
BayesPeak: Bayesian Analysis of ChIP-seq data

Jonathan Cairns and Christiana Spyrou

January 20, 2011

Contents

1 What is ChIP-seq? 2

2 Simple workflow 2
2.1 Exporting output . 3

3 The algorithm 4

4 The bayespeak() function 4
4.1 Parallelising BayesPeak - use of the multicore package 5

5 The summarize.peaks() function 5

6 Examining the results 5

7 Choosing an appropriate PP threshold value 6

8 Overfitting 9
8.1 Excluding calls from unenriched jobs . 10

9 Assessing convergence 14

10 Citing BayesPeak 14

11 Session Info 14

12 Acknowledgements 15

Introduction

BayesPeak is a Bioconductor package for the analysis of data sets from ChIP-seq experiments, particu-
larly for identifying the genomic sites of protein–DNA interactions. The model is designed for use on
transcription factor data sets, and on H3K4me3 histone mark data sets (in which the peak structure is
similar to that found in a transcription factor data set.

The algorithm models the positions and orientations of the sequenced fragments and determines the
locations of enriched areas, corresponding to binding sites and histone modifications, by using a hidden
Markov model and Bayesian statistical methodology.

The Bayesian approach to parameter and state estimation returns posterior probabilities as measure
of certainty, and offers great scope for interpretation, as well as allowing for the use of these probabilities
as weights in subsequent analyses (e.g. motif discovery).

1

The other important feature of the algorithm is the use of the negative binomial distribution to
model the counts of sequenced reads. This allows for overdispersion and provides a better fit to the
data than the Poisson distribution that has been widely used by other methods.

1 What is ChIP-seq?

Chromatin ImmunoPrecipitation (ChIP) is an experiment designed to study protein-DNA interactions,
particularly to identify the genomic sites where proteins, such as transcription factors, bind to the DNA,
or sites where histone modifications occur (Robertson, Gordon et al., 2007). The experiment produces
samples that are enriched for the sites of interest compared to the rest of the genome. The use of this
method combined with high-throughput sequencing of the samples is referred to as ChIP-seq.

Given our protein of interest, the ChIP-seq protocol usually consists of the following steps. (The
exact protocol may vary between different experiments, but BayesPeak will still be able to perform the
peak-calling step.)

• Cross-linking the proteins to the DNA - The protein is permanently bound to the DNA, usually
with formaldehyde.

• Shearing - The cells are lysed, and the DNA is randomly cut into small fragments by sonication.

• Immunoprecipitation - An antibody specific to the protein of interest is used to isolate the protein
and the attached DNA fragments. The resulting sample is enriched for those genomic regions. If
we are instead interested in locating histones with a certain epigenetic modification, then we use
an antibody specific to histones with that modification.

• Reverse crosslinking and purification - The bonds between the protein and DNA are broken. The
DNA is subsequently purified.

• Sequencing - The contents of the samples are size selected such that the fragments’ length lies in
the region of 200-300 bp. This step is required by the sequencing protocol. Adaptors are attached
to the fragments and amplification usually takes place. Subsequently, the sample undergoes
“high-throughput sequencing” during which the sequences of the ends of the present fragments are
identified. For ChIP-seq applications usually one end of each fragment is sequenced to produce
“single-end” reads.

• Alignment - The DNA is aligned back to reference genome, taking the quality of the reads into
account. Usually only the reads that map to unique locations in the genome are included in the
downstream analysis.

• Analysis - The sites of interest correspond to the genomic regions where there is high abundance of
reads compared to the background or the control sample. BayesPeak performs this identification
step, also referred to as “peak-calling”.

Usually this process is repeated omitting the immunoprecipitation step to produce a sample with
no preferential enrichment. This control sample has the same characteristics as ChIP-seq data and its
inclusion is important to identify experimental biases.

There are many sources of error - for example, misalignment, impurities, or DNA that simply has
a high affinity for being sequenced - which can result in noise across the genome, or even false peaks.
The BayesPeak model is designed to separate the peaks from the noise, and to avoid calling false peaks.

