV
uu a b c
Uu d e f
UU g h i

SNP SNP V
U v V
u A B
U C D

Genotype counts Haplotype counts
(a+b+ c+d + e+ f +g+h+ i = N) (A+B+C +D = 2N)

Table 1: Genotype and haplotype frequencies for two SNPs


