Comparing clustering algorithms

Hin-Tak Leung

April 14, 2011

1 Introduction

This document is the accumulation of a few somewhat unrelated threads of development:

e During the WTCCC study (phase 1, for which chopsticks was written), some multi-panel
colourised cluster-plot drawing code in R, mainly to verify the validity of cluster across cohorts.
e.g. a 3x3 panel works very well for 7 common diseases plus 2 controls. This becomes
snp.clust.plot function described later.

e When I noticed from looking at the cluster plots of some Illumina data I was working on that
Illuminus is buggy and plainly wrong when calling the sex chromosomes, I wrote some simple
low-level composite C/R code to catalogue the differences between Illuminus and GenTrain
1 to find out on which SNP they behaves most differently. This eventually becomes the
snp. compare function described later.

e Almost 4 years after GenTrain 1 stabilised (in January 2006), Illumina debuted an alter-
native genotype-calling algorithm called “GenTrain 2” in December 2009 with the release of
GenomeStudio 2009.2; “GenTrain 2” becomes the default with fresh installation of the next re-
lease, GenomeStudio 2010.1 (March 2010). SpringOnion added the ability to run “GenTrain
2” very soon afterwards.

Given that “GenTrain 2” is now the default, obviously Illumina staff must believe that it does
a better job than “GenTrain 1”7 (besides its being marginally about 5% faster). The question is, in
what way? We have a way of running the same raw data through two different algorithms, a way
of cataloguing differences, and a way of displaying them side-by-side. So that’s what the rest of the
document does.

Similar techniques can be used for studying differences between any two algorithms.

2 Finding the largest differences

Using the 1550 samples of 99 SNPs of the Illuminus example set (the data is neither typical of
BeadArray nor very good, but “real” data requires scrubbing and obfuscating). Reading the geno-
types in:

> library(chopsticks)
> load(system.file("data/Genotypes.GenTrainl.RData", package = "chopsticks"))
> load(system.file("data/Genotypes.GenTrain2.RData", package = "chopsticks"))

Reading the raw cluster data in:

> ab.signals <- read.wtccc.signals(system.file("extdata/example-new.txt",
+ package = "chopsticks"), paste("rs", 1:99, sep = ""))

Reading /tmp/Rtmp97MqaT/Rinst7d46ecf0/chopsticks/extdata/example-new.txt ...
Can take a while...

...Done
We’ll just quickly run chopsticks’s SNP summary function to verify:
> col.summary(GenTrain2) [1:3, 2:7]

Call.rate MAF P.AA P.AB P.BB z .HWE
rsl 0.9257106 0.4228890 0.16957432 0.5066294 0.3237962 1.43643827
rs2 0.9728682 0.1377822 0.01925631 0.2370518 0.7436919 -0.08897442
rs3 0.9773902 0.4372108 0.19035030 0.4937211 0.3159286 0.12694323

Calculate the largest difference count of the two genotype objects, and plot a histogram:

> result <- snp.compare(GenTrainl, GenTrain2)
> diff.counts <- result$count
> hist(diff.counts, breaks = 50, col = "black")

Histogram of diff.counts

40 50

Frequency

20

10

o - L‘ . || | n_ B

I I I I I I I
0 100 200 300 400 500 600

diff.counts

More than half of the SNPs shows zero or close to zero differences between GenTrain 1 and
GenTrain 2.

Lesson 1: For most SNPs (which are well-behaved and have 3 well-separated clus-
ters), any half-decent calling algorithms do almost exactly the same thing.

Corollary 1: One must look at where two algorithms differ to see which one is
“correct” more often.

Corollary 2: If one can make sure that where two algorithms differ, one algorithm
is more “correct* than the other, then that’s what matters.

> dim(GenTrainl)

[1] 15650 99

> diff.counts[diff.counts > 1550 * 0.1]

rsb rs8 rsl13 rs22 rs24 rs27 rs37 rs62 rs7l rs77 rs80 rs9%4
192 263 160 320 166 576 187 617 195 280 454 398

> diff.counts[diff.counts > 1550 * 0.05]

rsb 1rs8 rsl13 rsl9 rs22 rs24 rs27 rs36 rs37 rsb3 rsb6 rsb9 rs62 rs7l rs77 rs80
192 263 160 103 320 166 576 151 187 82 151 154 617 195 280 454
rs94

398

> worst.snps <- names(diff.counts[diff.counts > 1550 * 0.2])
> worst.snps

[1] "rs22" "rs27" "rs62" "rs80" "rs94"

There are 5 SNPs with more than 20% difference. Let’s plot these 5 SNPs:
> par (wfrow = c(1, 2), plt = c(0.25, 0.9, 0.15, 0.8), col.main = "black",
+ col.axis = "black", cex = 0.5, cex.main = 1.7)

> snp.clust.plot(ab.signals[["rs22"]], GenTrainl[, "rs22"], title = "rs22 GenTrainl")
> snp.clust.plot(ab.signals[["rs22"]], GenTrain2[, "rs22"], title = "rs22 GenTrain2")

rs22 GenTrainl rs22 GenTrain2

GenTrain 2 does a better job at calling more of the homozygous AA for rs22.

