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The chopsticks package

The package “chopsticks” was written to provide data classes and methods to facilitate the
analysis of whole genome association studies in R. In the data classes it implements, each
genotype call is stored as a single byte and, at this density, data for single chromosomes
derived from large studies and new high-throughput gene chip platforms can be handled
in memory by modern PCs and workstations. The object–oriented programming model
introduced with version 4 of the S-plus package, usually termed “S4 methods” was used to
implement these classes.

For population-based studies, both quantitative and qualitative phenotypes may be anal-
ysed but, at present, rather more limited facilities are available for family–based studies.
Flexible functions are provided which can carry out single SNP tests which control for po-
tential confounding by quantitative and qualitative covariates. Tests involving several SNPs
taken together as “tags” are also supported. Efficient calculation of pair-wise linkage dise-
quilibrium measures is implemented and data input functions include a function which can
download data directly from the international HapMap project website. The package was
described by Clayton and Leung (2007) Human Heredity, 64: 45–51. Since this publication
many new facilities have been introduced. These are explored in further vignettes.

Getting started

We shall start by loading the the packages and the data to be used in the first part of this
exercise, which concerns a population–based case–control study:

> require(chopsticks)

> require(hexbin)

> data(for.exercise)

In addition to the chopsticks package, we have also loaded the hexbin package which
reduces file sizes and legibility of plots with very many data points.
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The data have been created artificially from publicly available datasets. The SNPs have
been selected from those genotyped by the International HapMap Project1 to represent the
typical density found on a whole genome association chip, (the Affymetrix 500K platform2)
for a moderately sized chromosome (chromosome 10). A (rather too) small study of 500
cases and 500 controls has been simulated allowing for recombination using beta software
from Su and Marchini. Re-sampling of cases was weighted in such a way as to simulate three
“causal” locus on this chromosome, with multiplicative effects of 1.3, 1.4 and 1.5 for each
copy of the risk allele at each locus. It should be noted that this is a somewhat optimistic
scenario!

You have loaded three objects:

1. snps.10, an object of class “snp.matrix” containing a matrix of SNP genotype calls.
Rows of the matrix correspond to subjects and columns correspond to SNPs:

> show(snps.10)

A snp.matrix with 1000 rows and 28501 columns

Row names: jpt.869 ... ceu.464

Col names: rs7909677 ... rs12218790

2. snp.support, a conventional R data frame containing information about the SNPs
typed. To see its contents:

> summary(snp.support)

chromosome position A1 A2

Min. :10 Min. : 101955 A:14019 C: 2349

1st Qu.:10 1st Qu.: 28981867 C:12166 G:12254

Median :10 Median : 67409719 G: 2316 T:13898

Mean :10 Mean : 66874497

3rd Qu.:10 3rd Qu.:101966491

Max. :10 Max. :135323432

Row names of this data frame correspond with column names of snps.10 and comprise
the (unique) SNP identifiers.

3. subject.support, another conventional R data frame containing further information
about the subjects. The row names coincide with the row names of snps.10 and
comprise the (unique) subject identifiers. In this simulated study there are only two
variables:

> summary(subject.support)

1http://www.hapmap.org
2http://www.affymetrix.com/support/technical/sample_data/500k_hapmap_genotype_data.affx
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cc stratum

Min. :0.0 CEU :494

1st Qu.:0.0 JPT+CHB:506

Median :0.5

Mean :0.5

3rd Qu.:1.0

Max. :1.0

The variable cc identifies cases (cc=1) and controls (cc=0) while stratum, coded 1 or
2, identifies a stratification of the study population — more on this later.

In general, analysis of a whole–genome association study will require a subject support
data frame, a SNP support data frame for each chromosome, and a SNP data file for each
chromosome3.

A short summary of the contents of snps.10 is provided by the summary function. This
operation actually produces two “summaries of summaries”. First, summary statistics are
calculated for each row (sample), and their results summarised. Then summary statistics
are calculated for each column (SNP) and their results summarised.

