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balKfold.xvspec generate a partition function for cross-validation, where the partitions
are approximately balanced with respect to the distribution of a re-
sponse variable

Description
generate a partition function for cross-validation, where the partitions are approximately balanced
with respect to the distribution of a response variable

Usage

balKfold.xvspec (K)

Arguments

K number of partitions to be computed

Details

This function returns a closure. The symbol K is bound in the environment of the returned function.

Value

A closure consisting of a function that can be used as apartitionFunc for passage in xvalSpec.

Author(s)

VIJ Carey <stvjc@channing.harvard.edu>

Examples

## The function is currently defined as
function (K)
function (data, clab, iternum) {
clabs <- data[l[clab]]
narr <—- nrow (data)
cnames <- unique (clabs)
ilist <-= 1list ()
for (i in l:length(cnames)) ilist[[cnames[i]]] <- which(clabs ==
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cnames[i])
clens <- lapply(ilist, length)
nrep <- lapply(clens, function(x) ceiling(x/K))
grpinds <- list ()
for (i in l:length(nrep)) grpinds[[i]] <- rep(l:K, nrep[[i]])[l:clens[[i]]]
(l:narr) [-which (unlist (grpinds) == iternum) ]
}
# try it out
data (crabs)
plc = balKfold.xvspec (5)
inds = plc( crabs, "sp", 3 )
table (crabs$splinds] )
inds2 = plc( crabs, "sp", 4 )
table (crabs$sp[inds2] )
allc = 1:200
# are test sets disjoint?
intersect (setdiff (allc,inds), setdiff(allc,inds2))

classifierOutput-class
Class "classifierOutput”

Description

This class summarizes the output values from different classifiers.

Objects from the Class

Objects are typically created during the application of a supervised machine learning algorithm to
data and are the value returned. It is very unlikely that any user would create such an object by
hand.

Slots

testOutcomes: Object of class "factor" that lists the actual outcomes in the records on the
test set

testPredictions: Objectofclass "factor" thatlists the predictions of outcomes in the test
set

testScores: Object of class "ANY" — this element will include matrices or vectors or arrays
that include information that is typically related to the posterior probability of occupancy of
the predicted class or of all classes. The actual contents of this slot can be determined by
inspecting the converter element of the learnerSchema used to select the model.

trainOutcomes: Object of class "factor" that lists the actual outcomes in records on the
training set

trainPredictions: Object of class "factor™" that lists the predicted outcomes in the train-
ing set

trainScores: Object of class "ANY" see the description of testScores above; the same
information is returned, but applicable to the training set records.
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RObject: Object of class "ANY" — when the t rainInd parameter of the MLearn call is nu-
meric, this slot holds the return value of the underlying R function that carried out the predic-
tive modeling. For example, if rpartI was used as MLearn method, Robject holds an
instance of the rpart S3 class, and plot and text methods can be applied to this. When
the trainInd parameter of the MLearn call is an instance of xvalSpec, this slot holds
a list of results of cross-validatory iterations. Each element of this list has two elements:
test.idx, giving the numeric indices of the test cases for the associated cross-validation
iteration, and mlans, which is the classifierOutput for the associated iteration. See
the example for an illustration of ’digging out’ the predicted probabilities associated with each
cross-validation iteration executed through an xvalSpec specification.

embeddedCV: logical value that is TRUE if the procedure in use performs its own cross-validation
fsHistory: list of features selected through cross-validation process
learnerSchema: propagation of the learner schema object used in the call

call: Object of class "call" —records the call used to generate the classifierOutput RObject

Methods

confuMat signature (obj = "classifierOutput"): Compute the confusion matrix for
test records.

confuMatTrain signature (obj = "classifierOutput"): Compute the confusion ma-
trix for training set. Typically yields optimistically biased information on misclassification
rate.

RObject signature (obj = "classifierOutput"): The R object returned by the un-
derlying classifier. This can then be passed on to specific methods for those objects, when
they exist.

show signature (object = "classifierOutput"): A print method that provides a
summary of the output of the classifier.

testScores signature (object = "classifierOutput"): ...

testPredictions signature (object = "classifierOutput"): Printthe predicted classes
for each sample/individual in the test set.

trainPredictions signature (object = "classifierOutput"): Printthe predicted classes
for each sample/individual in the training set.

fsHistory signature (object = "classifierOutput"): ..

