genArise

April 20, 2011

a.arise

A Arise

Description

Extract A values from a Spot.

Usage

a.arise(mySpot)

Arguments

mySpot Spot object for one microarray.

Value

List of A-values. $(\log(cy3, 2) + \log(cy5, 2))/2$

See Also

m.arise.

Examples

```
## read the spot from a file and save it in spot
data(Simon)
## Extract A from spot and save in a
a <- a.arise(mySpot = Simon)</pre>
```

alter.unique Remove Duplicates

Description

This function allows to remove from the spot repeated Id's. Before moving one of the repeated Id's the function compute the log ratio of both values with the same Id and delete the least absolute value if both of them are positive or negative. In other case delete both observations.

Usage

```
alter.unique(mySpot)
```

Arguments

mySpot Spot object for one microarray.

Value

Spot object without duplicates.

Examples

```
data(Simon)
## filter the spot and save it in f.spot
f.spot <- filter.spot(Simon)
## remove duplicates and save it in u.spot
u.spot <- alter.unique(f.spot)</pre>
```

analysis.window Analysis.window

Description

Auxiliar function of genArise GUI, in this window you can apply operations to original data.

Usage

```
analysis.window(texto, follow.wizard = FALSE, envir, swap)
```

Arguments

texto	Historial project string
follow.wizar	d
	Boolean value, if this argument is TRUE, an data analysis are performed
envir	Environment where are the project variables
swap	Is this a swap analysis or an individual analysis

Value

tkwidget

annotations Gene Annotations

Description

Performed an HTML file

Usage

```
annotations(specie.data, specie, column, symbol,
output.file = "annotations.html")
```

Arguments

specie.data	A data frame
specie	Name of specie
column	Number of column where are the gene name in the data frame
symbol	An optional symbol besides GenBank ID
output.file	Name of output file

Value

HTML file with link for each spot in data frame

back.gui

Return to the last window

Description

Auxiliar function of genArise GUI.

Usage

```
back.gui(envir)
```

Arguments

envir Environment where are the project variables

Value

tkwidget

bg.correct

Description

This function use the background data to eliminate unwanted effects in signal. The background correction establish the new Cy3 signal as Cy3 - BgCy3 and the new Cy5 as Cy5 - BgCy5.

Usage

bg.correct(mySpot)

Arguments

mySpot Spot object for one microarray.

Value

Spot object with the background correction done.

Examples

```
data(Simon)
## background correction and save it in c.spot
c.spot <- bg.correct(Simon)</pre>
```

classes

Classes Defined by this Package

Description

This package defines the following data classes.

- Spot A class used to store spot data with the following attributes: Cy3, Cy5, BgCy3, BgCy5, Ids as they are read by read.spot or obtained from a function that return a spot object.
- DataSet A class used to store spot data with the following attributes: Cy3, Cy5, Ids, Z-score.

create.project Create directorie for the project and its results and graphics

Description

Auxiliar function for genAriseGUI. Create the directory's hierarchy of the project.

Usage

Arguments

project.name Project directory name.
results.file Filename of the project result.
graphics.file
Filename of the project graphics.

cys.plot

```
Data Visualization: log2(Cy3) vs log2(Cy5)
```

Description

This function shows the plot of the values from the log Cy3 against log Cy5 intensities that belongs to an object of the Spot class.

Usage

cys.plot(mySpot, col = "green")

Arguments

mySpot	An Spot object
col	Color in which the points of the plot will be shown. This argument must be quoted and the possible values it can take are the same from the color function in the R base.

Examples

```
data(Simon)
cys.plot(Simon)
```

DataSet-class DataSet - class

Description

A simple list-based class for storing red and green channel foreground, z-scores and the Ids.

Creating Objects from the Class

Objects can be created by calls of the form new("DataSet", sets, type) where sets is a list containing Cy3, Cy5, Id and Zscore and type is "ri" or "ma". Objects are normally created by read.spot.