> summary(snps.10)

$rows

Call.rate Heterozygosity

Min. :0.9879 Min. :0.0000

1st Qu.:0.9896 1st Qu.:0.2993

Median :0.9900 Median :0.3078

Mean :0.9900 Mean :0.3074

3rd Qu.:0.9904 3rd Qu.:0.3159

Max. :0.9919 Max. :0.3386

$cols

Calls Call.rate MAF P.AA

Min. : 975 Min. :0.975 Min. :0.0000 Min. :0.00000

1st Qu.: 988 1st Qu.:0.988 1st Qu.:0.1258 1st Qu.:0.06559

Median : 990 Median :0.990 Median :0.2315 Median :0.26876

Mean : 990 Mean :0.990 Mean :0.2424 Mean :0.34617

3rd Qu.: 992 3rd Qu.:0.992 3rd Qu.:0.3576 3rd Qu.:0.60588

Max. :1000 Max. :1.000 Max. :0.5000 Max. :1.00000

P.AB P.BB z.HWE

Min. :0.0000 Min. :0.00000 Min. :-21.9725

3 Support files are usually read in with general tools such as read.table. The chopsticks package
contains a number of tools for reading SNP genotype data into an object of class “snp.matrix”.
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1st Qu.:0.2080 1st Qu.:0.06465 1st Qu.: -2.8499

Median :0.3198 Median :0.27492 Median : -1.1910

Mean :0.3074 Mean :0.34647 Mean : -1.8610

3rd Qu.:0.4219 3rd Qu.:0.60362 3rd Qu.: -0.1014

Max. :0.5504 Max. :1.00000 Max. : 3.7085

NA's : 4.0000

The row-wise and column-wise summaries are calculated with the functions row.summary

and col.summary. For example, to calculate summary statistics for each SNP (column):

> snpsum <- col.summary(snps.10)

> summary(snpsum)

Calls Call.rate MAF P.AA

Min. : 975 Min. :0.975 Min. :0.0000 Min. :0.00000

1st Qu.: 988 1st Qu.:0.988 1st Qu.:0.1258 1st Qu.:0.06559

Median : 990 Median :0.990 Median :0.2315 Median :0.26876

Mean : 990 Mean :0.990 Mean :0.2424 Mean :0.34617

3rd Qu.: 992 3rd Qu.:0.992 3rd Qu.:0.3576 3rd Qu.:0.60588

Max. :1000 Max. :1.000 Max. :0.5000 Max. :1.00000

P.AB P.BB z.HWE

Min. :0.0000 Min. :0.00000 Min. :-21.9725

1st Qu.:0.2080 1st Qu.:0.06465 1st Qu.: -2.8499

Median :0.3198 Median :0.27492 Median : -1.1910

Mean :0.3074 Mean :0.34647 Mean : -1.8610

3rd Qu.:0.4219 3rd Qu.:0.60362 3rd Qu.: -0.1014

Max. :0.5504 Max. :1.00000 Max. : 3.7085

NA's : 4.0000

The second command duplicates the latter part of the result of summary(snps.10), and
the contents of snpsum are fairly self-explanatory. We could look at a couple of summary
statistics in more detail:

> par(mfrow = c(1, 2))

> hist(snpsum$MAF)

> hist(snpsum$z.HWE)
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The latter should represent a z-statistic. i.e. a statistic normally distributed with
mean zero and unit standard deviation under the hypothesis of Hardy–Weinberg equilib-
rium (HWE). Quite clearly there is extreme deviation from HWE, but this can be accounted
for by the manner in which this synthetic dataset was created.

The function row.summary is useful for detecting samples that have genotyped poorly.
This calculates call rate and mean heterozygosity across all SNPs for each subject in turn:

> sample.qc <- row.summary(snps.10)

> summary(sample.qc)
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Call.rate Heterozygosity

Min. :0.9879 Min. :0.0000

1st Qu.:0.9896 1st Qu.:0.2993

Median :0.9900 Median :0.3078

Mean :0.9900 Mean :0.3074

3rd Qu.:0.9904 3rd Qu.:0.3159

Max. :0.9919 Max. :0.3386

(note that the last command yields the same as the first part of summary(snps.10)). The
plot of heterozygosity against call rate is useful in detecting poor quality samples:

> par(mfrow = c(1, 1))

> plot(sample.qc)
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There is one clear outlier.

The analysis

We’ll start by removing the ‘outlying’ sample above (the sample with Heterozygosity near
zero):

> use <- sample.qc$Heterozygosity > 0

> snps.10 <- snps.10[use, ]

> subject.support <- subject.support[use, ]
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Then we’ll see if there is any difference between call rates for cases and controls. First
generate logical arrays for selecting out cases or controls:4

> if.case <- subject.support$cc == 1

> if.control <- subject.support$cc == 0

Now we recompute the genotype column summaries separately for cases and controls:

> sum.cases <- col.summary(snps.10[if.case, ])

> sum.controls <- col.summary(snps.10[if.control, ])

and plot the call rates, using hexagonal binning and superimposing a line of slope 1 through
the origin:

> hb <- hexbin(sum.controls$Call.rate, sum.cases$Call.rate, xbin = 50)

> sp <- plot(hb)

> hexVP.abline(sp$plot.vp, 0, 1, col = "black")

