
girafe
October 25, 2011

AlignedGenomeIntervals-class
Class ’AlignedGenomeIntervals’

Description

A class for representing reads from next-generation sequencing experiments that have been aligned
to genomic intervals.

Objects from the Class

Objects can be created either by:

1. calls of the form new("AlignedGenomeIntervals", .Data, closed, ...).

2. using the auxiliary function AlignedGenomeIntervals and supplying separate vectors
of same length which hold the required information:
AlignedGenomeIntervals(start, end, chromosome, strand, reads, matches,
sequence)
If arguments reads or matches are not specified, they are assumed to be ’1’ for all inter-
vals.

3. or, probably the most common way, by coercing from objects of class AlignedRead.

Slots

.Data: two-column integer matrix, holding the start and end coordinates of the intervals on the
chromosomes

sequence: character; sequence of the read aligned to the interval

reads: integer; total number of reads that were aligned to this interval

matches: integer; the total number of genomic intervals that reads which were aligned to this
interval were aligned to. A value of ’1’ thus means that this read sequence matches uniquely
to this one genome interval only

organism: string; an identifier for the genome of which organism the intervals are related to.
Functions making use of this slot require a specific annotation package org.<organism>.eg.db.
For example if organism is ’Hs’, the annotation package ’org.Hs.eg.db’ is utilised by these
functions. The annotation packages can be obtained from the Bioconductor repositories.

annotation: data.frame; see class genome_intervals for details

1

2 AlignedGenomeIntervals-class

closed: matrix; see class genome_intervals for details

type: character; see class genome_intervals for details

score: numeric; optional score for each aligned genome interval

id: character; optional identifier for each aligned genome interval

chrlengths: integer; optional named integer vector of chromosome lengths for the respective
genome; if present it is used in place of the chromosome lengths retrieved from the annotation
package (see slot organism)

Extends

Class Genome_intervals-class, directly. Class Intervals_full, by class "Genome_intervals",
distance 2.

Methods

coerce Coercion method from objects of class AlignedRead, which is defined in package ShortRead,
to objects of class AlignedGenomeIntervals

coerce Coercion method from objects of class AlignedGenomeIntervals to objects of class
RangedData, which is defined in package IRanges

coverage signature("AlignedGenomeIntervals"): computes the read coverage over
all chromosomes. If the organism of the object is set correctly, the chromosome lengths
are retrieved from the appropriate annotation package, otherwise the maximum interval end is
taken to be the absolute length of that chromosome (strand).
The result of this method is a list and the individual list elements are of class Rle, a class for
encoding long repetitive vectors that is defined in package IRanges.
The additional argument byStrand governs whether the coverage is computed separately for
each strand. If byStrand=FALSE (default) only one result is returned per chromosome. If
byStrand=TRUE, there result is two separate Rle objects per chromosome with the strand
appended to the chromosome name.
By now, the coveragemethod for AlignedGenomeIntervalsmakes use of the method
for RangedData objects from package IRanges (thanks to a suggestion from P. Aboyoun).

detail signature("AlignedGenomeIntervals"): a more detailed output of all the inter-
vals than provided by show; only advisable for objects containing few intervals

extend signature("AlignedGenomeIntervals")with additional arguments fiveprime=0L
and threeprime=0L. These must be integer numbers and greater than or equal to 0. They
specify how much is subtracted from the left border of the interval and added to the right side.
Which end is 5’ and which one is 3’ are determined from the strand information of the object.
Lastly, if the object has an organism annotation, it is checked that the right ends of the
intervals do not exceed the respective chromosome lengths.

export export the aligned intervals as tab-delimited text files which can be uploaded to the UCSC
genome browser as ‘custom tracks’. Currently, there are methods for exporting the data into
‘bed’ format and ‘bedGraph’ format, either writing the intervals from both strands into one file
or into two separate files (formats ‘bedStrand’ and ‘bedGraphStrand’, respectively). Details
about these track formats can be found at the UCSC genome browser web pages.
The additional argument writeHeader can be set to FALSE to suppress writing of the track
definition header line to the file.
For Genome_intervals objects, only ‘bed’ format is supported at the moment and does
not need to be specified.

hist signature("AlignedGenomeIntervals"): creates a histogram of the lengths of the
reads aligned to the intervals