Slots/List Components

This class contains no slots (other than .Data), but objects should contain the following list components:

Cy5:	numeric matrix containing the red (cy5) foreground intensities. Rows correspond to spots and columns to array
СуЗ:	numeric matrix containing the green (cy3) foreground intensities.
Id:	Ids from all the observations.
Zscore:	The result of (R - mean) / sd that define an intensity-dependent Z-score threshold to identify differential expre

All of these matrices should have the same dimensions.

Methods

This class inherits directly from class list so any operation appropriate for lists will work on objects of this class.

filter.spot Intensity-based filtering of array elements

Description

This function keep only array elements with intensities that are 2 standard deviation above background.

Usage

filter.spot(mySpot)

Arguments

mySpot Spot object for one microarray.

Value

Array elements with intensities that are 2 standard deviation above background.

genArise.init

References

John Quackenbush "Microarray data normalization and transformation". Nature Genetics. Vol.32 supplement pp496-501 (2002)

Examples

```
data(Simon)
## background correction and save it in c.spot
c.spot <- bg.correct(Simon)
## normalize spot
n.spot <- grid.norm(c.spot, nr = 23, nc = 24)
## filtering the spot
filter.spot(n.spot)</pre>
```

genArise.init genArise.init

Description

Auxiliar function of genArise GUI, this function show a principal menu of genAriseGUI

Usage

```
genArise.init(envir)
```

Arguments

envir Environment where are the project variables

Value

tkwidget

genArise

GUI: Graphical User Interface

Description

This is the main function and display the GUI of genArise.

Usage

genArise()

```
genMerge
```

Description

After we finished our slice analysis we get a up-regulated and down-regulated set. This will be the set of study genes for genMege. Given this set, genMerge retrieves functional genomic data for each gene and provides statistical rank scores for over-representation of particular functions in the dataset.

Usage

```
genMerge(gene.association, description, population.genes,
study.genes, output.file = "GenMerge.txt")
```

Arguments

gene.associat	tion
	The gene-association file links gene names with a particular datum of information using a shorthand of gene-association IDS
description	The description file contains human-readable description of gene-association IDS
population.ge	enes
	Set of all genes detected on a array
study.genes	Set of genes may be those that are up-regulated or down-regulated or both of them.
output.file	The name of output file that includes all results obtained after this analisys.

Note

This function is completly based on GeneMerge from Cristian I. Castillo-Davis and Daniel L. Hartl

References

Cristian I. Castillo-Davis Department of Statistics Harvard University http://www.oeb.harvard.edu/hartl/lab/publications/GeneMerge

get.values Auxiliar function for post-analysis

Description

This function get values from an DataSet object.

This is just a function for the GUI, and can not be used in the command line.

Usage

get.values(list.values, genes.values, up.down, min.val, max.val)

get.Zscore

Arguments

list.values	Zscore values from DataSet object
genes.values	Ids values from DataSet object
up.down	If the analysis will be done with "up" or "down" regulated
min.val	Minimal value of the range
max.val	Maximal value of the range

Value

An Ids list

get.Zscore Swap from Files

Description

Read both files, but only extract the interested columns and create a Spot object.

Usage

get.Zscore(spot, name, Zscore.min=NULL, Zscore.max=NULL, all=FALSE, envir)

Arguments

spot	a connection or a character string giving the name of the file to read where each column represent the spot components.
name	a connection or a character string giving the name of the file to read where each column represent the spot components.
Zscore.min	column that represent Cy3.
Zscore.max	column that represent Cy5.
all	column that represent BgCy3.
envir	Environment where are the genArise variables.

See Also

write.spot.

global.norm

Description

This function normalize R and I values and fit the value of Cy5 from his argument. In this function the normalize algorithm will be applied to all observations to get the lowess factor and then fit Cy5 with this factor. The observations. The observations with values R = 0 are deleted because they have no change in their expression levels.