Author(s)
V. Carey
Examples

showClass ("classifierOutput")

library (golubEsets)

data (Golub_Train) # now cross-validate a neural net

set.seed (1234)

xv5 = xvalSpec ("LOG", 5, balKfold.xvspec (5))

m2 = MLearn (ALL.AML~., Golub_Train[1000:1050,], nnetI, xv5,
size=5, decay=.01, maxit=1900 )

testScores (RObject (m2) [[1]]Smlans)

alls = lapply (RObject (m2), function(x) testScores(x$mlans))
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clusteringOutput-class
container for clustering outputs in uniform structure

Description

container for clustering outputs in uniform structure

Objects from the Class

Objects can be created by calls of the form new ("clusteringOutput", ...).

Slots
partition: Object of class "integer", labels for observations as clustered

silhouette: Objectofclass "silhouette™", structure from Rousseeuw cluster package mea-
suring cluster membership strength per observation

prcomp: Object of class "prcompOb j" a wrapped instance of stats package prcomp output

call: Object of class "call" for auditing

learnerSchema: Objectof class "learnerSchema", a formal object indicating the package,
function, and other attributes of the clustering algorithm employed to generate this object

RObject: Object of class "ANY", the unaltered output of the function called according to learn-
erSchema

converter: converter propagated from call

distFun: distfun propagated from call

Methods

RObject signature(x = "clusteringOutput"): extract the unaltered output of the R
function or method called according to learnerSchema

plot signature(x = "clusteringOutput", y = "ANY"): a4-panel plot showing fea-
tures of the clustering, including the scree plot for a principal components transformation and a
display of the partition in PC1xPC2 plane. For a clustering method that does not have a native
plot procedure, such as kmeans, the parameter y should be bound to a data frame or matrix with
feature data for all records; an image plot of robust feature z-scores (z=(x-median(x))/mad(x))
and the cluster indices is produced in the northwest panel.

show signature (object = "clusteringOutput"): concise report

Author(s)

VIJ Carey <stvjc@channing.harvard.edu>

Examples

showClass ("clusteringOutput")
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confuMat-methods Compute the confusion matrix for a classifier.

Description

This function will compute the confusion matrix for a classifier’s output

Methods

obj = "classifOutput' Typically, an instance of class "classifierOutput" is built on a train-
ing subset of the input data. The model is then used to predict the class of samples in the test
set. When the true class labels for the test set are available the confusion matrix is the cross-
tabulation of the true labels of the test set against the predictions from the classifier.

obj = "classifierOutput", type="'"character' For instances of classifierOutput, it is possible to
specify the t ype of confusion matrix desired. The default is test, which tabulates classes
from the test set against the associated predictions. If type is train, the training class
vector is tabulated against the predictions on the training set.

Examples

library (golubEsets)

data (Golub_Merge)

smallG <- Golub_Merge[101:150,]

k1l <- MLearn (ALL.AML~., smallG, knnI(k=1), 1:30)
confuMat (k1)

confuMat (k1, "train")

fs.absT support for feature selection in cross-validation

Description

support for feature selection in cross-validation

Usage
fs.absT (N)
fs.probT (p)

fs.topVariance (p)

Arguments
N number of features to retain; features are ordered by descending value of abs(two-
sample t stat.), and the top N are used.
P cumulative probability (in (0,1)) in the distribution of absolute t statistics above
which we retain features
Details

This function returns a function that will be used as a parameter to xvalSpec in applications of
MLearn.
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Value

a function is returned, that will itself return a formula consisting of the selected features for appli-
cation of MLearn.

Note

The functions fs.absT and fs.probT are two examples of approaches to embedded feature
selection that make sense for two-sample prediction problems. For selection based on linear models
or other discrimination measures, you will need to create your own selection helper, following the
code in these functions as examples.

fs.topVariance performs non-specific feature selection based on the variance. Argument p is the
variance percentile beneath which features are discarded.