AlignedGenomeIntervals-class 3

organism Get or set the organism that the genome intervals in the object correspond to. Should be a
predefined code, such as ’Mm’ for mouse and ’Hs’ for human. The reason for this code, that, if
the organism is set, a corresponding annotation package that is called org.<organism>.eg.db
is used, for example for obtaining the chromosome lengths to be used in methods such as
coverage. These annotation packages can be obtained from the Bioconductor repository.

plot visualisation method; a second argument of class Genome_intervals_stranded can
be provided for additional annotation to the plot. Please see below and in the vignette for
examples. Refer to the documentation of plotAligned for more details on the plotting
function.

reduce collapse/reduce aligned genome intervals by combining intervals which are completely in-
cluded in each other, combining overlapping intervals AND combining immediately adjacent
intervals (if method="standard"). Intervals are only combined if they are on the same
chromosome, the same strand AND have the same match specificity of the aligned reads.
If you only want to combine intervals that have exactly the same start and stop position
(but may have reads of slightly different sequence aligned to them), then use the argument
method="exact".
If you only want to combine intervals that have exactly the same 5’ or 3’ end (but may differ in
the other end and in the aligned sequence), then use the argument method="same5" (same
5’ end) or method="same3" (same 3’ end).
Finally, it’s possible to only collapse/reduce aligned genome intervals that overlap each other
by at least a certain fraction using the argument min.frac. min.frac is a number be-
tween 0.0 and 1.0. For example, if you call reduce with argument min.frac=0.4, only
intervals that overlap each other by at least 40 percent are collapsed/merged.

sample draw a random sample of n (Argument size) of the aligned reads (without or with re-
placement) and returns the AlignedGenomeIntervals object defined by these aligned
reads.

score access or set a custom score for the object

sort sorts the intervals by chromosome name, start and end coordinate in increasing order (unless
decreasing=TRUE is specified) and returns the sorted object

subset take a subset of reads, matrix-like subsetting via ’\[’ can also be used

Author(s)

Joern Toedling

See Also

Genome_intervals-class, AlignedRead-class, RangedData-class, RangedData-
class, plotAligned

Examples

############# toy example:
A <- new("AlignedGenomeIntervals",

.Data=cbind(c(1,3,4,5,8,10), c(5,5,6,8,9,11)),
annotation=data.frame(
seq_name=factor(rep(c("chr1","chr2","chr3"), each=2)),
strand=factor(c("-","-","+","+","+","+") ,levels=c("-","+")),
inter_base=rep(FALSE, 6)),

reads=rep(3L, 6), matches=rep(1L,6),
sequence=c("ACATT","ACA","CGT","GTAA","AG","CT"))

4 AlignedGenomeIntervals-class

show(A)
detail(A)

alternative initiation of this object:
A <- AlignedGenomeIntervals(

start=c(1,3,4,5,8,10), end=c(5,5,6,8,9,11),
chromosome=rep(c("chr2","chrX","chr1"), each=2),
strand=c("-","-","+","+","+","+"),
sequence=c("ACATT","ACA","CGT","GGAA","AG","CT"),
reads=c(1L, 5L, 2L, 7L, 3L, 3L))

detail(A)

custom identifiers can be assigned to the intervals
id(A) <- paste("gi", 1:6, sep="")

subsetting and combining
detail(A[c(1:4)])
detail(c(A[1], A[4]))

sorting: always useful
A <- sort(A)
detail(A)

the 'reduce' method provides a cleaned-up, compact set
detail(reduce(A))
with arguments specifying additional conditions for merging
detail(reduce(A, min.frac=0.8))

'sample' to draw a sample subset of reads and their intervals
detail(sample(A, 10))

biological example
exDir <- system.file("extdata", package="girafe")
exA <- readAligned(dirPath=exDir, type="Bowtie",
pattern="aravinSRNA_23_no_adapter_excerpt_mm9_unmasked.bwtmap")

exAI <- as(exA, "AlignedGenomeIntervals")
organism(exAI) <- "Mm"
show(exAI)
which chromosomes are the intervals on?
table(chromosome(exAI))

subset
exAI[is.element(chromosome(exAI), c("chr1","chr2"))]

compute coverage per chromosome:
coverage(exAI[is.element(chromosome(exAI), c("chr1","chr2"))])

plotting:
load(file.path(exDir, "mgi_gi.RData"))
plot(exAI, mgi.gi, chr="chrX", start=50400000, end=50410000)

overlap with annotated genome elements:
exOv <- interval_overlap(exAI, mgi.gi)
how many elements do read match positions generally overlap:
table(listLen(exOv))
what are the 13 elements overlapped by a single match position:
mgi.gi[exOv[[which.max(listLen(exOv))]]]

agiFromBam 5

what kinds of elements are overlapped
(tabOv <- table(as.character(mgi.gi$type)[unlist(exOv)]))
display those classes:
my.cols <- rainbow(length(tabOv))
pie(tabOv, col=my.cols, radius=0.85)

agiFromBam Create AlignedGenomeIntervals objects from BAM files.