Usage

```
global.norm(mySpot)
```

Arguments

mySpot A spot object

Value

A new spot object but normalized, It means with a different Cy5 that is the result of the fit with the lowess factor.

Examples

```
data(Simon)
# Background Correction
c.spot <- bg.correct(Simon)
#Normalized data
n.spot <- global.norm(c.spot)</pre>
```

graphic.choose Graphic choose

Description

This function show the plot of an spot sobject. This plot are identify with the graphic.type.value

Usage

```
graphic.choose(spot.object, graphic.type)
```

Arguments

spot.object An object ob Spot class
graphic.type representative integer of type graphic will be plot

Value

Plot device

grid.norm

Description

This function normalize R and I values and fit the value of Cy5 for each grid in the spot that it receives as argument. In this function the dimension of grid is (meta-row * meta-column).

Usage

grid.norm(mySpot, nr, nc)

Arguments

mySpot	Spot object for one microarray.
nr	Total of meta-row.
nc	Total of meta-column.

Value

Spot object with the grid normalization done.

Examples

```
data(Simon)
## background correction and save it in c.spot
c.spot <- bg.correct(Simon)
## normalization and save it in n.spot
n.spot <- grid.norm(c.spot, 23, 24)</pre>
```

help

Help of genArise

Description

Display the help of genArise in the GUI. This is just a function for the GUI, and can not be used in the command line.

Usage

help()

i.arise

Description

Extract I from a Spot.

Usage

i.arise(mySpot)

Arguments

mySpot Spot object for one microarray.

Value

List of I-values

See Also

r.arise.

Examples

```
data(Simon)
## Extract I from spot and save in i
i.arise(Simon)
```

imageLimma Image Plot of Microarray

Description

Plot an image of colours representing the log intensity ratio for each spot on the array. This function can be used to explore whether there are any spatial effects in the data.

Usage

```
imageLimma(z, row, column, meta.row, meta.column,
low = NULL, high = NULL)
```

make.swap

Arguments

Z	numeric vector or array. This vector can contain any spot statistics, such as log intensity ratios, spot sizes or shapes, or t-statistics. Missing values are allowed and will result in blank spots on the image
row	rows in the microarray
column	columns in the microarray
meta.row	metarows in the microarray
meta.column	metacolumns in the microarray
low	color associated with low values of 'z'. May be specified as a character string such as "green", "white" etc, or as a rgb vector in which ' $c(1,0,0)$ ' is red, ' $c(0,1,0)$ ' is green and ' $c(0,0,1)$ ' is blue. The default value is "green" if 'zero-center=T' or "white" if 'zerocenter=F'.
high	color associated with high values of 'z'. The default value is '"red"' if 'zerocenter=T' or '"blue"' if 'zerocenter=F'.

Note

This function is based in the imageplot function from limma package.

References

Gordon K. Smyth (2004) "Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments", Statistical Applications in Genetics and Molecular Biology: Vol. 3: No. 1, Article 3. http://www.bepress.com/sagmb/vol3/iss1/art3

Examples

```
data(Simon)
spot.data <- attr(Simon, "spotData")
M <- log(spot.data$Cy5, 2) - log(spot.data$Cy3, 2)
imageLimma(z = M, row = 23, column = 24, meta.row = 2, meta.column = 2,
low = NULL, high = NULL)</pre>
```

make.swap Swap analysis

Description

Read both files, but only extract the interested columns and create a Spot object.

Usage

```
make.swap(spot1, spot2, Cy3, Cy5, BgCy3, BgCy5, Id, Symdesc, header = FALSE, is.
```

Arguments

spot1	a connection or a character string giving the name of the file to read where each column represent the spot components.
spot2	a connection or a character string giving the name of the file to read where each column represent the spot components.
СуЗ	column that represent Cy3.
Cy5	column that represent Cy5.
ВдСуЗ	column that represent BgCy3.
BgCy5	column that represent BgCy5.
Id	column that represent Id.
Symdesc	optional identifier besides the Id column.
header	the logical value of the header input file
is.ifc	If is.ifc = TRUE this experiment was done in the Unit of Microarray from Cel- lular Phisiology Institute.
envir	Environment where are the genArise variables.
nr	Total of meta-row.
nc	Total of meta-column.