2 Simple workflow

Load the package as follows:

2

> library(BayesPeak)

The example data set used below, consisting of the files“H3K4me3-chr16.bed”and“Input-chr16.bed”,
can be downloaded from
http://www.compbio.group.cam.ac.uk/Resources/BayesPeak/csbayespeak.html. These data were
generated from a histone mark ChIP-seq experiment, performed on mouse chromosome 16. (Other data
sets will contain data from multiple chromosomes - there is no need to split these up.)

The following code is a very simple example of a BayesPeak workflow, where we analyse the region
92,000,000 - 95,000,000 bp on chromosome 16. It should take a couple of minutes on a relatively modern
machine.

> raw.output <- bayespeak("H3K4me3-chr16.bed", "Input-chr16.bed",

+ chr = "chr16", start = 9.2E7, end = 9.5E7, job.size = 6E6)

> output <- summarize.peaks(raw.output, method = "lowerbound")

• bayespeak() runs the actual BayesPeak algorithm on the data. The two input files are bed files
located in the working directory, with H3K4me3 being the IP-treated data set and Input ID being
the control data. In each case, we could have provided a data.frame or a RangedData object
(from the IRanges package) instead of a file path. (A GRange from the GenomicRanges package
can trivially be coerced to a RangedData object, using the as() function.)

In a valid bed file, each row of the file contains information for a single read. In particular, the
chromosome, start position, end position and DNA strand appear in the 1st, 2nd, 3rd and 6th
columns respectively.

The function applies the algorithm to 6 Mb partitions of the genome (or “jobs”) by default, as
explained in section 3.

• raw.output is a list - it contains not only the bins called, but also some useful QC information
(such as the model fit - in particular, this can be used to spot unreliable jobs as described in
section 8). This output needs to be summarized.

• summarize.peaks() is used to summarize the raw.output object. This consolidates the raw bin
calls into peaks and combines data across jobs.

We can analyse all of the data present in the .bed file with the following code, although this will
take somewhat longer.

> raw.output <- bayespeak("H3K4me3-chr16.bed", "Input-chr16.bed")

> output <- summarize.peaks(raw.output, method = "lowerbound")

A parallelization strategy is available to reduce the running time of this process, which is given in
section 4.1.

2.1 Exporting output

The output can now be saved to disk with the export() function from the rtracklayer package. Many
standard file formats are supported - for example:

> library(rtracklayer)

> export(output, "H3K4me3output.bed")

> export(output, "H3K4me3output.gff")

These examples, however, will only output peak regions - they will not export the posterior proba-
bility associated with each peak. To export the full output, one can coerce the output to a data frame,
and export this with standard output functions provided in R. For example:

3

> write.table(as.data.frame(output), file = "H3K4me3output.txt", quote = FALSE)

> write.csv(as.data.frame(output), file = "H3K4me3output.csv", quote = FALSE)

We now go into this workflow in more depth.

3 The algorithm

BayesPeak fits a Markov model to the data (the aligned reads) via Markov Chain Monte Carlo (MCMC)
techniques.

The genome is firstly divided up into “jobs”, i.e. short regions, by default of size 6 Mb, on which the
algorithm is run independently. This allows us to account for the variation in read abundance across
each chromosome.

Within a job, we divide the region into small bins (by default, 100 bases each), and we consider the
number of reads whose starts lie within each bin, for each strand.

A hidden Markov model is fitted to the bins, thereby classifying them as enriched or unenriched
for sites of interest. However, since the parameters of the model are unknown (for example, the mean
number of counts within enriched or unenriched bins), we estimate them by sampling from their posterior
distributions using MCMC methods.

The output of the algorithm is the Posterior Probability (often abbreviated to PP) of each bin being
enriched. The PP value is useful not only for calling the peaks, but could also be used in downstream
analyses - for example, to weight observations when searching for a novel transcription factor motif.
The PP value is not to be confused with the p value from hypothesis testing.

For a full description of the model, please refer to (C. Spyrou et al., 2009).

4 The bayespeak() function

The bayespeak() function performs the algorithm described above on a given experiment, consisting of
either one or two data sets - a treated data set must be supplied, which can optionally be complemented
by a control data set. Each of these data sets must be in .bed format, and can be specified as a file
location, a data.frame containing the columns “chr”, “start”, “end”, “strand” (specified as forward, “+”,
or reverse, “-”), or a RangedData object from the IRanges package in BioConductor. For example:

> raw.output <- bayespeak("H3K4me3-chr16.bed", "Input-chr16.bed")

As mentioned in section 3, we break down the chromosome into “jobs”, which by default are of
length 6 Mb, and run the algorithm on each job to account for the variability of conditions across the
chromosome. Thus, each job has its own set of associated parameters.

