
Bioconductor’s nnNorm package

Adi Laurentiu Tarca1

March 28, 2007

Wayne State University, Medicine - Perinatology Research Branch, Detroit, Michigan, 48201.
http://vortex.cs.wayne.edu/tarca

1 Overview

The nnNorm package provides utilities to detect and correct for spatial bias with two color DNA
microarrays (or paired single channel data). The normalization implemented in nnNorm package is
based on neural networks models. Functionality to compare the distributions of the normalized log
ratios is also provided. For the simpler case when only intensity normalization is desired (univariate
distortion color model, similar to print tip loess normalization), we provide functionality to plot
the bias estimate against the level of intensity for every print tip group.

Introduction to intensity and spatial normalization. This document provides a tutorial
for using the nnNorm package. For a detailed description of the principles and algorithmic imple-
mented by this package consult Tarca and Cooke (2005).

Spatial and intensity normalization implemented in nnNorm. The nnNorm package im-
plements intensity and spatial normalization of cDNA data based on neural network models. In
this approach, the log average intensity A and pseudo spatial coordinates X and Y (obtained by
binning the print tip group space into small square regions), are used as predictors (inputs) into a
neural network model. Resistance to outliers is enhanced by implementing a N-fold cross validation
(default nFolds=10) in which the data for a current spot is not used to estimate its own bias but
the one of its neighbours.

2 Changes with respect to previous versions

The first version of nnNorm was 1.4.0 and released within bioC 1.7. Thanks to the users’ feed-back,
nnNorm continued to improve through the subsequent versions. We would like to thank especially to:
Ken Kompass (Wash Univ, St Louis, MO, USA) for pointing out the need of a verbose argument
to the maNormNN function; Elizabeth Thomas (CHR, Harvard University) and Philippe Hupé
(Institut Curie, Paris France) who provided us with data sets on which we could make improvements
in the implementation of the algorithm. The changes in the actual nnNorm version with respect to
the previous ones include: a) adding functionallity to detect spatial bias within the print tips, and
b) modifying the normalization function maNormNN by: 1) using a N-fold cross-validation method
to estimate the bias, where the user can choose the number of folds (current default is nFolds=10);
2) avoiding convergence problems in neural network fitting by running 5 different training sessions

1

and taking the median over the 5 different estimates, 3) allowing for user specified weights to
discard certain spots from the normalization 4) removing the ”robust” argument which initially was
designed to assign different weights to each spot, weights that were computed as a function of how
extreme the log-ratio of the spot is for a given intensity range.

Help files. As with any R package, detailed information on functions, their arguments and
value, can be obtained in the help files. For instance, to view the help file for the function maNormNN
in a browser, use help.start() followed by ? maNormNN.

3 Case study: Apo AI dataset, Callow et al.

We demonstrate the functionality of this package using gene expression data from the Apo AI study
of Callow et al. (2000). To load the Apo dataset in a object called Apo of type marrayRaw, we read
existing data from an internet connection.

> library(marray)

> dataweb <- "http://www.stat.berkeley.edu/users/terry/zarray/Data/ApoA1/rg_a1ko_morph.txt"

> data <- read.table(dataweb, header = TRUE, sep = ",", dec = ".")

> ApoLayout <- new("marrayLayout", maNgr = 4, maNgc = 4, maNsr = 19,

+ maNsc = 21)

> spots <- 4 * 4 * 19 * 21

> Gb <- Rb <- array(c(0), c(spots, 16))

> Gf <- as.matrix(data[, seq(2, 33, 2)])

> Rf <- as.matrix(data[, seq(3, 33, 2)])

> labs <- c(paste(c("c"), 1:8, sep = ""), paste(c("k"), 1:8, sep = ""))

> maInfo <- new("marrayInfo", maLabels = labs, maInfo = data.frame(Names = labs))

> Apo <- new("marrayRaw", maRf = Rf, maGf = Gf, maRb = Rb, maGb = Gb,

+ maLayout = ApoLayout, maTargets = maInfo)

Note that the background values were set to zero as the data file contains background corrected
red and green intensities.
Due to several factors, such as printing and washing, the raw log-ratios may depend not only on
the average log-intensity but also on the spatial coordinates Yang et al. (2002).