See Also

write.spot.

ma.plot Data Visualization: M vs. A plot	
--	--

Description

This function allows to plot ${\bf M}$ -vs- ${\bf A}$ in spot.

Usage

```
ma.plot(mySpot, col = "green")
```

Arguments

mySpot	Spot for one microarray.
col	color of points in graphic

Examples

```
data(Simon)
## plot the signals for spot.
ma.plot(Simon)
```

m.arise

Description

Extract M values from a Spot.

Usage

m.arise(mySpot)

Arguments

mySpot Spot object for one microarray.

Value

List of M-values

See Also

a.arise.

Examples

```
data(Simon)
## Extract M from spot and save in m
m <- m.arise(Simon)</pre>
```

meanUnique

Remove Duplicates

Description

This function allows to remove from the spot repeated Id's. Before moving one of the repeated Id's the function compute the average of Cy3 intensity and Cy5 intensity.

Usage

meanUnique(mySpot)

Arguments

mySpot Spot object for one microarray.

Value

Spot object without duplicates

Examples

```
data(Simon)
c.spot <- bg.correct(Simon)
n.spot <- global.norm(c.spot)
f.spot <- filter.spot(n.spot)
meanUnique(f.spot)</pre>
```

note

note

Description

Call a editor for note about actual experiment

Usage

note(envir)

Arguments

envir Environment where are the experiment variables

old.project Open previous project

Description

Show the information that was obtained from the analysis of a previous project. This is just an auxiliar function for genAriseGUI, and can not be used in the command line.

Usage

```
old.project(project.name,envir, parent)
```

Arguments

project.name	path of project file (PRJ)
envir	Environment where are the genArise variables
parent	The parent widget

Value

tkwidget

16

post.analysis Set-combinatorial analysis

Description

This function allows you to perform a set combinatorial analysis between the results previously obtained in different projects. This function is called post.analysis and it is mandatory that you have done the Zscore operation in all the selected projects. It is important to clarify that this function receives a list of files with extension prj as argument and for this reason you can't use it if the results to compare was not obtained by the genArise GUI.

Usage

post.analysis(values, min.val, max.val, up.down, output)

Arguments

values	A list of projects to compare
min.val	The minimal value of the range
max.val	The maximal value of the range
up.down	If the analysis will be done with "up" or "down" regulated
output	The directory that will contain all the output files

Value

Once obtained the ids list for each project a number of files with extension set are created in a directory. The name of this files consists in a sequence of 0 and 1. The number of digits in the file names is the same to the number of projects in the list passed as argument to the function. There is then, a relation between the number of digits in the file names and the projects. This relation is defined by the position specified in the file order.txt in the same directory you have passed as another argument in the function.

principal

Principal window of genAriseGUI

Description

This function show a window with the information of experiment like name and dimensions, too plot an image of colours representing the log intensity ratio for each spot on the array. This is just an auxiliar function for genAriseGUI, and can not beused in the command line.

Usage

```
principal(envir, swap)
```

Arguments

envir	Environment where are the genArise variables
swap	Is this a swap analysis or an individual analysis

Value

tkwidget

project.select File selector

Description

Previous window to post-analysis. In this window you can select one or several files (projects) and arguments to be used by post analisis function.

This is just an auxiliar function for genAriseGUI, and can not be used in the command line.

Usage

projects.select(envir, nombre)

Arguments

envir	Environment where are the genArise variables
nombre	Name of directory where the post-analysis results will be placed.

Value

tkwidget

r.arise	Get R value	

Description

Get the R values from an object of the Spot class.

Usage

r.arise(mySpot)

Arguments

mySpot An object of the Spot class

Value

A vector containing the R value (log(Cy5/Cy3)) for each observation of the spot object.