Author(s)

VIJ Carey <stvjc@channing.harvard.edu>

See Also

MLearn

Examples

# we will demonstrate this procedure with the crabs data.

# first, create the closure to pick 3 features

demFS = fs.absT(3)

# run it on the entire dataset with features excluding sex

demFS (sp~.-sex, crabs)

# emulate cross-validation by excluding last 50 records

demF'S (sp~.-sex, crabs[1:150,])

# emulate cross-validation by excluding first 50 records -- different features retained
demFS (sp~.-sex, crabs[51:200,])

fsHistory extract history of feature selection for a cross-validated machine
learner

Description

extract history of feature selection for a cross-validated machine learner

Usage

fsHistory (x)

Arguments

be instance of classifierOutput

Details

returns a list of names of selected features
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Value

a list; the names of variables are made ’syntactic’

Author(s)

Vince Carey <stvjc@channing.harvard.edu>

Examples
data (iris)
iris2 = iris|[ irisS$Species %in% levels (iris$Species) [1:2], ]
iris2$Species = factor (iris2$Species) # drop unused levels

x1 = MLearn (Species~., iris2, ldaI, =xvalSpec("LOG", 3,
balKfold.xvspec(3), fs.absT(3)))
fsHistory (x1)

learnerSchema—-class

Class "learnerSchema" — convey information on a machine learning
function to the MLearn wrapper

Description

conveys information about machine learning functions in CRAN packages, for example, to MLearn
wrapper

Objects from the Class

Objects can be created by calls of the form new ("learnerSchema”, ...).

Slots

packageName: Object of class "character" string naming the package in which the function
to be used is defined.
mlFunName: Object of class "character" string naming the function to be used

converter: Objectof class "function™ function with parameters obj, data, trainlnd, that will
produce a classifierOutput instance

Methods
MLearn signature (formula = "formula", data = "ExpressionSet", method
= "learnerSchema", trainInd = "numeric"): execute desired learner passing
a formula and ExpressionSet
MLearn signature (formula = "formula", data = "data.frame", method =
"learnerSchema", trainInd = "numeric"): execute desired learner passing a
formula
show signature (object = "learnerSchema"): concise display
Author(s)

Vince Carey <stvjc@channing.harvard.edu>
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Examples

showClass ("learnerSchema")

MLearn revised MLearn interface for machine learning

Description

revised MLearn interface for machine learning, emphasizing a schematic description of external
learning functions like knn, 1da, nnet, etc.

Usage

MLearn ( formula, data, .method, trainInd, ... )
makeLearnerSchema (packname, mlfunname, converter)

Arguments
formula standard model formula
data data.frame or ExpressionSet instance
.method instance of learnerSchema
trainInd obligatory numeric vector of indices of data to be used for training; all other
data are used for testing, or instance of the xvalSpec class
additional named arguments passed to external learning function
packname character — name of package harboring a learner function
mlfunname character — name of function to use
converter function — with parameters (obj, data, trainlnd) that tells how to convert the
material in obj [produced by [packname::mlfunname] ] into a classifierOutput
instance.
Details

The purpose of the MLearn methods is to provide a uniform calling sequence to diverse ma-
chine learning algorithms. In R package, machine learning functions can have parameters (x,

y, ...) or (formula, data, ...) or some other sequence, and these functions can
return lists or vectors or other sorts of things. With MLearn, we always have calling sequence
MLearn (formula, data, .method, trainInd, ...),anddatacanbeadata.frame
or ExpressionSet. MLearn will always return an S4 instance of classifierObject or
clusteringObject.

At this time (1.13.x), NA values in predictors trigger an error.