Within each job, read abundance is modelled using non-overlapping bins. To avoid missing any
peaks that straddle a boundary between two bins, we run the algorithm a second time. This second job
is described as “offset” and shifts the boundaries of the bins by half a bin’s length.

The output of this function is a list of four things:

• raw.output$peaks: Locations of “potentially enriched” bins, with their associated posterior prob-
abilities. (A “potentially enriched” bin is defined as any bin with PP > 0.01.) Note that this is
output is preliminary and does not correspond to the final result of the analysis.

• raw.output$QC: Information about the individual jobs.

• raw.output$call: A record of the arguments used when the function was called.

• raw.output$p.samples: A list of parameter samples from the MCMC runs. This output can be
used to assess convergence e.g. by applying the Geweke test through the CRAN packages coda or
boa. See section 9 for more details.

4

4.1 Parallelising BayesPeak - use of the multicore package

Due to its computational intensity, BayesPeak can be slow. However, the jobs can be run in parallel.
This allows us to take advantage of multiple processors and dramatically reduce the time the algorithm
takes.

This feature requires the multicore package to be installed. At time of writing, it can be downloaded
from http://www.rforge.net/multicore/ and is available for Mac or Linux.

Having installed multicore, you can run the bayespeak() function in parallel by using the
use.multicore = TRUE option. You can override the number of cores that multicore uses with the
mc.cores argument.

> library(multicore)

> raw.output <- bayespeak("H3K4me3-chr16.bed", "Input-chr16.bed",

+ use.multicore = TRUE, mc.cores = 4)

> output <- summarize.peaks(raw.output, method = "lowerbound")

5 The summarize.peaks() function

The raw output of bayespeak() consists of the details of all of the individual bins in each individual
job. The function summarize.peaks() combines the output of the individual jobs and joins adjacent
bins into contiguous regions to give the final peak calls.

In more detail, summarize.peaks() does the following:

• Filtering of unenriched jobs: The model naturally tries to identify enriched states in the back-
ground even for jobs with consistently low read abundance. This can result in many unreliable calls
and, to avoid this, all calls associated with such jobs can be removed. (This issue, “overfitting”, is
described in detail in section 8.)

• Filtering of unenriched bins: We remove all bins whose PP values are below a certain value (see
section 7).

• Assembly of enriched bins: The bins across all remaining jobs are collected together. If two jobs
call exactly the same bin, which could happen in regions where jobs overlap, then the one with
the larger PP value is used.

• Conversion of bins to peaks: Where a number of bins form a contiguous region, we combine
them into one large peak. The large peak is assigned a PP value, based on the PP values of its
component bins. Combining the PP values from multiple bins may be done in several ways. By
default, the “lowerbound” method is used, which calculates a lower bound for the overall PP by a
dynamic programming technique. (See the help file for more information.) The alternative method
that the package provides is the “max” method, which simply takes the maximum PP value in the
component bins and is therefore ill-equipped to provide appropriate credit for sustained regions
of moderate enrichment.

6 Examining the results

The quality of ChIP-seq samples should be monitored to ensure that the experimental procedure was
successful, in terms of the immunoprecipitation, the library preparation and the sequencing. Occasion-
ally, very low read abundance in the data sets may be related to a failed step in the process and will
lead to unreliable findings when the experimental noise and signal cannot be distinguished.

Moreover, care should be taken when even successful ChIP-seq samples are analysed and the results
are interpreted. In the following sections we discuss the stringency with which the potential peaks are

5

chosen and how to avoid false peaks being called in regions of “noisy background”. Enrichment varies
along the genome and is naturally low in long regions including the centromere and the ends of the
chromosomes. If an entire job is contained in such a region, the model will still try to identify peaks
and in the next sections we explain how to identify and filter out these false discoveries.

7 Choosing an appropriate PP threshold value

Selecting the threshold for PP values (i.e. the threshold argument in summarize.peaks()) is an im-
portant step in the analysis, and its choice will affect the peaks returned. First, we will observe how
the PP values are distributed within jobs.