Description

Function to create AlignedGenomeIntervals objects from BAM (binary alignment map for-
mat) files. Uses functions from package Rsamtools to parse BAM files.

Usage

agiFromBam(bamfile, ...)

Arguments

bamfile File path of BAM file. BAM file should be sorted and have an index in the same
directory (see Details below).

... further arguments passed on to function scanBam

Details

Note: the BAM files must be sorted and must also have an index file (*.bai) in the same directory.
These should be done when creating the BAM. However, the functions sortBam and indexBam
can be used for the same purpose, as can the respective modules of the “samtools” library (‘samtools
sort’ and ‘samtools index’).

The BAM files are parsed chromosome by chromosome to limit the memory footprint of the func-
tion. Thus, this function aims to be a less-memory-consuming alternative to first reading in the
BAM file using the readAligned function and then converting the AlignedRead object into
an AlignedGenomeIntervals object.

Value

An object of class AlignedGenomeIntervals.

Author(s)

J Toedling

References

http://samtools.sourceforge.net

See Also

scanBam, AlignedGenomeIntervals-class

http://samtools.sourceforge.net

6 countReadsAnnotated

Examples

fl <- system.file("extdata", "ex1.bam", package="Rsamtools")
ExGi <- agiFromBam(fl)
head(detail(ExGi))

countReadsAnnotated
Sum up aligned reads per category of genome feature

Description

A function to sum up aligned reads per category of genome feature (i.e. gene, ncRNA, etc.).

Usage

countReadsAnnotated(GI, M, typeColumn="type", fractionGI=0.7,
mem.friendly=FALSE, showAllTypes=FALSE)

Arguments

GI object of class AlignedGenomeIntervals

M Annotation object of class Genome_intervals_stranded or Genome_intervals;
describes the genomic coordinates of annotated genome features, such as genes,
miRNAs, etc.

typeColumn string; which column of the annotation object M describes the type of the genome
feature

fractionGI which fraction of the intervals in object GI are required to ovelap with a feature
in M in order to be considered to correspond to that feature.

mem.friendly logical; should a version which requires less memory but takes a bit longer be
used

showAllTypes logical; should a table of genome feature types in M be displayed?

Details

The read counts are summed up over each type of genome feature, and the read counts are nor-
malised by their number of genomic matches. For example if a read has two matches in the genome,
but only one inside a miRNA, it would count 0.5 for miRNAs.

Value

A named numeric vector which gives the summed read counts for each supplied type of genome
feature.

Author(s)

J Toedling

fracOverlap 7

Examples

A <- AlignedGenomeIntervals(
start=c(1,8,14,20), end=c(5,15,19,25),
chromosome=rep("chr1", each=4),
strand=c("+","+","+","+"),
sequence=c("ACATT","TATCGGAC","TCGGACT","GTAACG"),
reads=c(7L, 2L, 4L, 5L))

M2 <- new("Genome_intervals_stranded",
rbind(c(2,6), c(1,15), c(20,30)),
closed = matrix(TRUE, ncol=2, nrow=3),
annotation = data.frame(
seq_name= factor(rep("chr1", 3)),
inter_base= logical(3),
strand=factor(rep("+", 3), levels=c("+","-")),
alias=c("miRNA1","gene1","tRNA1"),
type=c("miRNA","gene","tRNA")))

if (interactive()){
grid.newpage()
plot(A, M2, chr="chr1", start=0, end=35,

nameColum="alias", show="plus")
}
countReadsAnnotated(A, M2, typeColumn="type")

fracOverlap Retrieve intervals overlapping by fraction of width

Description

Function to retrieve overlapping intervals that overlap at least by a specified fraction of their widths.