To obtain documentation on the older (pre bioc 2.1) version of the MLearn method, please use
help(MLearn-OLD).

randomForestl randomForest. Note, that to obtain the default performance of randomForestB,
you need to set mtry and sampsize parameters to sqrt(number of features) and table([training
set response factor]) respectively, as these were not taken to be the function’s defaults. Note
you can use xvalSpec("NOTEST") as trainInd, to use all the samples; the RObject() result will
print the misclassification matrix estimate along with OOB error rate estimate.
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knnl(k=1,1=0) knn; special support bridge required, defined in MLint

knn.cvI(k=1,1=0) knn.cv; special support bridge required, defined in MLint. This option uses the
embedded leave-one-out cross-validation of knn . cv, and thereby achieves high performance.
You can have more general cross-validation using knnI with an xvalSpec, but it will be
slower. When using this learner schema, you should use the numerical t rainInd setting
with 1 :N where N is the number of samples.

dldal diagDA; special support bridge required, defined in MLint
nnetl nnet

rpartl rpart

Idal lda

svml svm

qdal qda

logisticI(threshold) glm — with binomial family, expecting a dichotomous factor as response vari-
able, not bulletproofed against other responses yet. If response probability estimate exceeds
threshold, predict 1, else 0

adal ada
Bgbml gbm, forcing the Bernoulli loss function.

blackboostl blackboost — you MUST supply a family parameter relevant for mboost package pro-
cedures

Ivql lvqtest after building codebook with lvqinit and updating with olvql. You will need to write
your own detailed schema if you want to tweak tuning parameters.

naiveBayesI naiveBayes
baggingl bagging
sldal slda

rdal rda — you must supply the alpha and delta parameters to use this. Typically cross-validation
is used to select these. See rdacvI below.

rdacvl rda.cv. This interface is complicated. The typical use includes cross-validation internal to
the rda.cv function. That process searches a tuning parameter space and delivers an ordering
on parameters. The interface selects the parameters by looking at all parameter configurations
achieving the smallest min+1SE cv.error estimate, and taking the one among them that em-
ployed the -most- features (agnosticism). A final run of rda is then conducted with the tuning
parameters set at that "optimal’ choice. The bridge code can be modified to facilitate alterna-
tive choices of the parameters in use. plotXvalRDA is an interface to the plot method for
objects of class rdacv defined in package rda. You can use xvalSpec("NOTEST") with this
procedure to use all the samples to build the discriminator.

ksvml ksvm

hclustI(distMethod, agglomMethod) hclust — you must explicitly specify distance and agglomer-
ation procedure.

kmeansI(centers, algorithm) kmeans — you must explicitly specify centers and algorithm name.

If the multicore package is attached, cross-validation will be distributed to cores using mclapply.

Value

Instances of classifierOutput or clusteringOutput
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Author(s)

Vince Carey <stvjc@channing.harvard.edu>

Examples

data (crabs)
set.seed (1234)
kp = sample(1:200, size=120)

rfl = MLearn (sp~CW+RW, data=crabs, randomForestI, kp, ntree=600 )
rfl
nnl = MLearn (sp~CW+RW, data=crabs, nnetI, kp, size=3, decay=.01 )
nnl

RObject (nnl)

knnl = MLearn (sp~CW+RW, data=crabs, knnI (k=3,1=2), kp)
knnl

names (RObject (knnl))

dldal = MLearn (sp~CW+RW, data=crabs, dldaI, kp )
dldal

names (RObject (dldal))

ldal = MLearn (sp~CW+RW, data=crabs, 1ldaI, kp )
ldal

names (RObject (1dal))

sldal = MLearn (sp~CW+RW, data=crabs, sldaI, kp )
sldal

names (RObject (sldal))

svml = MLearn (sp~CW+RW, data=crabs, svmI, kp )

svml

names (RObject (svml) )

ldappl = MLearn (sp~CW+RW, data=crabs, ldal.predParms (method="debiased"), kp )
ldappl

names (RObject (1ldappl))

gdal = MLearn (sp~CW+RW, data=crabs, gdal, kp )
qgdal

names (RObject (gdal))

logi = MLearn (sp~CW+RW, data=crabs, glmI.logistic(threshold=0.5), kp, family=binomial ) 1
logi

names (RObject (logi))

rp2 = MLearn (sp~CW+RW, data=crabs, rpartI, kp)
rp2

## recode data for RAB

#nsp = ifelse(crabs$sp=="0", -1, 1)

