
Rsamtools
April 20, 2011

BamViews Views into a set of BAM files

Description

Use BamViews() to reference a set of disk-based BAM files to be processed (e.g., queried using
scanBam) as a single ‘experiment’.

Usage

Constructor
BamViews(bamPaths=character(0),

bamIndicies=bamPaths,
bamSamples=new("DataFrame", nrows=length(bamPaths),

rownames=make.unique(basename(bamPaths))),
bamRanges, bamExperiment = list(), ...)

S4 method for signature 'missing':
BamViews(bamPaths=character(0),

bamIndicies=bamPaths,
bamSamples=new("DataFrame", nrows=length(bamPaths),

rownames=make.unique(basename(bamPaths))),
bamRanges, bamExperiment = list(), ..., auto.range=FALSE)

Accessors
bamPaths(x)
bamSamples(x)
bamSamples(x) <- value
bamRanges(x)
bamRanges(x) <- value
bamExperiment(x)

S4 method for signature 'BamViews':
names(x)
S4 method for signature 'BamViews':
names(x) <- value
S4 method for signature 'BamViews':
dimnames(x)
S4 method for signature 'BamViews,ANY':

1

2 BamViews

dimnames(x) <- value

bamDirname(x, ...) <- value

Subset
S4 method for signature 'BamViews,ANY,ANY':
[(x, i, j, ..., drop=TRUE)
S4 method for signature 'BamViews,ANY,missing':
[(x, i, j, ..., drop=TRUE)
S4 method for signature 'BamViews,missing,ANY':
[(x, i, j, ..., drop=TRUE)

Input
S4 method for signature 'BamViews':
scanBam(file, index = file, ..., param = ScanBamParam())
S4 method for signature 'BamViews':
countBam(file, index = file, ..., param = ScanBamParam())
S4 method for signature 'BamViews':
readBamGappedAlignments(file, index, ..., which)

Show
S4 method for signature 'BamViews':
show(object)

Arguments

bamPaths A character() vector of BAM path names.
bamIndicies A character() vector of BAM index file path names, without the ‘.bai’ extension.
bamSamples A DataFrame instance with as many rows as length(bamPaths), con-

taining sample information associated with each path.
bamRanges A GRanges, RangedData or missing instance with ranges defined on the

spaces of the BAM files. Ranges are not validated against the BAM files.
bamExperiment

A list() containing additional information about the experiment.
auto.range If TRUE and all bamPaths exist, populate the ranges with the union of ranges

returned in the target element of scanBamHeader.
... Additional arguments.
x An instance of BamViews.
object An instance of BamViews.
value An object of appropriate type to replace content.
i During subsetting, a logical or numeric index into bamRanges.
j During subsetting, a logical or numeric index into bamSamples and bamPaths.
drop A logical(1), ignored by all BamViews subsetting methods.
file An instance of BamViews.
index A character vector of indices, corresponding to the bamPaths(file).
param An optional ScanBamParam instance to further influence scanning or count-

ing.
which An optional RangesList instance to further subset file.

BamViews 3

Objects from the Class

Objects are created by calls of the form BamViews().

Slots

bamPaths A character() vector of BAM path names.

bamIndicies A character() vector of BAM index path names.

bamSamples A DataFrame instance with as many rows as length(bamPaths), containing
sample information associated with each path.

bamRanges A GRanges instance with ranges defined on the spaces of the BAM files. Ranges are
not validated against the BAM files.

bamExperiment A list() containing additional information about the experiment.

Functions and methods

See ’Usage’ for details on invocation.

Constructor:

BamViews: Returns a BamViews object.

Accessors:

bamPaths Returns a character() vector of BAM path names.

bamIndicies Returns a character() vector of BAM index path names.

bamSamples Returns a DataFrame instance with as many rows as length(bamPaths), con-
taining sample information associated with each path.

bamSamples<- Assign a DataFrame instance with as many rows as length(bamPaths),
containing sample information associated with each path.

bamRanges Returns a GRanges instance with ranges defined on the spaces of the BAM files.
Ranges are not validated against the BAM files.

bamRanges<- Assign a GRanges instance with ranges defined on the spaces of the BAM files.
Ranges are not validated against the BAM files.

bamExperiment Returns a list() containing additional information about the experiment.

names Return the column names of the BamViews instance; same as names(bamSamples(x)).

names<- Assign the column names of the BamViews instance.

dimnames Return the row and column names of the BamViews instance.

dimnames<- Assign the row and column names of the BamViews instance.

