
tigre User Guide

Antti Honkela, Pei Gao,
Jonatan Ropponen, Miika-Petteri Matikainen,

Magnus Rattray, and Neil D. Lawrence

February 15, 2011

1 Abstract

The tigre package implements our methodology of Gaussian process differential
equation models for analysis of gene expression time series from single input
motif networks. The package can be used for inferring unobserved transcription
factor (TF) protein concentrations from expression measurements of known tar-
get genes, or for ranking candidate targets of a TF.

2 Citing tigre

The tigre package is based on a body of methodological research. Citing tigre in
publications will usually involve citing one or more of the methodology papers
(Lawrence et al., 2007; Gao et al., 2008; Honkela et al., 2010) that the software
is based on as well as citing the software package itself.

3 Introductory example analysis - Drosophila
development

In this section we introduce the main functions of the puma package by repeating
some of the analysis from the PNAS paper (Honkela et al., 2010)1.

3.1 Installing the tigre package

The recommended way to install tigre is to use the biocLite function available
from the bioconductor website. Installing in this way should ensure that all
appropriate dependencies are met.

> source("http://www.bioconductor.org/biocLite.R")

> biocLite("tigre")

To load the package start R and run

> library(tigre)

1Note that the results reported in the paper were run using an earlier version of this package
for MATLAB, so there can be minor differences.

1



3.2 Loading the data

To get started, you need some preprocessed time series expression data. If
the data originates from Affymetrix arrays, we highly recommend processing it
with mmgmos from the puma package. This processing extracts error bars on
the expression measurements directly from the array data to allow judging the
reliability of individual measurements. This information is directly utilised by
all the models in this package.

To start from scratch on Affymetrix data, the .CEL files from ftp://ftp.
fruitfly.org/pub/embryo_tc_array_data/ may be processed using:

> expfiles <- c(paste("embryo_tc_4_", 1:12, ".CEL", sep=""),

+ paste("embryo_tc_6_", 1:12, ".CEL", sep=""),

+ paste("embryo_tc_8_", 1:12, ".CEL", sep=""))

> # Load the CEL files

> expdata <- ReadAffy(filenames=expfiles,

+ celfile.path="embryo_tc_array_data")

> # Setup experimental data (observation times)

> pData(expdata) <- data.frame("time.h" = rep(1:12, 3),

+ row.names=rownames(pData(expdata)))

> # Run mmgMOS processing (requires several minutes to complete)

> drosophila_mmgmos_exprs <- mmgmos(expdata)

> drosophila_mmgmos_fragment <- drosophila_mmgmos_exprs

This data needs to be further processed to make it suitable for our models.
This can be done using

> drosophila_gpsim_fragment <-

+ processData(drosophila_mmgmos_fragment,

+ experiments=rep(1:3, each=12))

Here the last argument specifies that we have three independent time series
of measurements.

In order to save time with the demos, a part of the result of this is included
in this package and can be loaded using

> data(drosophila_gpsim_fragment)

3.3 Learning individual models

Let us now recreate some the models shown in the plots of the PNAS pa-
per (Honkela et al., 2010):

> targets <- c('FBgn0003486', 'FBgn0033188', 'FBgn0035257')
> # Load gene annotations

> library(annotate)

> aliasMapping <- getAnnMap("ALIAS2PROBE",

+ annotation(drosophila_gpsim_fragment))

> # Get the probe identifier for TF 'twi'
> twi <- get('twi', env=aliasMapping)

> # Load alternative gene annotations

> fbgnMapping <- getAnnMap("FLYBASE2PROBE",

+ annotation(drosophila_gpsim_fragment))

2

ftp://ftp.fruitfly.org/pub/embryo_tc_array_data/
ftp://ftp.fruitfly.org/pub/embryo_tc_array_data/


> # Get the probe identifiers for target genes

> targetProbes <- mget(targets, env=fbgnMapping)

> st_models <- list()

> # Learn single-target models for each gene individually

> for (i in seq(along=targetProbes)) {

+ st_models[[i]] <- GPLearn(drosophila_gpsim_fragment,

+ TF=twi, targets=targetProbes[i],

+ quiet=TRUE)

+ }

> # Learn a joint model for all targets

> mt_model <- GPLearn(drosophila_gpsim_fragment, TF=twi,

+ targets=targetProbes,

+ quiet=TRUE)