#nsp = factor (nsp)

#ncrabs = cbind(nsp,crabs)

#rabl = MLearn (nsp~CW+RW, data=ncrabs, RABI, kp, maxiter=10)

frabl

#

# new approach to adaboost

#

adal = MLearn(sp ~ CW+RW, data = crabs, .method = adal,
trainInd = kp, type = "discrete", iter = 200)

adal

confuMat (adal)

#

lvg.l = MLearn (sp~CW+RW, data=crabs, 1lvgIl, kp )

lvg.1

nb.1l = MLearn (sp~CW+RW, data=crabs, naiveBayesI, kp )
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confuMat (nb.1)
bb.1 = MLearn (sp~CW+RW, data=crabs, baggingI, kp )
confuMat (bb.1)

#

# new mboost interface —-- you MUST supply family for nonGaussian response
#

require (party) # trafo ... killing cmd check

blb.1 = MLearn (sp~CW+RW+FL, data=crabs, blackboostI, kp, family=mboost::Binomial () )
confuMat (blb.1)
#
# ExpressionSet illustration
#
data (sample.ExpressionSet)
X = MLearn (type~., sample.ExpressionSet[100:250,], randomForestI, 1:16, importance=TRUE )
library (randomForest)
library (hgu95av2.db)
opar = par (no.readonly=TRUE)
par (las=2)
plot (getVarImp (X), n=10, plat="hgu95av2", toktype="SYMBOL")
par (opar)
#
# demonstrate cross validation
#
nnlcv = MLearn (sp~CW+RW, data=crabs[c(1:20,101:120),], nnetI, xvalSpec("LOO"), size=3, de
confuMat (nnlcv)
nn2cv = MLearn (sp~CW+RW, data=crabs[c(1:20,101:120),], nnetI,
xvalSpec ("LOG", 5, balKfold.xvspec(5)), size=3, decay=.01 )
confuMat (nn2cv)
nn3cv = MLearn (sp~CW+RW+CL+BD+FL, data=crabs[c(1:20,101:120),]1, nnetI,
xvalSpec ("LOG", 5, balKfold.xvspec(5), fsFun=fs.absT(2)), size=3, decay=.01 )
confuMat (nn3cv)
nnd4cv = MLearn (sp~.-index-sex, data=crabs[c(1:20,101:120),], nnetI,
xvalSpec ("LOG", 5, balKfold.xvspec(5), fsFun=fs.absT(2)), size=3, decay=.01 )
confuMat (nn4dcv)
#
# try with expression data
#
library (golubEsets)
data (Golub_Train)
litg = Golub_Train[ 100:150, ]
gl = MLearn (ALL.AML~. , litg, nnetI, xvalSpec("LOG",5, balKfold.xvspec(5), fsFun=fs.probl
confuMat (gl)
#
# illustrate rda.cv interface from package rda (requiring local bridge)
#
library (ALL)

data (ALL)

#

# restrict to BCR/ABL or NEG

#

bio <- which( ALLSmol.biol %in% c ("BCR/ABL", "NEG"))
#

# restrict to B-cell

#

isb <- grep(""B", as.character (ALLS$BT))
kp <- intersect (bio, isb)
all2 <- ALL[, kp]
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mads = apply(exprs(all2),l,mad)

kp = which(mads>1) # get around 250 genes

vall2 = all2lkp, ]

vall2$mol.biol = factor(vall2Smol.biol) # drop unused levels

rl = MLearn (mol.biol~., wvall2, rdacvI, 1:40)

confuMat (rl)

RObject (rl)

plotXvalRDA (rl) # special interface to plots of parameter space

# illustrate clustering support

cll = MLearn (~CW+RW+CL+FL+BD, data=crabs, hclustI (distFun=dist, cutParm=list (k=4)))
plot (cll)

clla = MLearn (~CW+RW+CL+FL+BD, data=crabs, hclustI (distFun=dist, cutParm=list (k=4)),
method="complete")
plot(clla)

cl2 = MLearn (~CW+RW+CL+FL+BD, data=crabs, kmeansI, centers=5, algorithm="Hartigan-Wong")
plot(cl2, crabs[,-c(1:3)])

c3 = MLearn (~CL+CW+RW, crabs, pamI(dist), k=5)
c3
plot (c3, data=crabs[,c("CL", "CW", "RW")])

MLIntInternals MLlInterfaces infrastructure

Description

These functions are internal tools for MLInterfaces. Users will generally not call these func-
tions directly.