Usage

fracOverlap(I1, I2, min.frac=0.0, both=TRUE, mem.friendly=FALSE)

Arguments

I1 object that inherits from class Genome_intervals

I2 object that inherits from class Genome_intervals

min.frac numeric; minimum required fraction of each of the two interval widths by which
two intervals should overlap in order to be marked as overlapping.

both logical; shall both overlap partners meet the minimum fraction min.frac re-
quirement? If FALSE, then overlaps with only partner involved to at least that
fraction are also reported.

mem.friendly logical; if set to TRUE an older but memory-friendlier version of interval_overlap
is used inside this function. Note that mem.friendly is only evaluated if I1
or I2 is of class AlignedGenomeIntervals.

8 intPhred

Value

An object of class data.frame with one row each for a pair of overlapping elements.

Index1 Index of interval in first interval list

Index2 Index of interval in second interval list

n number of bases that the two intervals overlap

fraction1 fraction of interval 1’s width by which the two intervals overlap

fraction2 fraction of interval 2’s width by which the two intervals overlap

Author(s)

J. Toedling

See Also

interval_overlap

Examples

data("gen_ints", package="genomeIntervals")
i[4,2] <- 13L
fracOverlap(i, i, 0.5)

intPhred Extract integer Phred score values from FastQ data

Description

Function to extract integer Phred score values from FastQ data.

Usage

intPhred(x, method="Sanger", returnType="list")

Arguments

x object of class ShortReadQ; which contains read sequences and quality scores;
usually read in from a Fastq files.

method string; one of ’Sanger’, ’Solexa’ or ’previousSolexa’. See details below.

returnType string; in which format should the result be returned, either as a ’list’ or as a
’matrix’.

Details

There are different standards for encoding read qualities in Fastq files. The ’Sanger’ format encodes
a Phred quality score from 0 to 93 using ASCII 33 to 126. The current ’Solexa’/llumina format (1.3
and higher) encodes a Phred quality score from 0 to 40 using ASCII 64 to 104. The ’previous
Solexa’/Illumina format (1.0) encodes a custom Solexa/Illumina quality score from -5 to 40 using
ASCII 59 to 104. This custom Solexa quality score is approximately equal to the Phred scores for
high qualities, but differs in the low quality range.

medianByPosition 9

Value

If returnType is equal to ‘list’: A list of integer Phred quality values of the same length as the
number of reads in the object x.

If returnType is equal to ‘matrix’: A matrix of integer Phred quality values. The number of
rows is the number of reads in the object x. The number of columns is the maximum length (width)
over all reads in object x. The last entries for reads that are shorter than this maximum width are
’NA’.

Author(s)

Joern Toedling

References

http://maq.sourceforge.net/fastq.shtml

See Also

ShortReadQ-class, readFastq

Examples

exDir <- system.file("extdata", package="girafe")
ra <- readFastq(dirPath=exDir, pattern=

"aravinSRNA_23_plus_adapter_excerpt.fastq")
ra.quals <- intPhred(ra, method="Sanger",

returnType="matrix")
ra.qmed <- apply(ra.quals, 2, median)
plot(ra.qmed, type="h", ylim=c(0,42), xlab="Base postion",

ylab="Median Phred Quality Score", lwd=2, col="steelblue")

medianByPosition Compute median quality for each nucleotide position

Description

This function computes the median quality for each position in a read over all reads in a ShortReadQ
object.

Usage

medianByPosition(x, method = "Sanger", batchSize = 100000L)

Arguments

x object of class ShortReadQ, such as the result of function readFastq

method string; passed on to function intPhred

batchSize number of rows to process in each iteration; directly influences RAM usage of
this function

http://maq.sourceforge.net/fastq.shtml

10 addNBSignificance

Details

The quality values are computed for each batch of reads and stored as numeric Rle objects for each
postion. In each iteration, the Rle object of the current batch is merged with the previous one in
order to keep the RAM usage low.

Value

A numeric vector of the median values per nucleotide position in the reads. The length of this vector
corresponds to the length of the longest read in the data.

Author(s)

Joern Toedling

See Also

intPhred

Examples

exDir <- system.file("extdata", package="girafe")
ra <- readFastq(dirPath=exDir, pattern=

"aravinSRNA_23_plus_adapter_excerpt.fastq")
medianByPosition(ra, batchSize=200)

addNBSignificance assess significance of sliding-window read counts

Description

This function can be used to assess the significance of sliding-window read counts. The background
distribution of read counts in windows is assumed to be a Negative-Binomial (NB) one. The two
parameters of the NB distribution, mean ‘mu’ and dispersion ‘size’, are estimated using any of the
methods described below (see details). The estimated NB distribution is used to assign a p-value to
each window based on the number of aligned reads in the window. The p-values can be corrected
for multiple testing using any of the correction methods implemented for p.adjust.