See Also

i.arise.

read.dataset

Examples

```
data(Simon)
#Get R-value from an object of the Spot class and save the result
R <- r.arise(Simon)
#Show the R-values</pre>
```

read.dataset Read Dataset from File

Description

Read all file and extract the interested columns to create a DataSet object (this file contain the zscore with all the genes after the duplicates filtering and makes not distinction between up-regulated and down-regulated. If you want to make this distinction you must write the data with the function write.dataSet, but there is no way to read this files with this function).

Usage

```
read.dataset(file.name, cy3 = 1, cy5 = 2, ids = 3, symdesc = NULL,
zscore = 4, type = 6, header = FALSE, sep = "\t")
```

Arguments

file.name	a connection or a character string giving the name of the file to read where each column represent the dataset components.
суЗ	column that represent Cy3.
cy5	column that represent Cy5.
ids	column that represent Id.
symdesc	optional identifier besides Id column.
zscore	column that represent the zscore value.
type	column that represent if the experiment was performed as R vs I or M vs A.
header	the logical value of the header input file
sep	the separator in the inputfile

See Also

write.zscore.

read.spot

Description

Read all file, but only extract the interested columns and create a Spot object.

Usage

```
read.spot(file.name, cy3, cy5, bg.cy3, bg.cy5, ids, symdesc, header =
FALSE, sep = "\t", is.ifc = FALSE, envir)
```

Arguments

file.name	a connection or a character string giving the name of the file to read where each column represent the spot components.
суЗ	column that represent Cy3.
cy5	column that represent Cy5.
bg.cy3	column that represent BgCy3.
bg.cy5	column that represent BgCy5.
ids	column that represent Id.
symdesc	(optional) identifier besides Id column.
header	the logical value of the header input file
sep	the separator in the inputfile
is.ifc	If is.ifc = TRUE this experiment was done in the Unit of Microarray from Cel- lular Phisiology Institute.
envir	Environment where are the genArise variables. You don't need to specify this argument.

See Also

write.spot.

reset.history Reset the prj history file

Description

Clean all the operations saved in the prj history file.

Usage

reset.history(history.file, text)

ri.plot

Arguments

history.file The name of the prj history file. text The new content of the prj history file.

Value

The history file without operations.

ri.plot

Data Visualization: R vs I

Description

This function allows to plot R-values vs I-values I-value from a Spot object

Usage

ri.plot(mySpot, col = "green")

Arguments

mySpot	Spot Object
col	Color in which the pioints of the plot will be shown. This argment must be quoted and the possible values it can ake ares the same from the colors function in the R base package.

See Also

colors()

Examples

data(Simon)
ri.plot(Simon)

set.grid.properties

set.grid.properties

Description

Auxiliary function for genAriseGUI

Usage

```
set.grid.properties(envir, name, nr, nc, nmr, nmc)
```

Arguments

envir	Environment where the variables are stored
name	The name of the experiment
nr	Total rows in the array (each row represent a spot)
nc	Total columns in the array
nmr	Total of meta-rows
nmc	Total of meta-columns

set.history.project

Save the history of a project

Description

Save in the history file each operation performed while the analysis. This is just to get the open this particular project in the future. This is just an auxiliary function for the GUI, and can not be used in the command line.

Usage

set.history.project(history.file, id.name, data.file)

Arguments

history.file	The name of the prj history file.
id.name	The name of the operation.
data.file	The file with the results of the operation.

Value

The history file with the new performed operation.

set.path.project set.path.project

Description

Auxiliar function for genAriseGUI

Usage

```
set.path.project(path, results.file, graphics.file, envir)
```

Arguments

path	Project path value
results.file	Name of directory where results file will be
graphics.fil	e
	Name of directory where pdf graphics will be
envir	Environment where are the experiment variables

22

set.project.properties

set.project.properties

Description

Auxiliar function for genAriseGUI

Usage

set.project.properties(envir)

Arguments

envir Environment where are the experiment variables

Simon

Dataset: Little fragment of a microarray from IFC UNAM

Description

This structure is a data fragment of a yeast microarray from the Microarrays Unit in IFC UNAM. The original microarray contains 6 meta-rows and 4 meta-columns, however this data just belongs to the first meta-row order in a way of 2 meta-rows and 2 meta-columns.