For this section, we load the example raw.output object included with the package:

> data(raw.output)

> raw.output$call

bayespeak(treatment = "~/bed/MCF/MCF7_ER.bed", control = "~/bed/MCF/MCF7_Input.bed",
use.multicore = TRUE)

(Note that although raw.output was generated from running bayespeak() with the above argu-
ments, raw.output$peaks has been manually reduced to only contain the data from chr16 to save
space. raw.output$p.samples has also been reduced, for the same reason.)

We can view the PP values generated from each job as follows:

> min.job <- min(raw.output$peaks$job)

> max.job <- max(raw.output$peaks$job)

> par(mfrow = c(2,2), ask = TRUE)

> for(i in min.job:max.job) {plot.PP(raw.output, job = i, ylim = c(0,50))}

(We will not wish to do this in most large data sets, as the number of jobs will be prohibitively
large, making it impractical to look at each plot in turn.)

Examining the plots, they appear to have two distinct behaviours, as explained below.

High density of reads

For example, consider the PP profile of job 324:

> i <- 324

> plot.PP(raw.output, job = i, ylim = c(0,50))

The plot is given in Figure 1
For data with a high density of reads, peaks are clearer and thus the PP values of bins converge to 0

or 1, as observed in the figure above. So, the default PP threshold value of 0.5 will suffice to distinguish
between enrichment and unenrichment. This is the expected outcome from jobs that include enriched
peaks.

Low density of reads

On the other hand, as expected before, some jobs fall in areas of low enrichment and this affects their
results. We demonstrate this by considering the PP values across job 325:

> i <- 325

> plot.PP(raw.output, job = i, ylim = c(0,50))

6

PP histogram − Job 324

PP

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

Figure 1: A histogram of the PP values found in job 324. Nearly all of the bins have a PP of 0 or 1.

7

PP histogram − Job 325

PP

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

Figure 2: A histogram of the PP values found in job 325. The PP values are more evenly distributed
over the interval (0,1) than they are in Figure 1.

8

Figure 3: An example of overfitting. In each of these histograms, only reads on the positive strand are
shown for clarity. A blue bar indicates that BayesPeak has called that bin as containing a peak at PP
> 0.5. On the left, BayesPeak uses the enriched and unenriched states to explain the variance present
in the background. On the right, the algorithm correctly identifies the large peaks present in the region
of interest. (Notice the difference in scale between the two plots.) These plots were produced with the
plot.job() function.

The plot is given in Figure 2.
When the coverage is sparse and therefore less information is available, the PP values tend to be

more uniformly spread over the interval [0,1], as above. This means that the distinction between peaks
and background is harder to make, which is usually a result of poor enrichment, if any. Such a uniform
trend may be indicative of overfitting - we explore this effect in section 8.

In these jobs even the bins with highest PP cannot be classified as enriched since they are likely
to correspond to random noise and, instead of choosing a high PP threshold, the whole job should be
considered as unenriched.

8 Overfitting

BayesPeak can run into an overfitting problem when a job does not contain any peaks, or when peaks
are weak compared to the background.

For this section, we again load the example raw.output object included with the package:

> data(raw.output)

The model assumes that there are both unenriched and enriched regions present. When the data
contains no enriched regions, the model still tries to identify peaks in the data. Since some bins in the
background will have higher counts than others, purely by chance, these will be marked as enriched.
(See Figure 3.)

This effect will be reflected in the parameters of the model, since the expected number of reads
allocated at “enriched” regions will be much lower for the jobs where no peaks are present compared to
the other jobs. This is one purpose of the QC component of the output - we can diagnose which peaks
were called simply because they are in an unenriched job rather than because they are actual peaks.

Jobs suffering from this problem tend to exhibit three properties:

9

• Unusually large number of calls.

• Low mean number of counts in an enriched bin, defined as λ1 in the model description in (C.
Spyrou et al., 2009).

• PP values spread out over the interval [0,1] rather than mostly falling at 0 or 1, as explained in
section 7. We quantify this using a score: of the bins with PP values > 0.01, the score is the
proportion that have PP > 0.5. A low score is therefore indicative of overfitting.