Usage

addNBSignificance(x, estimate="NB.012", correct = "none", max.n=10L)

Arguments

x A data.frame of class slidingWindowSummary, as returned by the func-
tion perWindow.

estimate string; which method to use to estimate the parameters of the NB background
distribution; see below for details

correct string; which method to use for p-value adjustment; can be any method that is
implemented for p.adjust including “none” if no correction is desired.

max.n integer; only relevant if estimate=="NB.ML"; in that case specifies that win-
dows with up to this number of aligned reads should be considered for estimating
the background distribution.

addNBSignificance 11

Details

The two parameters of the Negative-Binomial (NB) distribution are: mean ‘λ’ (or ‘mu’) and size
‘r’ (or ‘size’).

The function knows a number of methods to estimate the parameters of the NB distribution.

“NB.012” Solely the windows with only 0, 1, or 2 aligned reads are used for estimating λ and ‘r’.
From the probability mass function g(k) = P (X = k) of the NB distribution, it follows that
the ratios

q1 =
g(1)

g(0)
=

λ · r
λ+ r

and

q2 =
g(2)

g(1)
=
λ · (r + 1)

2 · (λ+ r)
.

The observed numbers of windows with 0-2 aligned reads are used to estimate

q̂1 =
n1
n0

and
q̂2 =

n2
n1

and from these estimates, one can obtain estimates for λ̂ and r̂.

“NB.ML” This estimation method uses the function fitdistr from package ‘MASS’. Windows
with up to n.max aligned reads are considered for this estimate.

“Poisson” This estimate also uses the windows the 0-2 aligned reads, but uses these numbers to
estimates the parameter λ of a Poisson distribution. The parameter ‘r’ is set to a very large
number, such that the estimated NB distribution actually is a Poisson distribution with mean
and variance equal to λ.

Value

A data.frame of class slidingWindowSummary, which is the the supplied argument x ex-
tended by an additional column p.value which holds the p-value for each window. The attribute
NBparams of the result contains the list of the estimated parameters of the Negative-Binomial
background distribution.

Author(s)

Joern Toedling

References

Such an estimation of the Negative-Binomial parameters has also been described in the paper:
Ji et al.(2008) An integrated system CisGenome for analyzing ChIP-chip and ChIP-seq data. Nat
Biotechnol. 26(11):1293-1300.

See Also

perWindow, p.adjust

12 perWindow

Examples

exDir <- system.file("extdata", package="girafe")
exA <- readAligned(dirPath=exDir, type="Bowtie",

pattern="aravinSRNA_23_no_adapter_excerpt_mm9_unmasked.bwtmap")
exAI <- as(exA, "AlignedGenomeIntervals")
exPX <- perWindow(exAI, chr="chrX", winsize=1e5, step=0.5e5)
exPX <- addNBSignificance(exPX, correct="bonferroni")
str(exPX)
exPX[exPX$p.value <= 0.05,]

perWindow Investigate aligned reads in genome intervals with sliding windows

Description

Investigate aligned reads in genome intervals with sliding windows.

Usage

perWindow(object, chr, winsize, step, normaliseByMatches = TRUE,
mem.friendly = FALSE)

Arguments

object object of class AlignedGenomeIntervals

chr string; which chromosome to investigate with sliding windows

winsize integer; size of the sliding window in base-pairs

step integer; offset between the start positions of two sliding windows
normaliseByMatches

logical; should the number of reads per AlignedGenomeInterval be nor-
malised by the number of genomic matches of the read sequence before sum-
ming them up in each window? (i.e. derivation a weighted sum of read counts)

mem.friendly logical; argument passed on to function interval_overlap; if TRUE the
less RAM and, if the multicore package is attached, multiple processors are
used for computing the overlap, on the expense of time

Details

The windows are constructed from the first base position onto which a read has been mapped until
the end of the chromosome.