> # Display the joint model parameters

> show(mt_model)

Gaussian process driving input single input motif model:
Number of time points:
Driving TF: 143396_at
Target genes (3):
148227_at
152715_at
147995_at

Basal transcription rate:
Gene 1: 19.8333185379932
Gene 2: 0.00781061203696723
Gene 3: 2.10339379632397e-06

Kernel:
Multiple output block kernel:
Block 1
Normalised version of the kernel.
RBF inverse width: 0.7732607 (length scale 1.137200)
RBF variance: 1.753763
Block 2
Normalised version of the kernel
DISIM decay: 0.0728792
DISIM inverse width: 0.7732607 (length scale 1.137200)
DISIM Variance: 1
SIM decay: 1267.35
SIM Variance: 0.002280034
RBF Variance: 1.753763
Block 3
Normalised version of the kernel
DISIM decay: 0.0728792
DISIM inverse width: 0.7732607 (length scale 1.137200)
DISIM Variance: 1
SIM decay: 0.4984536
SIM Variance: 0.03224155
RBF Variance: 1.753763
Block 4

3



Normalised version of the kernel
DISIM decay: 0.0728792
DISIM inverse width: 0.7732607 (length scale 1.137200)
DISIM Variance: 1
SIM decay: 0.000346373
SIM Variance: 0.003266206
RBF Variance: 1.753763

Log-likelihood: -31.85442

> # Learn a model without TF mRNA and TF protein translation

> nt_model <- GPLearn(drosophila_gpsim_fragment,

+ targets=c(twi, targetProbes[1:2]), quiet=TRUE)

3.4 Visualising the models

The models can be plotted using commands like

> GPPlot(st_models[[1]], nameMapping=getAnnMap("FLYBASE",

+ annotation(drosophila_gpsim_fragment)))

> GPPlot(mt_model, nameMapping=getAnnMap("FLYBASE",

+ annotation(drosophila_gpsim_fragment)))

> GPPlot(nt_model, nameMapping=getAnnMap("FLYBASE",

+ annotation(drosophila_gpsim_fragment)))

3.5 Ranking the targets

Bulk ranking of candidate targets can be accomplished using

> scores <- GPRankTargets(drosophila_gpsim_fragment, TF=twi,

+ testTargets=targetProbes,

+ options=list(quiet=TRUE),

+ filterLimit=1.8)

> ## Sort the returned list according to log-likelihood

> scores <- sort(scores, decreasing=TRUE)

> write.scores(scores)

"log-likelihood" "null_log-likelihood"
"147995_at" 6.75527239025642 -487.893231050121
"152715_at" -1.51369376081680 -539.73619673943
"148227_at" -2.03034458491229 -73.4806804255218

To save space, GPRankTargets does not return the models by default. If
those are needed later e.g. for plotting, they can be recreated using the inferred
parameters saved together with the ranking using

> topmodel <- generateModels(drosophila_gpsim_fragment,

+ scores[1])

> show(topmodel)

[[1]]
Gaussian process driving input single input motif model:

4



2 4 6 8 10

0.
00

0.
02

Time

Inferred TF Protein Concentration

2 4 6 8 10

0
1

2
3

Time

twi (143396_at) mRNA (input)

● ●

●

●

●

● ● ● ● ● ● ●

2 4 6 8 10

0
1

2
3

Time

spo (148227_at) mRNA

● ●

●

●

●

● ● ● ● ● ● ●

2 4 6 8 10

0.
00

0.
02

Time

Inferred TF Protein Concentration

2 4 6 8 10

0
1

2
3

Time

twi (143396_at) mRNA (input)

● ●

●

●

●

● ● ● ● ● ● ●

2 4 6 8 10

0
1

2
3

4

Time

spo (148227_at) mRNA

●
●

●

●

●

● ● ● ● ● ● ●

2 4 6 8 10

0.
00

0
0.

02
0

Time

Inferred TF Protein Concentration

2 4 6 8 10

0.
0

1.
5

3.
0

Time

twi (143396_at) mRNA (input)

● ●

●

●

●

● ● ● ● ● ● ●

2 4 6 8 10

0.
0

1.
5

3.
0

Time

spo (148227_at) mRNA

●
●

●

●

●

●
● ● ● ● ● ●

Figure 1: Single target models for the gene FBgn0003486. The models for each
repeated time series are shown in different columns.