The new function detectSpatialBias added in this version of nnNorm allows to identify auto-
matically which print tips in the different arrays show spatial bias.

> tmp <- detectSpatialBias(Apo)

Processing array 1 of 16

Processing array 2 of 16

...
Processing array 16 of 16

> tmp

$biasRow
c1R c2R c3R c4R c5R c6R c7R c8R k1R k2R k3R k4R k5R k6R k7R k8R

2

PrintTip1 14 0 0 5 0 0 5 0 38 0 0 19 5 0 0 0
PrintTip2 5 0 10 0 5 5 0 0 5 0 0 0 0 0 0 0
PrintTip3 5 0 24 0 0 0 0 0 0 0 0 5 0 0 0 0
PrintTip4 19 5 5 0 0 5 0 14 5 0 10 5 0 0 0 0
PrintTip5 10 0 5 0 14 10 0 5 10 5 0 5 5 0 0 5
PrintTip6 19 5 5 0 0 0 10 0 10 0 0 10 10 0 5 0
PrintTip7 24 0 14 10 5 24 5 10 29 5 19 24 33 5 10 5
PrintTip8 10 5 5 0 14 19 0 14 24 14 5 5 0 10 10 5
PrintTip9 29 0 5 5 0 0 0 0 33 10 10 43 5 0 0 0
PrintTip10 24 14 5 24 10 5 14 10 19 10 14 19 10 19 5 10
PrintTip11 29 10 14 0 0 10 10 10 14 10 10 33 10 5 0 5
PrintTip12 24 29 10 5 0 33 0 5 14 10 19 29 0 5 0 0
PrintTip13 10 10 19 24 24 10 10 24 0 10 14 0 29 19 24 38
PrintTip14 19 0 24 43 29 29 29 52 33 14 14 0 24 14 33 38
PrintTip15 38 0 19 19 29 10 24 62 19 19 0 14 5 10 24 62
PrintTip16 5 0 0 0 10 0 24 14 0 0 5 0 0 5 5 5

$biasCol
c1R c2R c3R c4R c5R c6R c7R c8R k1R k2R k3R k4R k5R k6R k7R k8R

PrintTip1 5 0 5 5 5 16 5 11 11 5 0 11 16 5 11 5
PrintTip2 5 5 5 0 5 16 11 5 5 5 11 5 0 11 5 5
PrintTip3 5 0 11 0 5 0 5 5 5 0 0 0 11 16 11 11
PrintTip4 0 0 0 0 16 16 5 5 5 0 5 5 5 5 11 11
PrintTip5 11 11 16 5 11 11 5 16 21 5 16 11 11 5 0 11
PrintTip6 0 5 5 0 11 11 5 5 0 5 16 5 5 0 5 5
PrintTip7 0 5 5 11 5 11 16 5 0 11 11 16 0 11 5 11
PrintTip8 5 5 0 5 5 5 16 5 5 5 5 11 0 5 5 0
PrintTip9 5 5 0 5 26 0 5 5 32 0 5 5 11 0 5 0
PrintTip10 5 0 5 0 0 16 5 5 11 5 26 5 11 0 5 5
PrintTip11 0 0 0 0 5 0 5 5 5 5 0 0 5 0 0 0
PrintTip12 58 5 5 0 5 5 5 5 11 5 11 11 5 11 0 5
PrintTip13 5 0 0 11 16 5 5 5 5 5 0 5 5 11 11 5
PrintTip14 21 0 5 5 5 5 5 5 5 5 11 5 0 0 5 11
PrintTip15 0 0 11 5 0 16 5 5 11 5 5 16 5 0 5 11
PrintTip16 16 5 5 5 5 5 5 5 16 5 0 5 5 11 16 5

The detectSpatialBias function computes two matrices: biasRow and biasCol. The elements
of these matrices represent the fraction of rows (columns) for which the correlation coefficient
between log-ratios, M, and column index (row index) is higher than a user specified treshold (default
is 0.6). As it can be seen, the arrays 8 (c8R) and 16 (k8R) shows strong column-wise bias (log-ratios
are correlated with the row index) for several print-tips (especially 13 to 15).