Methods:

"[" Subset the object by bamRanges or bamSamples.

scanBam Visit each path in bamPaths(file), returning the result of scanBam applied to the
specified path. bamRanges(file) takes precedence over bamWhich(param).

countBam Visit each path in bamPaths(file), returning the result of countBam applied to
the specified path. bamRanges(file) takes precedence over bamWhich(param).

4 readBamGappedAlignments

readBamGappedAlignments Visit each path in bamPaths(file), returning the result of readBamGappedAlignments
applied to the specified path. When index is missing, it is set equal to bamIndicies(file).
When which is missing, only reads in bamRanges(file) are returned. When which is
present, reads matching bamRanges(file[which]) are returned. The return value is a
SimpleList, with elements of the list corresponding to each path. bamSamples(file)
is available as elementMetadata of the returned SimpleList.

show Compactly display the object.

Author(s)

Martin Morgan

See Also

readBamGappedAlignments

Examples

fls <- list.files(system.file("extdata", package="Rsamtools"),
"\\.bam$", full=TRUE)

rngs <- GRanges(seqnames = Rle(c("chr1", "chr2"), c(9, 9)),
ranges = c(IRanges(seq(10000, 90000, 10000), width=500),

IRanges(seq(100000, 900000, 100000), width=5000)),
Count = seq_len(18L))

v <- BamViews(fls, bamRanges=rngs)
v
v[1:5,]
bamRanges(v[c(1:5, 11:15),])
bamDirname(v) <- getwd()
v

bv <- BamViews(fls,
bamSamples=DataFrame(info="test", row.names="ex1"),
auto.range=TRUE)

aln <- readBamGappedAlignments(bv)
aln
aln[[1]]
aln[colnames(bv)]
elementMetadata(aln)

readBamGappedAlignments
GappedAlignments objects

Description

Read a BAM file as a GappedAlignments object.

Usage

readBamGappedAlignments(file, index, ..., which)

readPileup 5

Arguments

file The character(1) file name of the ‘BAM’ file to be processed.

index The character(1) name of the index file of the ’BAM’ file being processed; this
is given without the ’.bai’ extension.

... Additional arguments, currently unused.

which An object passed to which in ScanBamParam to specify ranges from which
alignments will be retrieved. Valid types are described on the ScanBamParam
help page.

Details

See ?GappedAlignments-class for a description of GappedAlignments objects.

See ?scanBam for a description of the arguments. Unlike SAM/BAM records, we don’t support
unaligned queries so we discard those records.

Author(s)

H. Pages

See Also

GappedAlignments-class, scanBam

Examples

aln1_file <- system.file("extdata", "ex1.bam", package="Rsamtools")
aln1 <- readBamGappedAlignments(aln1_file)
aln1

readPileup Import samtools ’pileup’ files.

Description

Import files created by evaluation of samtools’ pileup -cv command.

Usage

readPileup(file, ...)
S4 method for signature 'connection':
readPileup(file, ..., variant=c("SNP", "indel", "all"))

Arguments

file The file name, or connection, of the pileup output file to be parsed.

... Additional arguments, passed to methods. For instance, specify variant for
the readPileup,character-method.

variant Type of variant to parse; select one.

6 readPileup

Value

readPileup returns a GRanges object.

The value returned by variant="SNP" or variant="all" contains:

space: The chromosome names (fastq ids) of the reference sequence

position: The nucleotide position (base 1) of the variant.

referenceBase: The nucleotide in the reference sequence.

consensusBase; The consensus nucleotide, as determined by samtools pileup.

consensusQuality: The phred-scaled consensus quality.

snpQuality: The phred-scaled SNP quality (probability of the consensus being identical to the
reference).

maxMappingQuality: The root mean square mapping quality of reads overlapping the site.

coverage: The number of reads covering the site.

The value returned by variant="indel" contains space, position, reference, consensus, con-
sensusQuality, snpQuality, maxMappingQuality, and coverage fields, and:

alleleOne, alleleTwo The first (typically, in the reference sequence) and second allelic variants.

alleleOneSupport, alleleTwoSupport The number of reads supporting each allele.

additionalIndels The number of additional indels present.