Usage

getGrid(x)

Arguments

X a vector or matrix or ExpressionSet

Details

Forthcoming.

Value

Functions with ‘new’ as prefix are constructor helpers.

Author(s)

VI Carey <stvjc@channing.harvard.edu>
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planarPlot-methods Methods for Function planarPlot in Package ‘MLInterfaces’

Description

show the classification boundaries on the plane dictated by two genes in an ExpressionSet

Methods

clo = "classifierOutput", eset = '""ExpressionSet", classifLab = ""character' uses two genes in
the ExpressionSet to exhibit the decision boundaries in the plane

clo = "classifierOutput'', eset = "'data.frame", classifLab = ''character' uses two columns in
the data.frame to exhibit the decision boundaries in the plane

Examples

library (ALL)
library (hgu95av2.db)

data (ALL)

#

# restrict to BCR/ABL or NEG

#

bio <- which( ALLSmol.biol %in% c ("BCR/ABL", "NEG"))
#

# restrict to B-cell

#

isb <- grep("”B", as.character (ALLSBT))

kp <- intersect (bio, isb)

all2 <- ALL[, kp]

#

# sample 2 genes at random

#

set.seed(1234)

ng <- nrow(exprs(all2))

pick <- sample(l:ng, size=2, replace=FALSE)

gg <- all2[pick,]

sym <- unlist (mget (featureNames (gg), hgu95av2SYMBOL) )
featureNames (gg) <- sym

gg$class = factor(ifelse(all2$mol.biol=="NEG", "NEG", "POS"))

cll <= which( gg$class == "NEG" )

cl2 <- which( ggS$class != "NEG" )

#

# create balanced training sample

#

trainInds <- c( sample(cll, size=floor (length(cll)/2) ),
sample (cl2, size=floor (length(cl2)/2)) )

#

# run rpart

#

tgg <- MLearn(class~., gg, rpartI, trainInds, minsplit=4 )
opar <- par (no.readonly=TRUE)

par (mfrow=c (2,2))

planarPlot ( tgg, gg, "class" )
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title("rpart")

points (exprs(gg) [1,trainInds], exprs(gg) [2,trainInds], col=ifelse(ggSclass[trainInds]=="1}
#

# run nnet

#

ngg <- MLearn( class~., gg, nnetI, trainInds, size=8 )

planarPlot ( ngg, gg, "class" )

points (exprs(gg) [1,trainInds], exprs(gg) [2,trainInds], col=ifelse(gg$Sclass[trainInds]=="
title ("nnet")

#

# run knn

#

kgg <- MLearn( class~., gg, knnI(k=3,1=1), trainInds)

planarPlot ( kgg, gg, "class" )

points (exprs(gg) [1,trainInds], exprs(gg) [2,trainInds], col=ifelse(gg$class[trainInds]=="N\
title ("3-nn")

#

# run svm

#

sgg <- MLearn( class~., gg, svmI, trainInds )

planarPlot ( sgg, gg, "class" )

points (exprs(gg) [1,trainInds], exprs(gg) [2,trainInds], col=ifelse(gg$Sclass[trainInds]=="
title ("svm")

par (opar)

raboostCont—-class Class "raboostCont" ~~~

Description

~~ A concise (1-5 lines) description of what the class is. ~~

Objects from the Class

Objects can be created by calls of the form new ("raboostCont", ...).~~ describe objects
here ~~

Slots

.Data: Objectofclass "1ist" ~~
formula: Object of class "formula" ~~
call: Objectof class "call" ~~

Extends

Class "1ist", from data part. Class "vector", by class "list", distance 2.

Methods

Predict is an S4 method that can apply to instances of this class.