Value

a data.frame with the following information for each sliding window on the chromosome

chr string; which chromosome the interval is on

start integer; start coordinate of the windows on the chromosome

end integer; end coordinate of the windows on the chromosome

trimAdapter 13

n.overlap integer; number of read match positions inside the window. Per match position
there can be one or more reads mapped, so this number always is smaller than
n.reads

n.reads numeric; number of reads which match positions inside this window; can be
floating-point numbers if argument normaliseByMatches=TRUE

n.unique integer; number of reads which each only have one match position in the genome
and for which this position is contained inside this window

max.reads integer; the maximal number of reads at any single one match position contained
inside this window

first integer; coordinate of the first read alignment found inside the window

last integer; coordinate of the last read alignment found inside the window

The result is of class data.frame and in addition of the (S3) class slidingWindowSummary,
which may be utilized by follow-up functions.

Author(s)

Joern Toedling

See Also

AlignedGenomeIntervals-class

Examples

exDir <- system.file("extdata", package="girafe")
exA <- readAligned(dirPath=exDir, type="Bowtie",
pattern="aravinSRNA_23_no_adapter_excerpt_mm9_unmasked.bwtmap")

exAI <- as(exA, "AlignedGenomeIntervals")
exPX <- perWindow(exAI, chr="chrX", winsize=1e5, step=0.5e5)
head(exPX[order(exPX$n.overlap, decreasing=TRUE),])

trimAdapter Remove 3’ adapter contamination

Description

Function to remove 3’ adapter contamination from reads

Usage

trimAdapter(fq, adapter, match.score = 1, mismatch.score = -1,
score.threshold = 2)

14 trimAdapter

Arguments

fq Object of class ShortReadQ; the reads with possible adapter contamination.

adapter object of class DNAString or class character; the sequence of the 3’ adapter
which could give rise to the 3’ contamination. If of class character, it is con-
verted to a DNAString inside the function.

match.score numeric; alignment score for matching bases

mismatch.score
numeric; alignment score for mismatches

score.threshold
numeric; minimum total alignment score required for an overlap match between
the 3’ end of the read and the 5’ end of the adapter sequence.

Details

Performs an overlap alignment between the ends of the reads and the start of the adapter sequence.

Value

An object of class ShortReadQ containing the reads without the 3’ adapter contamination.

Note

The function trimLRPatterns from package ShortRead may be a faster alternative to this
function.

Author(s)

J. Toedling

See Also

pairwiseAlignment, narrow, readFastq, writeFastq

Examples

exDir <- system.file("extdata", package="girafe")
load reads containing adapter fragments at the end
ra23.wa <- readFastq(dirPath=exDir, pattern=

"aravinSRNA_23_plus_adapter_excerpt.fastq")
table(width(ra23.wa))
adapter sequence obtained from GEO page
accession number: GSE10364
#adapter <- DNAString("CTGTAGGCACCATCAAT")
adapter <- "CTGTAGGCACCATCAAT"

trim adapter
ra23.na <- trimAdapter(ra23.wa, adapter)
table(width(ra23.na))

which_nearest-methods 15

which_nearest-methods
Methods for function ’which_nearest’ and genome intervals

Description

For each genome interval in one set, finds the nearest interval in a second set of genome intervals.

Value

a data.frame with a number of rows equal to the number of intervals in argument from. The
elements of the data.frame are:

distance_to_nearest
numeric; distance to nearest interval from object to. Is 0 if the current interval
in object from did overlap one or more intervals in object to

which_nearest
list; each list element are the indices or the intervals in object to that have the
closest distance to the current interval in object from

which_overlap
list; each list element are the indices or the intervals in object to that do overlap
with the current interval in object from

Methods

Currently, the package girafe contains method implementations for the first object (Argu-
ment: from) being of any of the classes “AlignedGenomeIntervals”,“Genome_intervals” or
“Genome_intervals_stranded”. The second object (Argument: to) has be of class “Genome_intervals_stranded”
or “Genome_intervals”.

Note

If the supplied objects are stranded, as it is the case with objects of classes ‘AlignedGenomeInter-
vals’ and ‘Genome_intervals_stranded’, then the overlap and distance is solely computed between
intervals on the same strand.

For objects of class ‘Genome_intervals’, overlap and distances are computed regardless of strand
information.