5



2 4 6 8 10 12

0
1

2
3

4

Time

Inferred TF Protein Concentration

2 4 6 8 10 12

0
1

2
3

Time

twi (143396_at) mRNA (input)

● ●

●

●

●

● ● ● ● ● ● ●

2 4 6 8 10 12

0
1

2
3

Time

spo (148227_at) mRNA

● ●

●

●

●

● ● ● ● ● ● ●

2 4 6 8 10 12

0.
0

1.
0

2.
0

Time

CG1600 (152715_at) mRNA

● ● ●
●

●

●

● ● ●

●

●

●

2 4 6 8 10 12

0.
0

1.
0

2.
0

Time

CG12011 (147995_at) mRNA

● ● ● ● ●

●
●

●
●

●
●

●

Figure 2: Multiple-target model for all the example genes. The call creates
independent figures for each repeated time series.

6



2 4 6 8 10 12

0
1

2
3

Time

Inferred TF Protein Concentration

2 4 6 8 10 12

0
1

2
3

Time

twi (143396_at) mRNA

● ●

●

●

●

● ● ● ● ● ● ●

2 4 6 8 10 12

0
1

2
3

Time

spo (148227_at) mRNA

● ●

●

●

●

● ● ● ● ● ● ●

2 4 6 8 10 12

0.
0

1.
0

2.
0

Time

CG1600 (152715_at) mRNA

● ● ●
●

●

●

● ● ●

●

●

●

Figure 3: Multiple-target model without TF protein translation for selected
example genes without. The call creates independent figures for each repeated
time series.

7



Number of time points:
Driving TF: 143396_at
Target genes (1):
147995_at

Basal transcription rate:
Gene 1: 0.000141495455304562

Kernel:
Multiple output block kernel:
Block 1
Normalised version of the kernel.
RBF inverse width: 0.7614166 (length scale 1.146011)
RBF variance: 1.80484
Block 2
Normalised version of the kernel
DISIM decay: 0.02029628
DISIM inverse width: 0.7614166 (length scale 1.146011)
DISIM Variance: 1
SIM decay: 0.02009845
SIM Variance: 0.002770748
RBF Variance: 1.80484

Log-likelihood: 6.755272

3.6 Ranking using known targets with multiple-target mod-
els

Ranking using known targets with multiple-target models can be accomplished
simply by adding the knownTargets argument

> scores <- GPRankTargets(drosophila_gpsim_fragment, TF=twi,

+ knownTargets=targetProbes[1],

+ testTargets=targetProbes[2:3],

+ options=list(quiet=TRUE),

+ filterLimit=1.8)

> ## Sort the returned list according to log-likelihood

> scores <- sort(scores, decreasing=TRUE)

> write.scores(scores)

"log-likelihood" "null_log-likelihood"
"152715_at" -28.3200146572150 -539.73619673943
"147995_at" -240.431133078273 -487.893231050121

3.7 Running ranking in a batch environment

GPRankTargets can be easily run in a batch environment using the argument
scoreSaveFile. This indicates a file to which scores are saved after processing
each gene. Thus one could, for example, split the data to, say, 3 separate
blocks according to the reminder after division by 3 and run each of these
independently. The first for loop could then be run in parallel (e.g. as separate
jobs on a cluster), as each step is independent of the others. After these have
all completed, the latter loop could be used to gather the results.

8



> for (i in seq(1, 3)) {

+ targetIndices <- seq(i,

+ length(featureNames(drosophila_gpsim_fragment)), by=3)

+ outfile <- paste('ranking_results_', i, '.Rdata', sep='')
+ scores <- GPrankTargets(preprocData, TF=twi,

+ testTargets=targetIndices,

+ scoreSaveFile=outfile)

+ }

> for (i in seq(1, 3)) {

+ outfile <- paste('ranking_results_', i, '.Rdata', sep='')
+ load(outfile)

+ if (i==1)

+ scores <- scoreList

+ else

+ scores <- c(scores, scoreList)

+ }

> show(scores)

4 Experimental feature: Using non-Affymetrix
data

Using non-Affymetrix data, or data without associated uncertainty information
for the expression data in general, requires more because of two reasons

• noise variances need to be estimated together with other model parame-
ters; and

• weakly expressed genes cannot be easily filtered a priori.