Author(s)

VIJ Carey <stvjc@channing.harvard.edu>
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Examples

showClass ("raboostCont")

RAB real adaboost (Friedman et al)

Description

read adaboost ... a demonstration version

Usage

RAB (formula, data, maxiter=200, maxdepth=1)

Arguments
formula formula — the response variable must be coded -1, 1
data data
maxiter maxiter
maxdepth maxdepth — passed to rpart
Value

an instance of raboostCont

Author(s)

Vince Carey <stvjc@channing.harvard.edu>

References

Friedman et al Ann Stat 28/2 337

Examples

library (MASS)

data (Pima.tr)

data (Pima.te)

Pima.all = rbind(Pima.tr, Pima.te)

tonp = ifelse(Pima.all$type == "Yes", 1, -1)

tonp = factor (tonp)

Pima.all = data.frame(Pima.all[,1:7], mtype=tonp)

fitl = RAB (mtype~ped+glu+npreg+bmi+tage, data=Pima.all[1:200,], maxiter=10, maxdepth=5)
pfitl = Predict (fitl, newdata=Pima.tr)

table (Pima.trS$type, pfitl)
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varImpStruct—-class Class "varlmpStruct” — collect data on variable importance from var-
ious machine learning methods

Description

collects data on variable importance

Objects from the Class

Objects can be created by calls of the form new ("varImpStruct", ...). These are matri-
ces of importance measures with separate slots identifying algorithm generating the measures and
variable names.

Slots

.Data: Object of class "matrix" actual importance measures
method: Object of class "character" tag

varnames: Object of class "character" conformant vector of names of variables

Extends

Class "matrix", from data part. Class "structure", by class "matrix". Class "array",
by class "matrix". Class "vector", by class "matrix", with explicit coerce. Class "vector",
by class "matrix", with explicit coerce.

Methods

plot signature (x = "varImpStruct"): make abar plot, you can supply arguments plat
and toktype which willuse LookUp (..., plat, toktype) fromthe annotate pack-
age to translate probe names to, e.g., gene symbols.

show signature (object = "varImpStruct"): simple abbreviated display

getVarImp signature (object = "classifOutput", fixNames="logical"): ex-
tractor of variable importance structure; fixNames parameter is to remove leading X used to
make variable names syntactic by randomForest (ca 1/2008). You can set fixNames to false if
using hu6800 platform, because all featureNames are syntactic as given.

report signature (object = "classifOutput", fixNames="logical"): extrac-
tor of variable importance data, with annotation; fixNames parameter is to remove leading X
used to make variable names syntactic by randomForest (ca 1/2008). You can set fixNames to
false if using hu6800 platform, because all featureNames are syntactic as given.

Examples

library (golubEsets)

data (Golub_Merge)

library (hu6800.db)

smallG <- Golub_Merge[1001:1060,]

set.seed(1234)

opar=par (no.readonly=TRUE)

par (las=2, mar=c(10,11,5,5))

rf2 <- MLearn(ALL.AML~., smallG, randomForestI, 1:40, importance=TRUE,
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sampsize=table (smallG$SALL.AML[1:40]), mtry=sqgrt (ncol (exprs (smallG))))
plot ( getVarImp( rf2, FALSE ), n=10, plat="hu6800", toktype="SYMBOL")
par (opar)
report ( getVarImp( rf2, FALSE ), n=10, plat="hu6800", toktype="SYMBOL")

xvalLoop Cross-validation in clustered computing environments

Description

Use cross-validation in a clustered computing environment

Usage
xvallLoop( cluster, ... )
Arguments
cluster Any S4-class object, used to indicate how to perform clustered computations.
Additional arguments used to inform the clustered computation.
Details

Cross-validiation usually involves repeated calls to the same function, but with different arguments.
This provides an obvious place for using clustered computers to enhance execution. The method
xval is structured to exploit this; xvalLoop provides an easy mechanism to change how xval
performs cross-validation.

The idea is to write an xvalLoop method that returns a function. The function is then used to
execute the cross-validation. For instance, the default method returns the function lapply, so the
cross-validation is performed by using lapply. A different method might return a function that
executed lapply-like functions, but sent different parts of the function to different computer nodes.