Author(s)

Sean Davis

References

http://samtools.sourceforge.net/

Examples

fl <- system.file("extdata", "pileup.txt", package="Rsamtools")
(res <- readPileup(fl))
xtabs(~referenceBase + consensusBase, elementMetadata(res))[DNA_BASES,]

Not run: ## uses a pipe, and arguments passed to read.table
three successive piles of 100 records each
cmd <- "samtools pileup -cvf human_b36_female.fa.gz na19240_3M.bam"
p <- pipe(cmd, "r")
snp <- readPileup(p, nrow=100) # variant="SNP"
indel <- readPileup(p, nrow=100, variant="indel")
all <- readPileup(p, nrow=100, variant="all")

End(Not run)

http://samtools.sourceforge.net/

Rsamtools-package 7

Rsamtools-package ’samtools’ aligned sequence utilities interface

Description

This package provides facilities for parsing samtools BAM (binary) files representing aligned se-
quences.

Details

See packageDescription(’Rsamtools’) for package details. A useful starting point is
the scanBam manual page.

Author(s)

Author: Martin Morgan

Maintainer: Biocore Team c/o BioC user list <bioconductor@stat.math.ethz.ch>

References

http://samtools.sourceforge.net/

Examples

packageDescription('Rsamtools')

ScanBamParam Parameters for scanning BAM files

Description

Use ScanBamParam() to create a parameter object influencing what fields and which records are
imported from a (binary) BAM file. Use of which requires that a BAM index file (<filename>.bai)
exists.

Usage

Constructor
ScanBamParam(flag = scanBamFlag(), simpleCigar = FALSE,

reverseComplement = FALSE, tag = character(0),
what = scanBamWhat(), which)

Constructor helpers
scanBamFlag(isPaired = NA, isProperPair = NA, isUnmappedQuery = NA,

hasUnmappedMate = NA, isMinusStrand = NA, isMateMinusStrand = NA,
isFirstMateRead = NA, isSecondMateRead = NA, isPrimaryRead = NA,
isValidVendorRead = NA, isDuplicate = NA)

scanBamWhat()

http://samtools.sourceforge.net/

8 ScanBamParam

Accessors
bamFlag(object)
bamFlag(object) <- value
bamReverseComplement(object)
bamReverseComplement(object) <- value
bamSimpleCigar(object)
bamSimpleCigar(object) <- value
bamTag(object)
bamTag(object) <- value
bamWhat(object)
bamWhat(object) <- value
bamWhich(object)
bamWhich(object) <- value

S4 method for signature 'ScanBamParam':
show(object)

Arguments

flag An integer(2) vector used to filter reads based on their ’flag’ entry. This is most
easily created with the scanBamFlag() helper function.

simpleCigar A logical(1) vector which, when TRUE, returns only those reads for which the
cigar (run-length encoded representation of the alignment) is missing or contains
only matches / mismatches (’M’).

reverseComplement
A logical(1) vector which, when TRUE, returns the sequence and quality scores
of reads mapped to the minus strand in the reverse complement (sequence) and
reverse (quality) of the read as stored in the BAM file.

tag A character vector naming tags to be extracted. A tag is an optional field, with
arbitrary information, stored with each record. Tags are identified by two-letter
codes, so all elements of tag must have exactly 2 characters.

what A character vector naming the fields to return. scanBamWhat() returns a
vector of available fields. Fields are described on the scanBam help page.

which A GRanges, RangesList, RangedData, or missing object, from which a
IRangesList instance will be constructed. Names of the IRangesList
correspond to reference sequences, and ranges to the regions on that reference
sequence for which matches are desired. Because data types are coerced to
IRangesList, which does not include strand information (use the flag
argument instead). Only records with a read overlapping the specified ranges
are returned. All ranges must have ends less than or equal to 536870912.

isPaired A logical(1) indicating whether unpaired (FALSE), paired (TRUE), or any (NA)
read should be returned.

isProperPair A logical(1) indicating whether improperly paired (FALSE), properly paired
(TRUE), or any (NA) read should be returned. A properly paired read is de-
fined by the alignment algorithm and might, e.g., represent reads aligning to
identical reference sequences and with a specified distance.

isUnmappedQuery
A logical(1) indicating whether unmapped (TRUE), mapped (FALSE), or any
(NA) read should be returned.