Author(s)

Joern Toedling

See Also

which_nearest

16 which_nearest-methods

Examples

process aligned reads
exDir <- system.file("extdata", package="girafe")
exA <- readAligned(dirPath=exDir, type="Bowtie",
pattern="aravinSRNA_23_no_adapter_excerpt_mm9_unmasked.bwtmap")

exAI <- as(exA, "AlignedGenomeIntervals")

load annotated genome features
load(file.path(exDir, "mgi_gi.RData"))

subset for sake of speed:
A <- exAI[is.element(seq_name(exAI), c("chrX","chrY"))]
G <- mgi.gi[is.element(seq_name(mgi.gi), c("chrX","chrY"))]

find nearest annotated feature for each AlignedGenomeInterval
WN <- which_nearest(A, G)
dim(WN); tail(WN)

notice the difference to:
tail(which_nearest(as(A, "Genome_intervals"), G))
the last interval in A is located antisense to a gene,
but not overlapping anything on the same strand

Index

∗Topic classes
AlignedGenomeIntervals-class,

1
∗Topic manip

addNBSignificance, 10
agiFromBam, 5
countReadsAnnotated, 6
fracOverlap, 7
intPhred, 8
medianByPosition, 9
perWindow, 12
trimAdapter, 13

∗Topic methods
which_nearest-methods, 15

[,AlignedGenomeIntervals,ANY,ANY-method
(AlignedGenomeIntervals-class),
1

addNBSignificance, 10
agiFromBam, 5
AlignedGenomeIntervals

(AlignedGenomeIntervals-class),
1

AlignedGenomeIntervals-class, 5,
13

AlignedGenomeIntervals-class, 1
AlignedRead-class, 3

c,AlignedGenomeIntervals-method
(AlignedGenomeIntervals-class),
1

c.AlignedGenomeIntervals
(AlignedGenomeIntervals-class),
1

chrlengths
(AlignedGenomeIntervals-class),
1

chrlengths,AlignedGenomeIntervals-method
(AlignedGenomeIntervals-class),
1

chrlengths<-
(AlignedGenomeIntervals-class),
1

chrlengths<-,AlignedGenomeIntervals,numeric-method
(AlignedGenomeIntervals-class),
1

chromosome,AlignedGenomeIntervals-method
(AlignedGenomeIntervals-class),
1

chromosome,Genome_intervals-method
(AlignedGenomeIntervals-class),
1

clusters,AlignedGenomeIntervals-method
(AlignedGenomeIntervals-class),
1

clusters,Genome_intervals-method
(AlignedGenomeIntervals-class),
1

coerce,AlignedGenomeIntervals,RangedData-method
(AlignedGenomeIntervals-class),
1

coerce,AlignedRead,AlignedGenomeIntervals-method
(AlignedGenomeIntervals-class),
1

countReadsAnnotated, 6
coverage,AlignedGenomeIntervals-method

(AlignedGenomeIntervals-class),
1

detail,AlignedGenomeIntervals-method
(AlignedGenomeIntervals-class),
1

estimateNBParams
(addNBSignificance), 10

export
(AlignedGenomeIntervals-class),
1

export,AlignedGenomeIntervals,character,character-method
(AlignedGenomeIntervals-class),
1

export,Genome_intervals,character,ANY-method
(AlignedGenomeIntervals-class),
1

extend
(AlignedGenomeIntervals-class),
1

17

18 INDEX

extend,AlignedGenomeIntervals-method
(AlignedGenomeIntervals-class),
1

extend,Genome_intervals-method
(AlignedGenomeIntervals-class),
1

extend,Genome_intervals_stranded-method
(AlignedGenomeIntervals-class),
1

fracOverlap, 7

Genome_intervals-class, 2, 3

hist,AlignedGenomeIntervals-method
(AlignedGenomeIntervals-class),
1

id,AlignedGenomeIntervals-method
(AlignedGenomeIntervals-class),
1

id<-
(AlignedGenomeIntervals-class),
1

id<-,AlignedGenomeIntervals,character-method
(AlignedGenomeIntervals-class),
1

interval_included,AlignedGenomeIntervals,AlignedGenomeIntervals-method
(AlignedGenomeIntervals-class),
1

interval_included,AlignedGenomeIntervals,Genome_intervals_stranded-method
(AlignedGenomeIntervals-class),
1

interval_included,Genome_intervals_stranded,AlignedGenomeIntervals-method
(AlignedGenomeIntervals-class),
1

interval_overlap, 8
interval_overlap,AlignedGenomeIntervals,AlignedGenomeIntervals-method