We can observe when overfitting has occured in our data set by plotting these properties against
each other. We generate two such plots with this code:

> plot.overfitdiag(raw.output, whatX = "calls", whatY = "lambda1",

+ logX = TRUE, logY = TRUE)

> plot.overfitdiag(raw.output, whatX = "calls", whatY = "score",

+ logX = TRUE, logY = TRUE)

The plots generated are given in Figures 4 and 5. Two clusters are visible in each, one of which is
a cluster of jobs suffering from overfitting.

It is worth trying different arguments to this function to find the plot in which the overfit clusters
are most clearly defined - e.g.

> plot.overfitdiag(raw.output, whatX = "calls", whatY = "score",

+ logX = TRUE, logY = FALSE)

or

> plot.overfitdiag(raw.output, whatX = "lambda1", whatY = "score",

+ logX = TRUE, logY = TRUE)

(These figures are not shown in this vignette.)
Some jobs are expected to show no enrichment throughout, such as the centromere, and the location

of these regions can be taken into account at a later version of the algorithm. At the moment, our
approach is to apply BayesPeak to the whole genome and subsequently to filter out peaks that are
allocated within regions of no enrichment.

8.1 Excluding calls from unenriched jobs

We can choose to simply remove all calls from the jobs that we believe to be overfit. For example,
having looked at Figure 4, we can specify the overfit cluster by removing all jobs with low counts in
their enriched bins - for example, log(λ1) < 1.5:

> unreliable.jobs <- log(raw.outputQClambda1) < 1.5

> output <- summarize.peaks(raw.output, method = "lowerbound",

+ exclude.jobs = unreliable.jobs)

Alternatively, from looking at either Figure 4 or Figure 5, we could try to specify the overfit cluster
better by adding jobs with excessive numbers of calls e.g. log(calls) > 5. This gives us two selection
criteria as follows:

> unreliable.jobs2 <- log(raw.outputQClambda1) < 1.5 | log(raw.outputQCcalls) > 5

> output.2 <- summarize.peaks(raw.output, method = "lowerbound",

+ exclude.jobs = unreliable.jobs2)

10

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●
●

●●

●

● ●

●●
●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●●●

●

●●

●

●
●

●
●

●

●

●
●

●
● ●●

●

●

●
●

●

●●

●

●
●

●●

●

●
●

●

●

●
●

●

●
●●

●

●

●
●

●
●

●

●

●

●●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

● ●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●●

●

●

●
●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●●

●

●

●● ●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●●

●

●
●

● ●
●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●
●● ●

●

●
●● ●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●
●●●

●

●

●● ●●●
●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

● ●

●
●●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

● ●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

● ●●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●●●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

0 2 4 6 8

0
1

2
3

4
5

6

Overfitting diagnostic

log(calls)

lo
g(

la
m

bd
a1

)

Figure 4: Each point represents a job. On the X axis, we plot the log of the number of bins with PP
> 0.01 in that job. On the Y axis, we plot the log of the mean number of counts in enriched bins. The
plot is on the log scale to aid visualisation of the clusters.

11

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●
●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●● ●

●

●

● ●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●

●

●

● ●● ●

●
●

●

●

●●

●

● ●●●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●● ● ●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

● ●
●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

● ●
●

●

●

●●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●●

●
●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●
●

● ●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●
●●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●
●

●

● ●●●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●
●

●

● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

0 2 4 6 8

−
3.

5
−

3.
0

−
2.

5
−

2.
0

−
1.

5
−

1.
0

−
0.

5
0.

0

Overfitting diagnostic

log(calls)

lo
g(

sc
or

e)

Figure 5: Each point represents a job. On the X axis, we plot the log of the number of bins with PP
> 0.01 in that job. On the Y axis, we plot the log of the score of that job (i.e. of the bins with PP >
0.01, this is the proportion of those bins with PP > 0.5).

12

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●
●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●
●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

● ●
● ●

●
●

●

●

●●

●

● ●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

● ●
●

●

●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●●

●
●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●
●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●
●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●
●

●

● ●●●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●
●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

0 2 4 6 8

−
3.

5
−

3.
0

−
2.

5
−

2.
0

−
1.

5
−

1.
0

−
0.

5
0.

0

Overfitting diagnostic

log(calls)

lo
g(

sc
or

e)
●

●

● ●

●

Figure 6: Application of region.overfitdiag() to the raw.output data. Jobs in the red hatched
region will be excluded from the summary.