4 These commands assume that the subject support frame has the same number of rows as the SNP
matrix and that they are in the same order. Otherwise a slightly more complicated derivation is necessary.
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There is no obvious difference in call rates. This is not a surprise, since no such difference
was built into the simulation. In the same way we could look for differences between allele
frequencies, superimposing a line of slope 1 through the origin:

> sp <- plot(hexbin(sum.controls$MAF, sum.cases$MAF, xbin = 50))

> hexVP.abline(sp$plot.vp, 0, 1, col = "white")
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This is not a very effective way to look for associations, but if the SNP calling algorithm
has been run separately for cases and controls this plot can be a useful diagnostic for things
going wrong (e.g. different labelling of clusters).

It should be stressed that, for real data, the plots described above would usually have
many more outliers. Our simulation did not model the various biases and genotype failures
that affect real studies.

The fastest tool for carrying out simple tests for association taking the SNP one at a
time is single.snp.tests. The output from this function is a data frame with one line of
data for each SNP. Running this in our data and summarising the results:

> tests <- single.snp.tests(cc, data = subject.support, snp.data = snps.10)
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Some words of explanation are required. In the call, the snp.data= argument is mandatory
and provides the name of the matrix providing the genotype data. The data= argument gives
the name of the data frame that contains the remaining arguments — usually the subject
support data frame5.

Let us now see what has been calculated:

> summary(tests)

N Chi.squared.1.df Chi.squared.2.df P.1df

Min. :974 Min. : 0.0000 Min. : 0.0000 Min. :5.450e-09

1st Qu.:987 1st Qu.: 0.1724 1st Qu.: 0.7904 1st Qu.:1.410e-01

Median :989 Median : 0.7729 Median : 1.8559 Median :3.793e-01

Mean :989 Mean : 1.5608 Mean : 2.5968 Mean :4.192e-01

3rd Qu.:991 3rd Qu.: 2.1670 3rd Qu.: 3.6651 3rd Qu.:6.780e-01

Max. :999 Max. :34.0217 Max. : 37.2487 Max. :1.000e+00

NA's : 4.0000 NA's :830.0000 NA's :4.000e+00

P.2df

Min. :8.157e-09

1st Qu.:1.600e-01

Median :3.954e-01

Mean :4.282e-01

3rd Qu.:6.736e-01

Max. :1.000e+00

NA's :8.300e+02

We have, for each SNP, chi-squared tests on 1 and 2 degrees of freedom (df), together
with N , the number of subjects for whom data were available. The 1 df test is the familiar
Cochran-Armitage test for codominant effect while the 2 df test is the conventional Pear-
sonian test for the 3 × 2 contingency table. The large number of NA values for the latter
test reflects the fact that, for these SNPs, the minor allele frequency was such that one
homozygous genotype did not occur in the data.

We will probably wish to restrict our attention to SNPs that pass certain criteria. For
example

> use <- snpsum$MAF > 0.01 & snpsum$z.HWE^2 < 200

(The Hardy-Weinberg filter is ridiculous and reflects the strange characteristics of these
simulated data. In real life you might want to use something like 16, equivalent to a 4SE
cut-off). To see how many SNPs pass this filter

> sum(use)

5This is not mandatory — we could have made cc available in the global environment. However we would
then have to be careful that the values are in the right order; by specifying the data frame, order is forced
to be correct by checking the order of the row names for the data and snp.data arguments.
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[1] 28184

We will now throw way the discarded test results and save the positions of the remaining
SNPs

> tests <- tests[use]

> position <- snp.support[use, "position"]

We now calculate p-values for the Cochran-Armitage tests and plot minus logs (base 10)
of the p-values against position

> p1 <- p.value(tests, df = 1)

> plot(hexbin(position, -log10(p1), xbin = 50))
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Clearly there are far too many “significant” results, an impression which is made even
clearer by the quantile-quantile (QQ) plot:

> chi2 <- chi.squared(tests, df = 1)

> qq.chisq(chi2, df = 1)

N omitted lambda

28184.000000 0.000000 1.676657
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The three numbers returned by this command are the number of tests considered, the
number of outliers falling beyond the plot boundary, and the slope of a line fitted to the
smallest 90% of values (i.e. the multiple by which the chi-squared test statistics are over-
dispersed). The “concentration band” for the plot is shown in grey. This region is defined by
upper and lower probability bounds for each order statistic. The default is to use the 2.5%
and 95.7% bounds6.