The first of these is automatically taken care of by all the above functions,
but the latter requires some extra steps after fitting the models.

In order to get started, you need to create an ExpressionTimeSeries object
of your data set. This can be accomplished with the function

> procData <- processRawData(data, times=c(...),

+ experiments=c(...))

Filtering of weakly expressed genes requires more care and visualising the
fitted models is highly recommended to avoid mistakes.

Based on initial experiments, it seems possible to perform the filtering based
on the statistic loglikelihoods(scores) - baseloglikelihoods(scores),
but selection of suitable threshold is highly dataset specific.

5 Exporting results to an SQLite database

The results of the analysis can be stored to an SQLite database. The database
can then be browsed and queried using the tigreBrowser result browser. The
data is inserted to the database by using export.scores function.

An example of the usage of export.scores is given below

9

http://users.ics.tkk.fi/ahonkela/tigre/


> export.scores(scores, datasetName='Drosophila',
+ experimentSet='GPSIM/GPDISIM',
+ database='database.sqlite',
+ preprocData=drosophila_gpsim_fragment,

+ models=models,

+ aliasTypes=c('SYMBOL', 'GENENAME', 'FLYBASE', 'ENTREZID'))

In this example, scores is the return value of GPRankTargets, ’Drosophila’
is the name of a dataset in database and ’GPSIM/GPDISIM’ is the name of an
experiment set in database. In general, results with the same dataset name are
considered to be part of same dataset. That is, if no results with a given dataset
are already in the database, a new dataset entry is created. On the other hand,
if the database already contains results with the same dataset name, new results
will be added to the old dataset.

Also, results from different experiments can be combined into a set of exper-
iments by giving them the same experiment set name. This is useful as a result
browser may display results depending on the experiment set.

database.sqlite is the filename of a database file. The file will be created
if it does not exist already.

The function will create model figures and add them to the database if
preprocessed data is given. In this example, models are given to the function as
a parameter. This is not necessary, however, as the function can create models
if preprocessed data is supplied. Nevertheless, the function will finish faster if
it does not have to (re-)create models.

In addition to log likelihoods and z-scores, this function will also export dif-
ferent gene names and aliases to the database. By default, the function will read
GENENAME, SYMBOL and ENTREZID datas from relevant annotations and
insert those into the database. The function takes also aliasTypes argument
which is used to define which annotation information is inserted. In the example
above, FLYBASE gene numbers are also added to the genes in the database.
The insertion of alias annotations and z-scores requires that the preprocessed
data is supplied.

References

Pei Gao, Antti Honkela, Magnus Rattray, and Neil D Lawrence. Gaus-
sian process modelling of latent chemical species: applications to inferring
transcription factor activities. Bioinformatics, 24(16):i70–i75, Aug 2008.
doi: 10.1093/bioinformatics/btn278. URL http://dx.doi.org/10.1093/
bioinformatics/btn278.

Antti Honkela, Charles Girardot, E. Hilary Gustafson, Ya-Hsin Liu, Eileen E M
Furlong, Neil D Lawrence, and Magnus Rattray. Model-based method for
transcription factor target identification with limited data. Proc Natl Acad
Sci U S A, Apr 2010. doi: 10.1073/pnas.0914285107. URL http://dx.doi.
org/10.1073/pnas.0914285107.

Neil D. Lawrence, Guido Sanguinetti, and Magnus Rattray. Modelling transcrip-
tional regulation using Gaussian processes. In B. Schölkopf, J. C. Platt, and
T. Hofmann, editors, Advances in Neural Information Processing Systems,
volume 19, pages 785–792. MIT Press, Cambridge, MA, 2007.

10

http://dx.doi.org/10.1093/bioinformatics/btn278
http://dx.doi.org/10.1093/bioinformatics/btn278
http://dx.doi.org/10.1073/pnas.0914285107
http://dx.doi.org/10.1073/pnas.0914285107

	Abstract
	Citing tigre
	Introductory example analysis - Drosophila development
	Installing the tigre package
	Loading the data
	Learning individual models
	Visualising the models
	Ranking the targets
	Ranking using known targets with multiple-target models
	Running ranking in a batch environment

	Experimental feature: Using non-Affymetrix data
	Exporting results to an SQLite database