Usage

data(Simon)

Format

A list that contains 1104 observations, because the dimensions of this example are: 2 meta-rows, 2 meta-columns, 23 rows, 24 columns.

Examples

```
data(Simon)
#A preview from the chip
datos <- attr(Simon, "spotData")
M <- log(datos$Cy3, 2) - log(datos$Cy5, 2)
imageLimma(M, 23, 24, 2, 2)</pre>
```

single.norm Swap from Files

Description

Read both files, but only extract the interested columns and create a Spot object.

Usage

```
single.norm(envir)
```

Arguments

envir Environment where are the genArise variables.

See Also

write.spot.

Spot-class Spot-class

Description

A simple list-based class for storing red and green channel foreground and background intensities for a batch of spotted microarrays and the Ids.

Creating Objects from the Class

Objects can be created by calls of the form new("Spot", spot) where spot is a list. Objects are normally created by read.spot.

Slots/List Components

This class contains no slots (other than .Data), but objects should contain the following list components:

Cy5:	numeric matrix containing the red (cy5) foreground intensities. Rows correspond to spots and columns to array
СуЗ:	numeric matrix containing the green (cy3) foreground intensities.
BgCy5:	numeric matrix containing the red (cy5) background intensities.
BgCy3:	numeric matrix containing the green background intensities.
Id:	Ids from all the observations.

All of these matrices should have the same dimensions.

Methods

This class inherits directly from class list so any operation appropriate for lists will work on objects of this class.

spotUnique

Description

We consider replicate measures of two samples and adjust the log(ratio,2) measures for each gene so that the transformed values are equal. To do this we take the geometric mean.\ This procedure can be extended to averaging over n replicates.

Usage

```
spotUnique(mySpot)
```

Arguments

mySpot Spot object for one microarray.

Value

Spot object without duplicates

Examples

```
data(Simon)
c.spot <- bg.correct(Simon)
f.spot <- filter.spot(c.spot)
spotUnique(mySpot = f.spot)</pre>
```

swap.select Dye swap files selector

Description

This is just an auxiliar function for genAriseGUI, and can not be used in the command line.

Usage

```
swap.select(envir)
```

Arguments

envir Environment where are the genArise variables

Value

tkwidget

trim

Trim

Description

Extract white spaces at the begining or end of a word.

Usage

trim(word)

Arguments

word

A string of characters posibly with white spaces at the beging or end of the string.

Value

Returns a string of characters, with leading and trailing whitespace omitted.

Examples

```
trim(" This is a String ")
## return [1] "This is a String"
```

write.dataSet Write dataSet

Description

Write the values for observations of an object of DataSet class in an output file. This values are writen in columns with the follow order: Cy3, Cy5, Cy3 Background, Cy5 Background, Ids and finally the Zscore value. By default this output file has no header.

Usage

```
write.dataSet(dataSet.spot, fileName, quote
= FALSE, col.names = FALSE, row.names = FALSE,
Zscore.min = NULL, Zscore.max = NULL, sep = "\t")
```

Arguments

dataSet.spotAn object of DataSet classfileNameThe name of the output file where the data will be writen. This argument must
be quoted.quoteIf quote = TRUE, all values in the file will be quoted.

col.names If col.names = TRUE, an integer is writen in every column as header. By default col.names = FALSE.

write.spot

row.names	If row.names = TRUE will be an extra column that numerates every rows in the file.
Zscore.min	The lower value in a range, if Zscore.min = NULL then the file will contain all values bellow Zscore.max
Zscore.max	The greater value in a range, if Zscore.max = NULL then file will be contain all values above Zscore.min. Both values, Zscore.min and Zscore.max can not be NULL
sep	Character to separate the columns in file. By default sep = "\t".