ScanBamParam 9

hasUnmappedMate
A logical(1) indicating whether reads with mapped (FALSE), unmapped (TRUE),
or any (NA) mate should be returned.

isMinusStrand
A logical(1) indicating whether reads aligned to the plus (FALSE), minus (TRUE),
or any (NA) strand should be returned.

isMateMinusStrand
A logical(1) indicating whether mate reads aligned to the plus (FALSE), minus
(TRUE), or any (NA) strand should be returned.

isFirstMateRead
A logical(1) indicating whether the first mate read should be returned (TRUE)
or not (FALSE), or whether mate read number should be ignored (NA).

isSecondMateRead
A logical(1) indicating whether the second mate read should be returned (TRUE)
or not (FALSE), or whether mate read number should be ignored (NA).

isPrimaryRead
A logical(1) indicating whether reads that are not primary (FALSE), are primary
(TRUE) or whose primary status does not matter (NA) should be returned. A
non-primary read might result when portions of a read aligns to multiple loca-
tions, e.g., when spanning splice junctions).

isValidVendorRead
A logical(1) indicating whether invalid (FALSE), valid (TRUE), or any (NA)
read should be returned. A ’valid’ read is one flagged by the vendor as passing
quality control criteria.

isDuplicate A logical(1) indicating that un-duplicated (FALSE), duplicated (TRUE), or any
(NA) reads should be returned. ’Duplicated’ reads may represent PCR or optical
duplicates.

object An instance of class ScanBamParam.

value An instance of the corresponding slot, to be assigned to object.

Objects from the Class

Objects are created by calls of the form ScanBamParam().

Slots

flag Object of class integer encoding flags to be kept when they have their ’0’ (keep0) or ’1’
(keep1) bit set.

simpleCigar Object of class logical indicating, when TRUE, that only ’simple’ cigars (empty
or ’M’) are returned.

reverseComplement Object of class logical indicating, when TRUE, that reads on the mi-
nus strand are to be reverse complemented (sequence) and reversed (quality).

tag Object of class character indicating what tags are to be returned.

what Object of class character indicating what fields are to be returned.

which Object of class RangesList indicating which reference sequence and coordinate reads
must overlap.

10 ScanBamParam

Functions and methods

See ’Usage’ for details on invocation.

Constructor:

ScanBamParam: Returns a ScanBamParam object. The which argument to the constructor
can be one of several different types, as documented above.

Accessors:

bamTag, bamTag<- Returns or sets a character vector of tags to be extracted.

bamWhat, bamWhat<- Returns or sets a character vector of fields to be extracted.

bamWhich, bamWhich<- Returns or sets a RangesList of bounds on reads to be extracted. A
length 0 RangesList represents all reads.

bamFlag, bamFlag<- Returns or sets an integer(2) representation of reads flagged to be kept
or excluded.

bamSimpleCigar, bamSimpleCigar<- Returns or sets a logical(1) vector indicating whether
reads without indels or clipping be kept.

bamReverseComplement, bamReverseComplement<- Returns or sets a logical(1) vector
indicating whether reads on the minus strand will be returned with sequence reverse comple-
mented and quality reversed.

Methods:

show Compactly display the object.

Author(s)

Martin Morgan

See Also

scanBam

Examples

defaults
p0 <- ScanBamParam()

subset of reads based on genomic coordinates
which <- RangesList(seq1=IRanges(1000, 2000),

seq2=IRanges(c(100, 1000), c(1000, 2000)))
p1 <- ScanBamParam(which=which)

subset of reads based on 'flag' value
p2 <- ScanBamParam(flag=scanBamFlag(isMinusStrand=FALSE))

subset of fields
p3 <- ScanBamParam(what=c("rname", "strand", "pos", "qwidth"))

use
fl <- system.file("extdata", "ex1.bam", package="Rsamtools")
res <- scanBam(fl, param=p2)[[1]]
lapply(res, head)

BamInput 11

tags; NM: edit distance; H1: 1-difference hits
p4 <- ScanBamParam(tag=c("NM", "H1"))
bam4 <- scanBam(fl, param=p4)
str(bam4[[1]][["tag"]])

BamInput Import, count, index, and other operations on ‘BAM’ (binary align-
ment) files.

Description

Import binary ‘BAM’ files into a list structure, with facilities for selecting what fields and which
records are imported.

Usage

scanBam(file, index=file, ..., param=ScanBamParam())

countBam(file, index=file, ..., param=ScanBamParam())

scanBamHeader(files, ...)
S4 method for signature 'character':
scanBamHeader(files, ...)

sortBam(file, destination, ...)
S4 method for signature 'character':
sortBam(file, destination, ..., byQname=FALSE, maxMemory=512)

indexBam(files, ...)
S4 method for signature 'character':
indexBam(files, ...)

filterBam(file, destination, index=file, ...)
S4 method for signature 'character':
filterBam(file, destination, index=file, ...,

indexDestination=TRUE, param=ScanBamParam())

Arguments

file The character(1) file name of the ‘BAM’ file to be processed.

files The character() file names of the ‘BAM’ file to be processed.

index The character(1) name of the index file of the ’BAM’ file being processed; this
is given without the ’.bai’ extension.

destination The character(1) file name of the location where the sorted or filtered output file
will be created. For sortBam this is without the “.bam” file suffix.