An accompanying vignette illustrates the technique in greater detail. An effective division of labor
is for experienced cluster programmers to write lapply-like methods for their favored clustering
environment. The user then only has to add the cluster object to the list of arguments to xval to
get clustered calculations.

Value

A function taking arguments like those for lapply

Examples

## Not run:

library (golubEsets)

data (Golub_Merge)

smallG <- Golub_Merge[200:250,]

# Evaluation on one node

1kl <- xval(smallG, "ALL.AML", knnB, xvalMethod="LOO", group=as.integer (0))
table (1kl, smallGS$ALL.AML)
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# Evaluation on several nodes —-- a cluster programmer might write the following...

library (snow)
setOldClass ("spawnedMPIcluster")

setMethod ("xvalLoop", signature( cluster = "spawnedMPIcluster"),
## use the function returned below to evalutae
## the central cross-validation loop in xval
function( cluster, ... ) {
clusterExportEnv <- function (cl, env = .GlobalEnv)

{
unpackEnv <- function (env) {
for ( name in ls(env) ) assign(name, get (name, env), .GlobalEnv )
NULL

}

clusterCall (cl, unpackEnv, env)

}
function (X, FUN, ...) { # this gets returned to xval

## send all visible variables from the parent (i.e., xval) frame
clusterExportEnv( cluster, parent.frame(l) )
parLapply ( cluster, X, FUN, ... )

# ... and use the cluster like this...

cl <- makeCluster (2, "MPI")
clusterEvalQ(cl, library(MLInterfaces))

1kl <- xval(smallG, "ALL.AML", knnB, xvalMethod="LOO", group=as.integer (0), cluster = cl)
table (1kl, smallGS$ALL.AML)

## End (Not run)

xvalSpec container for information specifying a cross-validated machine learn-
ing exercise

Description

container for information specifying a cross-validated machine learning exercise

Usage
xvalSpec( type, niter=0, partitionFunc= function(data, classLab, iternum ) {
(l:nrow(data)) [-iternum] 1},
fsFun = function (formula, data) formula )
Arguments
type a string, "LOO" indicating leave-one-out cross-validation, or "LOG" indicating

leave-out-group, or "NOTEST", indicating the entire dataset is used in a single
training run.
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niter numeric specification of the number of cross-validation iterations to use. Ig-
nored if type is "LOO".

partitionFunc
function, with parameters data (bound to data.frame), clab (bound to charac-
ter string), iternum (bound to numeric index into sequence of l:niter). This
function’s job is to provide the indices of training cases for each cross-validation
step. An example is balKfold.xvspec, which computes a series of indices
that are approximately balanced with respect to frequency of outcome types.

fsFun function, with parameters formula, data. The function must return a formula
suitable for defining a model on the basis of the main input data. A candidate
fsFun is given in example for fsHistory function.

Details

Iftype == "LOO", no other parameters are inspected. If type == "LOG" avalue forpartitionFunc
must be supplied. We recommend using balKfold.xvspec (K). The values of niter and K
in this usage must be the same. This redundancy will be removed in a future upgrade.

Ifthemulticore package is attached, cross-validation will be distributed to cores using mclapply.

Value

An instance of classifierOutput, with a special structure. The RObject return slot is
populated with a list of niter cross-validation results. Each element of this list is itself a list
with two elements: test.idx (the indices of the test set for the associated cross-validation
iteration, and mlans, the classifierOutput generated at each iteration. Thus there are
classifierOutput instances nested within the main classifierOutput returned when
a xvalSpec is used.

Author(s)

Vince Carey <stvjc@channing.harvard.edu>

Examples

data (crabs)

set.seed(1234)

#

# demonstrate cross validation

#

nnlcv = MLearn (sp~CW+RW, data=crabs, nnetI, xvalSpec ("LOG",
5, balKfold.xvspec(5)), size=3, decay=.01 )

nnlcv

confuMat (nnlcv)

names (RObject (nnlcv) [[1]1])

RObject (RObject (nnlcv) [[1]]S$Smlans)
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