Examples

```
data(WT.dataset)
write.dataSet(dataSet.spot = WT.dataset, fileName = "Example.csv", Zscore.min = 1,
Zscore.max = 1.5, sep = "\t")
```

write.spot Write Spot

Description

Write the values for observations of an object of Spot class in an output file. This values are writen in columns with the follow order: Cy3, Cy5, Cy3 Background, Cy5 Background and finally Ids. By default this file has no header.

Usage

```
write.spot(spot, fileName, quote = FALSE,sep = "\t",
col.names = FALSE, row.names = FALSE)
```

Arguments

spot	An object of Spot class
fileName	The name of the output file where the data will be writen. This argument must be quoted.
quote	If quote = TRUE, all values in the file will be quoted.
sep	Character to separate the columns in file. By default sep = "\t".
col.names	If col.names = TRUE, an integer is writen in every column as header. By default col.names = FALSE.
row.names	If row.names = TRUE will be an extra column that numerates every rows in the file. read.spot.

Examples

```
data(Simon)
write.spot(spot = Simon, fileName = "Example.csv", quote = FALSE, sep =
"\t", col.names = FALSE, row.names = FALSE)
```

write.zscore Write Z-score data

Description

Write the values for observations of an object of DataSet class in an output file. This values are writen in columns tab separated with the follow order: Cy3, Cy5, Cy3 Background, Cy5 Background, Ids and finally the z-score value. The header of the output file is the selected type for the z-score (ri or ma).

Usage

```
write.zscore(dataSet.spot, fileName, sep = "\t")
```

Arguments

dataSet.spot An object of DataSet class

fileName	The name of the output file where the data will be writen. This argument must
	be quoted.
sep	Character to separate the columns in file. By default sep = "\t".

Examples

```
data(WT.dataset)
write.zscore(dataSet.spot = WT.dataset, fileName = "Zscore.csv", sep =
"\t")
```

WT.dataset Microarray from the IFC

Description

This data set is a Microarray from the IFC.

Usage

```
data(WT.dataset)
```

Format

A vector containing 4036 observations.

Examples

```
data(WT.dataset)
Zscore.plot(WT.dataset)
```

Zscore.plot

Description

This function allows to plot **R-values** vs **I-values** or **M-values** vs **A-values** for identifying differential expression.

Usage

```
Zscore.plot(dataSet.spot, Zscore.min, Zscore.max, all, col)
```

Arguments

dataSet.spot	Spot Object
Zscore.min	The lower value in a range, if Zscore.min = NULL then the file will contain all values bellow Zscore.max
Zscore.max	The greater value in a range, if Zscore.max = NULL then file will be contain all values above Zscore.min. Both values, Zscore.min and Zscore.max can not be NULL
all	Plot all the observations in four sets: $Z < 1$, $1 < Z < 1.5$, $1.5 < Z < 2$, $Z > 2$
col	Color in which the pioints of the plot will be shown where only the points from center are plot. This argument must be quoted and the possible values it can take are the same from the colors function in the R base package.

See Also

colors()

Examples

```
data(WT.dataset)
Zscore.plot(WT.dataset, Zscore.min = 1, Zscore.max = 2)
```

Zscore.points Z-score Window

Description

This function display the window that show the results after the Z-score. This window allow:

- 1. Show the plots of the up and down generated with the function Zscore.plot regulated spots in: Zscore < 1 sd 1 sd < Zscore < 1.5 sd 1.5 sd < Zscore < 2 sd Zscore > 2 sd and All the points
- 2. Save the plots in pdf and save the results in an output file
- 3. Gene annotations. Denote any gene information beyond the expression level data.

This is just a function for the GUI, and can not be used in the command line.