Similar information (but more time consuming) can be obtained by looking at the spatial
distribution of M values in each array.

Figure 1 shows the reconstructed image of log ratios M, for slide No. 16 in the Apo AI data set.
This image is obtained using the maImage function of marray package.

> RGcol <- maPalette(low = "green", high = "red", k = 20)

> maImage(Apo[, 16], x = "maM", col = RGcol, zlim = c(-2, 2))

3

Laurentiu
Highlight

Laurentiu
Highlight

Laurentiu
Highlight

Laurentiu
Highlight

Laurentiu
Highlight

Laurentiu
Highlight

Laurentiu
Highlight

k8: image of M
1 2 3 4

4

3

2

1

−2

−1.6

−1.1

−0.67

−0.22

0.22

0.67

1.1

1.6

2

Figure 1: Image of raw M values for Apo data set, slide No. 16.

Observe the uneven distribution of M values in the print tip groups situated at the bottom of
the figure.

Now we perform normalization with the method of the nnNorm package called maNormNN. This
function returns a marrayNorm type object (containing the normalized log ratios). The maNormNN
function is a print-tip oriented normalization method.

> ApNN2DA <- maNormNN(Apo)

Figure 2 shows the log ratios, for the same data as in Figure 1 after intensity and spatial
normalization. Observe a rather uniform distribution of red and green colored spots.

> maImage(ApNN2DA[, 16], x = "maM", col = RGcol, zlim = c(-2, 2))

We may compare the robust neural networks normalization method with other existing ap-
proaches that takes into account intensity and spatial bias fluctuations, like for e.g. a composite
normalization method available in marray package.

> AcPLo2D <- maNormMain(Apo, f.loc = list(maNorm2D(), maNormLoess(x = "maA",

+ y = "maM", z = "maPrintTip")), a.loc = maCompNormEq())

We define a function able to compute the Westfall and Young (1993) adjusted p-values for
different normalizations of the same Apo data. For this we use functionality of the multtest
package (Dudoit et al. (2002)).

> library(multtest)

> getP <- function(maObj) {

4

k8: image of M
1 2 3 4

4

3

2

1

−2

−1.6

−1.1

−0.67

−0.22

0.22

0.67

1.1

1.6

2

Figure 2: Image of M values after nnNorm normalization, for Apo data set, slide No. 16.

+ X <- maM(maObj)

+ class <- c(rep(0, 8), rep(1, 8))

+ resT <- mt.maxT(X, class, B = 15000)

+ ord <- order(resT$index)

+ resT$adjp[ord]

+ }

Now we get the adjusted p-values for the three situations: raw data (Anone), composite normal-
ization (cpLo2DA) and robust neural networks based (pNN2DA).

> pAnone <- log10(getP(Apo))

> pAcPLo2D <- log10(getP(AcPLo2D))

> pApNN2DA <- log10(getP(ApNN2DA))

We plot the log of adjusted p-values obtained using the normalized data. Results are shown in
Figure 3.

> kout <- c(2149, 4139, 5356, 540, 1739, 1496, 2537, 4941)

> rnds <- sample(seq(-0.05, 0.05, length = 8))

> methods <- c("none", "cPLo2D", "pNN2DA")

> plot(rep(1, length(pAnone) - length(kout)), pAnone[-kout], xlim = c(1,

+ 3), ylim = c(-4, 0), xlab = "Method", ylab = "log10(p)",

+ axes = FALSE)

> points(rep(1, 8) + rnds, pAnone[kout], col = "red", pch = 20)

> points(rep(2, length(pAcPLo2D) - length(kout)), pAcPLo2D[-kout])

> points(rep(2, 8) + rnds, pAcPLo2D[kout], col = "red", pch = 20)

5

Method

lo
g1

0(
p)

none cPLo2D pNN2DA

−4
−3

−2
−1

0

Figure 3: Adjusted p values for raw data (none), composite normalization (cpLo2D), and robust
neural networks (pNN2DA)

> points(rep(3, length(pApNN2DA) - length(kout)), pApNN2DA[-kout])

> points(rep(3, 8) + rnds, pApNN2DA[kout], col = "red", pch = 20)

> axis(1, 1:3, methods)

> axis(2)

> box()

The spots with the indices kout above are those with smallest t-statistics after loess print tip
normalization as in Yang et al. (2001) and are supossed to show down-regulation in this comparison.