This over-dispersion of chi-squared values was built into our simulation. The data were
constructed by re-sampling individuals from two groups of HapMap subjects, the CEU sample

6Note that this is not a simultaneous confidence region; the probability that the plot will stray outside
the band at some point exceeds 95%.
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(of European origin) and the JPT+CHB sample (of Asian origin). The 55% of the cases
were of European ancestry as compared with only 45% of the controls. We can deal with
this by stratification of the tests, achieved by adding the stratum argument to the call to
single.snp.tests (the remaining commands are as before)

> tests <- single.snp.tests(cc, stratum, data = subject.support,

+ snp.data = snps.10)

> tests <- tests[use]

> p1 <- p.value(tests, df = 1)

> plot(hexbin(position, -log10(p1), xbin = 50))
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> chi2 <- chi.squared(tests, df = 1)

> qq.chisq(chi2, df = 1)

N omitted lambda

28184.000000 0.000000 1.006562

0 5 10 15

0

5

10

15

20

25

30

QQ plot

Expected distribution: chi−squared (1 df)
Expected

O
bs

er
ve

d

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●●

●●●●●
●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●

●●●
●●●●●

●●●●
●●●

●●
●●●

●

●
●

●
●

●

●

Most of the over-dispersion of test statistics has been removed (the residual is probably
due to “cryptic relatedness” owing to the way in which the data were simulated).

Now let us find the names and positions of the most significant 10 SNPs. The first step
is to compute an array which gives the positions in which the first, second, third etc. can be
found
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> ord <- order(p1)

> top10 <- ord[1:10]

> top10

[1] 459 20174 20175 20173 20170 20171 20172 21134 26269 7981

We now list the 1 df p-values, the corresponding SNP names and their positions on the
chromosome:

> names <- tests@snp.names

> p1[top10]

rs870041 rs10882596 rs7088765 rs4918933 rs4918928 rs2025850

2.336964e-08 1.206772e-06 2.179028e-06 3.296406e-06 6.248970e-06 8.306560e-06

rs2274491 rs17668255 rs7085895 rs11596495

5.478332e-05 1.340763e-04 1.411405e-04 1.485893e-04

> names[top10]

[1] "rs870041" "rs10882596" "rs7088765" "rs4918933" "rs4918928"

[6] "rs2025850" "rs2274491" "rs17668255" "rs7085895" "rs11596495"

> position[top10]

[1] 2075671 97190034 97191413 97189084 97179410 97185949 97186968

[8] 101990691 127661165 33024457

The most associated SNPs lie within two small regions of the genome. To concentrate
on the rightmost region (the most associated region on the left contains just one SNP), we’ll
first sort the names of the SNPs into position order along the chromosome and select those
lying in the region approximately one mega-base either side of the second most associated
SNP:

> posord <- order(position)

> position <- position[posord]

> names <- names[posord]

> local <- names[position > 9.6e+07 & position < 9.8e+07]

The variable posord contains the permutation necessary to sort SNPs into position order
and names and position have now been reordered in this manner. The variable local

contains the names of the SNPs in the selected 2 mega-base region. Now create a matrix
containing just these SNPs, in position order, and compute the linkage disequilibrium (LD)
between them:

> snps.2mb <- snps.10[, local]

> ld.2mb <- ld.snp(snps.2mb)
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Information: The input contains 999 samples with 371 snps

... Done

A plot of the D′ values across the region may be written to a file (in encapsulated
postscript format) as follows:

plot(ld.2mb, file="ld2.eps")

This can be viewed (outside R) using a postscript viewer such as “gv” or “ggv”. Alternatively
it can be converted to a .pdf file and viewed in a pdf viewer such as“acroread”. The associated
SNPs fall in a region of tight LD towards the middle of the plot.

Next we shall estimate the size of the effect at the most associated SNPs for each region
(rs870041, rs10882596). In the following commands, we extract each SNP from the matrix
as a numerical variable (coded 0, 1, or 2) and then, using the glm function, carry out a
logistic regression of case–control status on this numerical coding of the SNP and upon
stratum. The variable stratum must be included in the regression in order to allow for
the different population structure of cases and controls. We first make copies of the cc and
stratum variables in subject.support in the current working environment (where the other
variables reside):

> cc <- subject.support$cc

> stratum <- subject.support$stratum

> top <- as(snps.10[, "rs870041"], "numeric")

> glm(cc ~ top + stratum, family = "binomial")

Call: glm(formula = cc ~ top + stratum, family = "binomial")

Coefficients:

(Intercept) top stratumJPT+CHB

-0.4047 0.5100 -0.2302

Degrees of Freedom: 988 Total (i.e. Null); 986 Residual

(10 observations deleted due to missingness)