... Additional arguments, passed to methods.
indexDestination

A logical(1) indicating whether the created destination file should also be in-
dexed.

12 BamInput

byQname A logical(1) indicating whether the sorted destination file should be sorted by
Query-name (TRUE) or by mapping position (FALSE).

maxMemory A numerical(1) indicating the maximal amount of memory (in MB) that the
function is allowed to use.

param An instance of ScanBamParam. This influences what fields and which records
are imported.

Details

The scanBam function parses binary BAM files; text SAM files can be parsed using R’s scan
function, especially with arguments what to control the fields that are parsed.

The countBam function returns a count of records consistent with param.

The scanBamHeader function visits the header information in a BAM file, returning for each file
a list containing elements targets and text, as described below. The SAM / BAM specification
does not require that the content of the header be consistent with the content of the file, e.g., more
targets may be present that are represented by reads in the file.

The sortBam function sorts the BAM file given as its first argument, analogous to the “samtools
sort” function.

The indexBam function creates an index for each BAM file specified, analogous to the ‘samtools
index’ function.

The filterBam function parses records in file satisfying the bamWhich of param, writing
each record satisfying the bamFlag and bamSimpleCigar criteria of param to file destination.
An index file is created on the destination when indexDestination=TRUE.

Details of the ScanBamParam class are provide on its help page; several salient points are reit-
erated here. ScanBamParam can contain a field what, specifying the components of the BAM
records to be returned. Valid values of what are available with scanBamWhat. ScanBamParam
can contain an argument which that specifies a subset of reads to return. This requires that the
BAM file be indexed, and that the file be named following samtools convention as <bam_filename>.bai.
ScanBamParam can contain an argument tag to specify which tags will be extracted.

Value

The scanBam,character-method returns a list of lists. The outer list groups results from
each Ranges list of bamWhich(param); the outer list is of length one when bamWhich(param)
has length 0. Each inner list contains elements named after scanBamWhat(); elements omitted
from bamWhat(param) are removed. The content of non-null elements are as follows, taken
from the description in the samtools API documentation:

qname The query name, i.e., identifier, associated with the read.

flag A numeric value summarizing details of the read. See ScanBamParam and the
flag argument, and scanBamFlag().

rname The name of the reference to which the read is aligned.

strand The strand to which the read is aligned.

pos The genomic coordinate at the start of the alignment. Coordinates are ‘left-
most’, i.e., at the 3’ end of a read on the ’-’ strand, and 1-based. The position
excludes clipped nucleotides, even though soft-clipped nucleotides are included
in seq.

qwidth The width of the query, as calculated from the cigar encoding; normally equal
to the width of the query returned in seq.

BamInput 13

mrnm The reference to which the mate (of a paired end or mate pair read) aligns.

mpos The position to which the mate aligns.

isize Inferred insert size for paired end alignments.

seq The query sequence, in the 5’ to 3’ orientation. If aligned to the minus strand, it
is the reverse complement of the original sequence.

qual Phred-encoded, phred-scaled base quality score, oriented as seq.

scanBamHeader returns a list, with one element for each file named in files. The list contains
two element. The targets element contains target (reference) sequence lengths. The text
element is itself a list with each element a list corresponding to tags (e.g., ‘@SQ’) found in the
header, and the associated tag values.

sortBam returns the file name of the sorted file.

indexBam returns the file name of the index file created.

filterBam returns the file name of the destination file created.

Author(s)

Martin Morgan <mtmorgan@fhcrc.org>. Thomas Unterhiner <thomas.unterthiner@students.jku.at>
(sortBam).

References

http://samtools.sourceforge.net/

See Also

ScanBamParam, scanBamWhat, scanBamFlag

Examples

fl <- system.file("extdata", "ex1.bam", package="Rsamtools")

res0 <- scanBam(fl)[[1]] # always list-of-lists
names(res0)
length(res0[["qname"]])
lapply(res0, head, 3)
table(width(res0[["seq"]])) # query widths
table(res0[["qwidth"]], useNA="always") # query widths derived from cigar
table(res0[["cigar"]], useNA="always")
table(res0[["strand"]], useNA="always")
table(res0[["flag"]], useNA="always")

which <- RangesList(seq1=IRanges(1000, 2000),
seq2=IRanges(c(100, 1000), c(1000, 2000)))

p1 <- ScanBamParam(which=which)
res1 <- scanBam(fl, param=p1)
names(res1)
names(res1[[2]])

p2 <- ScanBamParam(what=c("rname", "strand", "pos", "qwidth"))
res2 <- scanBam(fl, param=p2)

http://samtools.sourceforge.net/

14 BamInput

p3 <- ScanBamParam(flag=scanBamFlag(isMinusStrand=FALSE))
length(scanBam(fl, param=p3)[[1]])

sorted <- sortBam(fl, tempfile())