(AlignedGenomeIntervals-class),
1

interval_overlap,AlignedGenomeIntervals,Genome_intervals-method
(AlignedGenomeIntervals-class),
1

interval_overlap,AlignedGenomeIntervals,Genome_intervals_stranded-method
(AlignedGenomeIntervals-class),
1

interval_overlap,Genome_intervals,AlignedGenomeIntervals-method
(AlignedGenomeIntervals-class),
1

interval_overlap,Genome_intervals_stranded,AlignedGenomeIntervals-method
(AlignedGenomeIntervals-class),
1

Intervals_full, 2

intPhred, 8, 10

matches
(AlignedGenomeIntervals-class),
1

matches,AlignedGenomeIntervals-method
(AlignedGenomeIntervals-class),
1

matches<-
(AlignedGenomeIntervals-class),
1

matches<-,AlignedGenomeIntervals,integer-method
(AlignedGenomeIntervals-class),
1

medianByPosition, 9

narrow, 14
nchar,AlignedGenomeIntervals-method

(AlignedGenomeIntervals-class),
1

organism,AlignedGenomeIntervals-method
(AlignedGenomeIntervals-class),
1

organism<-
(AlignedGenomeIntervals-class),
1

organism<-,AlignedGenomeIntervals,character-method
(AlignedGenomeIntervals-class),
1

p.adjust, 11
pairwiseAlignment, 14
perWindow, 10, 11, 12
plot,AlignedGenomeIntervals,ANY-method

(AlignedGenomeIntervals-class),
1

plot,AlignedGenomeIntervals,Genome_intervals_stranded-method
(AlignedGenomeIntervals-class),
1

plot,AlignedGenomeIntervals,missing-method
(AlignedGenomeIntervals-class),
1

plot,AlignedGenomeIntervals-method
(AlignedGenomeIntervals-class),
1

plotAligned, 3

RangedData-class, 3
readFastq, 9, 14
reads

(AlignedGenomeIntervals-class),
1

INDEX 19

reads,AlignedGenomeIntervals-method
(AlignedGenomeIntervals-class),
1

reads<-
(AlignedGenomeIntervals-class),
1

reads<-,AlignedGenomeIntervals,character-method
(AlignedGenomeIntervals-class),
1

reduce,AlignedGenomeIntervals-method
(AlignedGenomeIntervals-class),
1

reduce,Genome_intervals-method
(AlignedGenomeIntervals-class),
1

sample,AlignedGenomeIntervals-method
(AlignedGenomeIntervals-class),
1

scanBam, 5
score,AlignedGenomeIntervals-method

(AlignedGenomeIntervals-class),
1

score<-
(AlignedGenomeIntervals-class),
1

score<-,AlignedGenomeIntervals,numeric-method
(AlignedGenomeIntervals-class),
1

seq_name
(AlignedGenomeIntervals-class),
1

seq_name,AlignedGenomeIntervals-method
(AlignedGenomeIntervals-class),
1

seq_name,Genome_intervals-method
(AlignedGenomeIntervals-class),
1

ShortReadQ-class, 9
show,AlignedGenomeIntervals-method

(AlignedGenomeIntervals-class),
1

sort,AlignedGenomeIntervals-method
(AlignedGenomeIntervals-class),
1

strand,AlignedGenomeIntervals-method
(AlignedGenomeIntervals-class),
1

strand<-,AlignedGenomeIntervals,factor-method
(AlignedGenomeIntervals-class),
1

strand<-,AlignedGenomeIntervals,vector-method
(AlignedGenomeIntervals-class),

1
subset,AlignedGenomeIntervals-method

(AlignedGenomeIntervals-class),
1

trimAdapter, 13

which_nearest, 15
which_nearest

(which_nearest-methods), 15
which_nearest,AlignedGenomeIntervals,Genome_intervals_stranded-method

(which_nearest-methods), 15
which_nearest,Genome_intervals,Genome_intervals-method

(which_nearest-methods), 15
which_nearest,Genome_intervals_stranded,Genome_intervals_stranded-method

(which_nearest-methods), 15
which_nearest-methods, 15
width,AlignedGenomeIntervals-method

(AlignedGenomeIntervals-class),
1

writeFastq, 14

	AlignedGenomeIntervals-class
	agiFromBam
	countReadsAnnotated
	fracOverlap
	intPhred
	medianByPosition
	addNBSignificance
	perWindow
	trimAdapter
	which_nearest-methods
	Index