04 06 08 10 12 14

0.2

0.0

rs27 GenTrainl

04 06 08 10 12 14

0.2

0.0

rs27 GenTrain2

SNP rs27 is almost monomorphic — while one is inclined to say GenTrain 2 is better, GenTrain
2 also mis-behaves more than GenTrain 1 in calling some of the outliers (which were not called by

GenTrain 1).

There are often wishful thinking along the line that higher call rates are always better. This bias
often comes from the idea that since one already spent the effort for the samples to be processed,

it is nicer to get a genotype than not getting one.
Lesson 2: Being optimistic (calling more) can be wrong.

0.6

0.2

0.0

rs62 GenTrainl

0.6

0.4

0.2

0.0

rs62 GenTrain2

rs80 GenTrainl rs80 GenTrain2

° °

0 0
I I

° °

° 0

o® 0®

s ° s °

° °
° °
o o
Sk P e ° =l P e °
° °
@ % @ %
° °
° o ° oo ¢ ° ° °°
0 o ° L ° °
o o
o o ° © o o
o)

o _] ° ° o | ° o
o o

| | | | | | | |

0.0 0.5 1.0 15 0.0 0.5 1.0 15
A A

SNP rs80 is somewhat similar to rs27 in that the SNP is near monomorphic and GenTrain 2
decides (somewhat arbitrarily) to classify outliers into minor clusters.

rs94 GenTrainl rs94 GenTrain2
o o
- o A °
o | R ° o °
o o o o o o o
© _] ° © _] °
o o
m ° m)
< ° ° < ° o
o ad’ o o od’ o
W% ° o W% ° o
o~ | N
o -] © -]
o _] o o o
o o
I I I I I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
A A

GenTrain 2 works very well on SNP rs94.

2.1 Does GenTrain 2 ever work less well than GenTrainl?

GenTrain 2 gives almost uniformly higher call rate across all SNPs:

> count.signed <- result$count.signed
> hist(count.signed, breaks = 50, col = "black")

Histogram of count.signed

15 20 25 30

Frequency

10

o - il B 1
I I I I I I I I
-50 0 50 100 150 200 250 300

count.signed

The two SNPs which give somewhat lower call rates under GenTrain 2 are:
> result$count.signed[result$count.signed < -30]

rs13 rs69
-36 -46

The differences are some what subtle when the cluster plots are examined:

rs13 GenTrainl rs13 GenTrain2

o
°
0.6
1

o
0.4

0.2

0.0

0.2 0.4 0.5
oO

0.2 0.5
oO

0.1
0.1

0.0
1
0.0
1

3 Call rates and HWE

Let’s have a look at the call rates, etc of those 5 worst SNPs again:
> col.summary(GenTrainl) [worst.snps, 2:7]

Call.rate MAF P.AA P.AB P.BB z . HWE
rs22 0.4547804 0.31321023 0.4474431818 0.47869318 0.073863636 2.989549
rs27 0.7571059 0.10878840 0.7858361775 0.21075085 0.003412969 2.973807
rs62 0.7622739 0.13898305 0.0025423729 0.27288136 0.724576271 4.815062

0.6

rs80 0.8049096 0.06581059 0.0008025682 0.13001605 0.869181380 2.025882
rs94 0.7855297 0.04934211 0.0057565789 0.08717105 0.907072368 -2.469540

> col.summary(GenTrain2) [worst.snps, 2:7]

Call.rate MAF P.AA P.AB P.BB z .HWE
rs22 0.6149871 0.231092437 0.598739496 0.340336134 0.060924370 -1.305913
rs27 0.9315245 0.009015257 0.984743412 0.012482663 0.002773925 -11.445045
rs62 0.8585271 0.031226486 0.002257336 0.057938299 0.939804364 -1.545210
rs80 0.9935401 0.005851756 0.002600780 0.006501951 0.990897269 -17.301685
rs94 0.9386305 0.071576050 0.003441156 0.136269787 0.860289057 0.964802

In all cases, GenTrain 2 gives higher rates. We also see that GenTrain 2 allows HWE to deviate
from normal a lot. Looking back at the cluster plots, we can see how that happens: GenTrain
2 calls more outliers when MAF is low and the SNP is near monomorphic. Or, conversely, near-
monomorphic SNPs (which could also be clustering errors, i.e. where two of the clusters are
mis-clustered as one, and lone outliers are classified as the 3rd cluster) shows up as low call-rates
under GenTrain 1 (which tends to put an arbitrary cut in the middle), while GenTrain 2 draws in
outliers and the SNP shows up with strong deviation from HWE.

Under the conventional filtering rules: a sufficiently high call rate (say 95%) and good HWE
(JHWE| < 5), all 5 are rather poor under GenTrain 1, but rs94 becomes almost acceptable (as is
shown in the cluster plot) under GenTrain 2.

In any case, as a final remark: GenTrain 2 is the new default — it doesn’t necessarily mean it
is any good, but 3rd-party alternative needs to compared well with it under “fair” conditions where
both are run optimally.

	Introduction
	Finding the largest differences
	Does GenTrain 2 ever work less well than GenTrain1?

	Call rates and HWE