Zscore

Usage

```
Zscore.points(type,text,envir, swap)
```

Arguments

type	Type of analysis done: "ri" is for a R-I analysis and "ma" is for M-A analysis
text	The text for the text area of the history of the project
envir	Environment where the variables are stored
swap	Is this a swap analysis or an individual analysis

Zscore

Z-scores for identifying differential expression

Description

This function identify differential expressed genes by calculating an intensity-dependent Z-score. This function use a sliding window to calculate the mean and standard deviation within a window surrounding each data point, and define a Z-score where Z measures the number of standard deviations a data point is from the mean.

Usage

Zscore(spot.object,type,window.size)

Arguments

spot.object	A spot object
type	Type of analysis: "ri" is for a R-I analysis and "ma" is for M-A analysis
window.size	Size of the sliding window

Value

A dataSet object with attributes Cy3, Cy5, Id, Z-score.

Examples

```
data(Simon)
# Background Correction
c.spot <- bg.correct(Simon)
#Normalized data
n.spot <- grid.norm(c.spot,23,24)
#Filter spot
f.spot <- filter.spot(n.spot)
#Replicate filtering
u.spot <- spotUnique(f.spot)
#Zscore analysis
s.spot <- Zscore(u.spot)</pre>
```

30

Index

*Topic IO back.gui,3 set.grid.properties, 21 *Topic **aplot** cys.plot,5 ma.plot, 14 ri.plot,21 Zscore.plot, 29 Zscore.points, 29 *Topic arith a.arise,1 alter.unique, 2create.project, 5 filter.spot,6genArise,7 get.values,8 global.norm, 10 grid.norm, 11 m.arise, 15 ma.plot, 14 note, 16 r.arise, 18 set.path.project, 22 set.project.properties, 23 Zscore, 30 *Topic character trim, 26 *Topic classes DataSet-class, 6 Spot-class, 24 *Topic **color** imageLimma, 12 principal, 17 *Topic datasets Simon, 23 WT.dataset, 28 *Topic **data** DataSet-class, 6 Spot-class, 24 *Topic documentation classes,4 help, 11 *Topic file

get.Zscore,9 make.swap, 13 old.project, 16 post.analysis, 17 project.select,18 read.dataset, 19 read.spot, 20 reset.history, 20 set.history.project, 22 single.norm, 24 swap.select, 25 write.dataSet, 26 write.spot, 27 write.zscore, 28 *Topic graphs cys.plot, 5 *Topic math a.arise,1 alter.unique, 2 analysis.window, 2 annotations, 3 bg.correct,4 filter.spot, 6 genArise,7 genArise.init,7 genMerge, 8 global.norm, 10 graphic.choose, 10 grid.norm, 11 i.arise, 12 m.arise, 15 meanUnique, 15 r.arise, 18 spotUnique, 25 Zscore, 30 a.arise, 1, 15 alter.unique, 2 analysis.window, 2 annotations, 3back.gui,3

bg.correct,4

```
classes,4
create.project,5
cys.plot,5
DataSet,4
DataSet-class, 6
filter.spot, 6
genArise,7
genArise.init,7
genMerge, 8
get.values,8
get.Zscore,9
global.norm, 10
graphic.choose, 10
grid.norm, 11
help, 11
i.arise, 12, 18
imageLimma, 12
m.arise, 1, 15
ma.plot, 14
make.swap, 13
meanUnique, 15
note, 16
old.project, 16
post.analysis, 17
principal, 17
project.select,18
projects.select (project.select),
       18
r.arise, 12, 18
read.dataset,19
read.spot, 6, 20, 24, 27
reset.history, 20
ri.plot,21
set.grid.properties,21
set.history.project, 22
set.path.project, 22
set.project.properties,23
Simon, 23
single.norm, 24
Spot,4
Spot-class, 24
spotUnique, 25
swap.select,25
```

trim, 26

write.dataSet,26
write.spot,9,14,20,24,27
write.zscore,19,28
WT.dataset,28

Zscore,30 Zscore.plot,29 Zscore.points,29

32