Null Deviance: 1371

Residual Deviance: 1333 AIC: 1339

The coefficient of top in this regression is estimated as 0.5100, equivalent to a relative risk
of exp(.5100) = 1.665. For the other top SNP we have:

> top2 <- as(snps.10[, "rs10882596"], "numeric")

> glm(cc ~ top2 + stratum, family = "binomial")

Call: glm(formula = cc ~ top2 + stratum, family = "binomial")

Coefficients:
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(Intercept) top2 stratumJPT+CHB

-0.2454 0.4575 -0.5125

Degrees of Freedom: 990 Total (i.e. Null); 988 Residual

(8 observations deleted due to missingness)

Null Deviance: 1374

Residual Deviance: 1344 AIC: 1350

This relative risk is exp(0.4575) = 1.580. Both estimates are close to the values used to
simulate the data.

Finally you might like to repeat the analysis above using the 2 df tests. The conclusion
would have been much the same. A word of caution however; with real data the 2 df test
is less robust against artifacts due to genotyping error. On the other hand, it is much more
powerful against recessive or near-recessive variants.

Multi-locus tests

There are two other functions for carrying out association tests (snp.lhs.tests and snp.rhs.tests)
in the package. These are somewhat slower, but much more flexible. For example, the former
function allows one to test for differences in allele frequencies between more than two groups.
An important use of the latter function is to carry out tests using groups of SNPs rather
than single SNPs. We shall explore this use in the final part of the exercise.

A prerequisite to multi-locus analyses is to decide on how SNPs should be grouped in order
to “tag” the genome rather more completely than by use of single markers. Hopefully, the
chopsticks package will eventually contain tools to compute such groups, for example, by
using HapMap data. The function ld.snp, which we encountered earlier, will be an essential
tool in this process. However this work is not complete and, for now, we demonstrate the
testing tool by grouping the 27,828 SNPs we have decided to use into 20kB blocks. The
following commands compute such a grouping, tabulate the block size, and remove empty
blocks:

> blocks <- split(posord, cut(position, seq(1e+05, 135300000, 20000)))

> bsize <- sapply(blocks, length)

> table(bsize)

bsize

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

803 732 895 869 801 665 581 417 316 192 170 102 72 41 43 20 13 9 5 5

20 21 22 24

1 6 1 1

> blocks <- blocks[bsize > 0]
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You can check that this has worked by listing the column positions of the first 20 SNPs
together with the those contained in the first five blocks

> posord[1:20]

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

> blocks[1:5]

$`(1e+05,1.2e+05]`
[1] 1 2 3

$`(1.2e+05,1.4e+05]`
[1] 4

$`(1.4e+05,1.6e+05]`
[1] 5 6 7 8 9 10

$`(1.6e+05,1.8e+05]`
[1] 11 12 13 14

$`(1.8e+05,2e+05]`
[1] 15 16 17 18

Note that these positions refer to the reduced set of SNPs after application of the filter
on MAF and HWE. Therefore, before proceeding further we create a new matrix of SNP
genotypes containing only these 27,828:

> snps.use <- snps.10[, use]

> remove(snps.10)

The command to carry out the tests on these groups, controlling for the known population
structure differences is

> mtests <- snp.rhs.tests(cc ~ stratum, family = "binomial",

+ data = subject.support, snp.data = snps.use, tests = blocks)

> summary(mtests)

Chi.squared Df p.value

Min. :4.306e-06 Min. : 1.000 Min. :5.204e-06

1st Qu.:1.437e+00 1st Qu.: 2.000 1st Qu.:2.578e-01

Median :3.485e+00 Median : 4.000 Median :4.875e-01

Mean :4.520e+00 Mean : 4.509 Mean :4.946e-01

3rd Qu.:6.533e+00 3rd Qu.: 6.000 3rd Qu.:7.405e-01

Max. :3.229e+01 Max. :24.000 Max. :9.998e-01
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The first argument, together with the second, specifies the model which corresponds to
the null hypothesis. In this case we have allowed for the variation in ethnic origin (stratum)
between cases and controls. We complete the analysis by extracting the p–values and plotting
minus their logs (base 10):

> pm <- p.value(mtests)

> plot(hexbin(-log10(pm), xbin = 50))
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The same associated region is picked out, albeit with a rather larger p-value; in this case
the multiple df test cannot be powerful as the 1 df test since the simulation ensured that the
“causal” locus was actually one of the SNPs typed on the Affymetrix platform. QQ plots are
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somewhat more difficult since the tests are on differing degrees of freedom. This difficulty
is neatly circumvented by noting that, under the null hypothesis, −2 log p is distributed as
chi-squared on 2 df:

> qq.chisq(-2 * log(pm), df = 2)

N omitted lambda
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