Another method provided by the BayesPeak package is the ability to define an overfit cluster on one
of the above plots by drawing a polygon onto it. This is achieved via use of the region.overfitdiag()
function (using exactly the same arguments as plot.overfitdiag()), which subsequently collects the
job IDs of any points in that polygon for use as the exclude.jobs argument in summarize.peaks. To
perform this procedure on Figure 5, we would use the following code:

> unreliable.jobs3 <- region.overfitdiag(raw.output, whatX = "lambda1", whatY = "score",

+ logX = TRUE, logY = TRUE)

> ##user defines a polygon on the resulting plot

> ##left-click to place each vertex, right-click to close polygon

> output.3 <- summarize.peaks(raw.output, method = "lowerbound",

+ exclude.jobs = unreliable.jobs3)

An example of a region that we might define on the plot is given in Figure 6.
Finally, for a more reproducible method of defining the overfit cluster, one could use one’s favourite

clustering method on the rows of the QC data, obtained as follows:

13

> log(raw.output$QC[,c("calls", "score", "lambda1")])

Of course, the drawback of such methods is that they have no concept of selecting conservatively
(i.e. picking a small overfit cluster) and may be confused by strangely-shaped or close-together clusters
- therefore, direct use of output from clustering algorithms should be treated with care.

9 Assessing convergence

If desired, we can assess the convergence of the MCMC chains by examining the parameter samples
obtained. The output of the parameter samples from job i is given in raw.output$p.samples[[i]],
with half of the data discarded as burn-in and samples taken every 10 iterations. This data can be
imported into MCMC packages, such as the CRAN packages coda and boa, allowing use of their inbuilt
convergence assessment functions.

For example, we can assess the convergence of job 316 with coda, using the Geweke diagnostic, with
the following code. This code requires that coda has been installed from CRAN.

> data(raw.output)

> library(coda)

> mcmc.job1 <- mcmc(raw.output$p.samples[[316]], thin = 10)

> geweke.diag(mcmc.job1)

Fraction in 1st window = 0.1
Fraction in 2nd window = 0.5

p theta a0 b0 lambda0 a1 b1 lambda1
0.6900 -0.1239 -0.4860 -0.7983 1.9774 0.5859 -0.3364 0.3297

loglhood
0.3716

More information on the interpretation of this diagnostic can be found in the individual packages’
help files, and in (J. Geweke, 1992).

If convergence is deemed unsatisfactory, this may be solved by increasing the iterations parameter
in the bayespeak() function.

10 Citing BayesPeak

If you use the BayesPeak algorithm, then please cite (C. Spyrou et al., 2009).

11 Session Info

> sessionInfo()

R version 2.12.1 (2010-12-16)
Platform: x86_64-unknown-linux-gnu (64-bit)

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
[5] LC_MONETARY=C LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

14

[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] BayesPeak_1.2.3 IRanges_1.8.8

loaded via a namespace (and not attached):
[1] tools_2.12.1

12 Acknowledgements

Many thanks to Dr. Duncan Odom’s group for permission to use the H3K4me3 data set used in our
examples, and to Dr. Jason Carroll’s group for permission to use the data set shown in the raw.output
data file.

References

C. Spyrou et al. BayesPeak: Bayesian analysis of ChIP-seq data. BMC Bioinformatics, 10:299, 2009.

J. Geweke. Evaluating the Accuracy of Sampling-Based Approaches to the Calculation of Posterior
Moments. Bayesian Statistics, 4pp169, 1992.

Robertson, Gordon et al. Genome-wide profiles of STAT1 DNA association using chromatin immuno-
precipitation and massively parallel sequencing. Nature methods, 4(8):651–7, August 2007. ISSN
1548-7091. doi: 10.1038/nmeth1068. URL http://dx.doi.org/10.1038/nmeth1068.

15

http://dx.doi.org/10.1038/nmeth1068

	What is ChIP-seq?
	Simple workflow
	Exporting output

	The algorithm
	The bayespeak() function
	Parallelising BayesPeak - use of the multicore package

	The summarize.peaks() function
	Examining the results
	Choosing an appropriate PP threshold value
	Overfitting
	Excluding calls from unenriched jobs

	Assessing convergence
	Citing BayesPeak
	Session Info
	Acknowledgements