Observe in Figure 3 that the 8 genes (represented by filled red circles) may be confidently
distinguished from the bulk of non-differentially expressed genes at a threshold of about p=0.01.
Now we may want to compare the ability of this new normalization method to reduce the variability
of log ratios within slides. An easy way to look at the distributions of the normalized M values is
to use the method compNorm of nnNorm package (see Figure 4).

> compNorm(maM(Apo), maM(AcPLo2D), maM(ApNN2DA), bw = 0.9, xlim = c(-2,

+ 2), titles = methods, type = "d")

The same distributions may be inspected using the box plot, as shown in Figure 5.

> compNorm(maM(Apo), maM(AcPLo2D), maM(ApNN2DA), bw = 0.9, xlim = c(-2,

+ 2), titles = methods, type = "b")

The maNormNN function in nnNorm package offers flexibility in choosing the type of dependence
of the bias to be accounted for. For e.g. setting binHeight parameter to NULL, will discard the
variable Y in the bias estimation model.

6

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

M

D
en

si
ty

none
cPLo2D
pNN2DA

Figure 4: Density plots of normalized log ratios

none cPLo2D pNN2DA

−4
−2

0
2

4

Figure 5: Box plot of normalized log ratios

7

8 9 10 11 12 13 14 15

−
4

−
2

0
1

2

MA−plot before ANN normalization. Slide #1

M

Pt.1
Pt.2

Pt.3
Pt.4

Pt.5
Pt.6

Pt.7
Pt.8

Pt.9
Pt.10

Pt.11
Pt.12

Pt.13
Pt.14

Pt.15
Pt.16

8 9 10 11 12 13 14 15

−
3

−
1

0
1

2
3

MA−plot after ANN normalization. Slide #1

M

Figure 6: M-A plots before and after normalization for the whole slide.

> ApoNNy <- maNormNN(Apo[, 1], binWidth = 3, binHeight = NULL)

In this case only A and X will be used as regressors for the bias. Similarly by setting bin-
Width=NULL in the same function will suppress the contribution of the X variable in the bias estima-
tion. The M-A plots may be shown before and after the normalization for each slide if the parameter
maplots is set to "TRUE".

For the case when only intensity normalization is desired (X, and Y regressors discarded) we
provide the facility to plot the bias estimates against the intensity level. For e.g. lets’ perform
intensity normalization only for the 13th slide of the Apo batch:

> par(mfrow = c(2, 1))

> par(mar = c(2, 4, 2, 2))

> ApoNr <- maNormNN(Apo[, 13], binWidth = NULL, binHeight = NULL,

+ maplots = TRUE)

8

References

M. J. Callow, S. Dudoit, E. L. Gong, T. P. Speed, and E. M. Rubin. Microarray expression profiling
identifies genes with altered expression in hdl-deficient mice. Genome Research, 10:2022–2029,
2000.

S. Dudoit, J. P. Shaffer, and J. C. Boldrick. Multiple hypothesis testing in microarray experiments.
Statistical Science, to appear, preprint available at UC Berkeley, Division Biostatistics working
paper series: 2002-110, http://www.bepress.com/ucbbiostat/paper110, 2002.

A. L. Tarca and J. E. K. Cooke. A robust neural networks approach for spatial and intensity-
dependent normalization of cdna microarray data. Bioinformatics, 21(11):2674–2683, 2005.

P. H. Westfall and S. S. Young. Resampling-based multiple testing: Examples and methods for
p-value adjustment. John Wiley & Sons, 1993.

Y. Yang, S. Dudoit, P. Luu, and T. Speed. Normalization for cdna microarray data. SPIE BiOS,
2001.

Y. Yang, S. Dudoit, P. Luu, D. Lin, V. Peng, J. Ngai, and T. Speed. Normalization for cdna
microarray data: a robust composite method addressing single and multiple slide systematic
variation. Nucleic Acids Res., 30:e15, 2002.

9