Index

∗Topic classes
BamViews, 1
readBamGappedAlignments, 4
ScanBamParam, 7

∗Topic manip
BamInput, 11
readPileup, 5

∗Topic methods
readBamGappedAlignments, 4

∗Topic package
Rsamtools-package, 7

[,BamViews,ANY,ANY-method
(BamViews), 1

[,BamViews,ANY,missing-method
(BamViews), 1

[,BamViews,missing,ANY-method
(BamViews), 1

bamDirname<- (BamViews), 1
bamExperiment (BamViews), 1
bamFlag (ScanBamParam), 7
bamFlag<- (ScanBamParam), 7
bamIndicies (BamViews), 1
BamInput, 11
bamPaths (BamViews), 1
bamRanges (BamViews), 1
bamRanges<- (BamViews), 1
bamReverseComplement

(ScanBamParam), 7
bamReverseComplement<-

(ScanBamParam), 7
bamSamples (BamViews), 1
bamSamples<- (BamViews), 1
bamSimpleCigar (ScanBamParam), 7
bamSimpleCigar<- (ScanBamParam), 7
bamTag (ScanBamParam), 7
bamTag<- (ScanBamParam), 7
BamViews, 1
BamViews,GRanges-method

(BamViews), 1
BamViews,missing-method

(BamViews), 1
BamViews,RangedData-method

(BamViews), 1

BamViews-class (BamViews), 1
bamWhat (ScanBamParam), 7
bamWhat<- (ScanBamParam), 7
bamWhich (ScanBamParam), 7
bamWhich<- (ScanBamParam), 7

connection, 5
countBam (BamInput), 11
countBam,BamViews-method

(BamViews), 1
countBam,character-method

(BamInput), 11

DataFrame, 2, 3
dim,BamViews-method (BamViews), 1
dimnames,BamViews-method

(BamViews), 1
dimnames<-,BamViews,ANY-method

(BamViews), 1

filterBam (BamInput), 11
filterBam,character-method

(BamInput), 11

GappedAlignments, 4, 5
GappedAlignments-class, 5
GappedAlignments-class, 5
GRanges, 2, 3, 6, 8

indexBam (BamInput), 11
indexBam,character-method

(BamInput), 11

names,BamViews-method (BamViews),
1

names<-,BamViews-method
(BamViews), 1

RangedData, 2, 8
RangesList, 2, 8
readBamGappedAlignments, 4, 4
readBamGappedAlignments,BamViews-method

(BamViews), 1
readBamGappedAlignments,character-method

(readBamGappedAlignments),
4

15

16 INDEX

readPileup, 5
readPileup,character-method

(readPileup), 5
readPileup,connection-method

(readPileup), 5
Rsamtools (Rsamtools-package), 7
Rsamtools-package, 7

scan, 12
scanBam, 1, 5, 7, 8, 10
scanBam (BamInput), 11
scanBam,BamViews-method

(BamViews), 1
scanBam,character-method

(BamInput), 11
scanBamFlag, 13
scanBamFlag (ScanBamParam), 7
scanBamHeader (BamInput), 11
scanBamHeader,character-method

(BamInput), 11
ScanBamParam, 2, 5, 7, 12, 13
ScanBamParam,GRanges-method

(ScanBamParam), 7
ScanBamParam,missing-method

(ScanBamParam), 7
ScanBamParam,RangedData-method

(ScanBamParam), 7
ScanBamParam,RangesList-method

(ScanBamParam), 7
ScanBamParam-class

(ScanBamParam), 7
scanBamWhat, 12, 13
scanBamWhat (ScanBamParam), 7
show,BamViews-method (BamViews), 1
show,ScanBamParam-method

(ScanBamParam), 7
SimpleList, 4
sortBam (BamInput), 11
sortBam,character-method

(BamInput), 11

	BamViews
	readBamGappedAlignments
	readPileup
	Rsamtools-package
	ScanBamParam
	BamInput
	Index

