
Copy number estimation and genotype calling with crlmm

Rob Scharpf

August 30, 2010

Abstract

This vignette estimates copy number for HapMap samples on the Affymetrix 6.0 platform. See [1]
for the working paper.

1 Simple usage

CRLMM supports the following platforms:

> library(crlmm)

> crlmm:::validCdfNames()

[1] "genomewidesnp6" "genomewidesnp5"
[3] "human370v1c" "human370quadv3c"
[5] "human550v3b" "human650v3a"
[7] "human610quadv1b" "human660quadv1a"
[9] "human1mduov3b" "humanomni1quadv1b"
[11] "humanomniexpress12v1b"

> cdfName <- "genomewidesnp6"

Preprocess and genotype. In the following code chunk, we provide the complete path to the Affymetrix
CEL files, assign a path to store the normalized intensities and genotype data, and define a ’batch’ variable.
The batch variable will later be useful when we estimate copy number. We typically use the 96 well chemistry
plate or the scan date of the array as a surrogate for batch. Adjusting by date or chemistry plate can be
helpful for limiting the influence of batch effects.

> if (getRversion() < "2.12.0") {

rpath <- getRversion()

} else rpath <- "trunk"

> outdir <- paste("/thumper/ctsa/snpmicroarray/rs/ProcessedData/crlmm/",

rpath, "/affy_vignette", sep = "")

> datadir <- "/thumper/ctsa/snpmicroarray/hapmap/raw/affy/1m"

> celFiles <- list.celfiles(datadir, full.names = TRUE,

pattern = ".CEL")

> dir.create(outdir, showWarnings = FALSE)

> batch <- substr(basename(celFiles), 13, 13)

> celFiles <- celFiles[batch %in% c("C", "Y")]

> batch <- batch[batch %in% c("C", "Y")]

> stopifnot(length(batch) == length(celFiles))

The preprocessing steps for copy number estimation includes quantile normalization of the polymorphic
and nonpolymorphic markers and a summarization step whereby the quantile normalized intenities are
summarized for each locus. As the markers at polymorphic loci on the Affymetrix 6.0 platform are identical,

1

we summarize the intensities by the median. For the nonpolymorphic markers, no summarization step is
performs. Next, the crlmm package provides a genotype call and a confidence score at each polymorphic locus.
Unless the dataset is small (e.g., fewer than 50 samples), we suggest installing and loading the R package
ff. The function genotype checks to see whether the ff is loaded. If loaded, the normalized intensities and
genotype are stored as ff objects on disk. Otherwise, the genotypes and normalized intensities are stored
in matrices. A word of caution: the genotype function requires a potentially large amount of RAM even
when the R package ff is loaded. Users with large datasets may want to skip this part. For the 180 HapMap
samples processed in this vignette, the genotype function required 25MB RAM. The next two code chunks
should be submitted as batch jobs.

> if (!exists("cnSet")) {

if (!file.exists(file.path(outdir, "cnSet.rda"))) {

cnSet <- genotype(celFiles[1:50], cdfName = cdfName,

copynumber = TRUE, batch = batch[1:50])

save(cnSet, file = file.path(outdir, "cnSet.rda"))

}

else {

message("Loading cnSet container")

load(file.path(outdir, "cnSet.rda"))

}

}

A more memory efficient approach to preprocessing and genotyping is implemented in the R function
genotype2. The arguments to this function are similar to genotype but requires explicit loading of the R
package ff prior to calling the function. The functions ocProbesets and ocSamples can be used to manage
how many probesets and samples are to be loaded into memory and processed. Using the default settings,
the following code required 1.9Mb RAM to process 180 CEL files.

> library(ff)

> ld.path <- file.path(outdir, "ffobjs")

> if (!file.exists(ld.path)) dir.create(ld.path)

> ldPath(ld.path)

> ocProbesets(1e+05)

> ocSamples(300)

> if (!exists("cnSet2")) {

if (!file.exists(file.path(outdir, "cnSet2.rda"))) {

cnSet2 <- genotype2(celFiles, cdfName = cdfName,

copynumber = TRUE, batch = batch)

save(cnSet2, file = file.path(outdir, "cnSet2.rda"))

}

else {

message("Loading cnSet2 container")

load(file.path(outdir, "cnSet2.rda"))

}

}

The objects returned by the genotype and genotype2 differ in size as the former returns an object with
matrices in the assay data slot, whereas the latter return an object with pointers to files on disk. The
functions open and close can be used to open and close the connections stored in the assay data of the
cnSet2 object, respectively. Subsetting the ff object pulls the data from disk into memory. As subsetting
operations pull the data from disk to memory, these operations must be performed with care. In particular,
subsetting the cnSet2 will subset each assay data element and this can be slow. The preferred approach
would be to extract the assay data element that is needed, and then subset this function object as illustrated
below for the genotype calls.

> class(calls(cnSet))

2

[1] "matrix"

> dims(cnSet)

alleleA alleleB CA call callProbability CB
Features 1852406 1852406 1852406 1852406 1852406 1852406
Samples 50 50 50 50 50 50

> class(calls(cnSet2))

[1] "ff_matrix" "ff_array" "ff"

> dims(cnSet2)

alleleA alleleB CA call callProbability CB
Features 1852406 1852406 1852406 1852406 1852406 1852406
Samples 180 180 180 180 180 180

> print(object.size(cnSet), units = "Mb")

134.3 Mb

> print(object.size(cnSet2), units = "Mb")

134.3 Mb

> snp.index <- which(isSnp(cnSet))

> if (FALSE) {

replicate(5, system.time(gt1 <- calls(cnSet)[, 1:50])[[1]])

open(calls(cnSet2))

replicate(5, system.time(gt2 <- calls(cnSet2)[, 1:50])[[1]])

}

> gt1 <- calls(cnSet)[snp.index, 1:50]

> gt2 <- calls(cnSet2)[snp.index, 1:50]

> all.equal(gt1, gt2)

[1] "Mean relative difference: 0.5603154"

Note that the genotype calls and call probabilities may differ slightly as the two approaches used a different
set of samples. With ff objects the additional I/O time required for extracting data is substantial and will
increase for larger datasets. Patience is required.

Note that for the Affymetrix 6.0 platform the assay data elements each have a row dimension corre-
sponding to the total number of polymorphic and nonpolymorphic markers interrogated by the Affymetrix
6.0 platform. A consequence of keeping the rows of the assay data elements the same for all of the sta-
tistical summaries is that the matrix used to store genotype calls is larger than necessary. Also, note the
additional overhead of some operations when using ff objects. For instance, the posterior probabilities for
the CRLMM genotype calls are represented as integers. The accessor snpCallProbability can be used to
access these confidence scores. When stored as matrices, converting the integer representation back to the
probability scale is straightforward as shown below. However, for the ff objects we must first bring the data
into memory. To bring all the scores into memory, one could use the function [,] but this could be slow
and require a lot of RAM depending on the size of the dataset. Instead, we suggest pulling only the needed
rows and columns from memory. In the following example, we convert the integer scores to probabilities
for the CEPH samples. As genotype confidence scores are not applicable to the nonpolymorphic markers,
we extract only the polymorphic markers using the isSnp function. We observe a slight difference in the
posterior probabilities. The difference arises because cnSet2 was processed with a larger number of samples
– for some SNPs a larger sample size can improve the genotype calling algorithm as the AA, AB, and BB
clusters are better defined.

3

> integerScoreToProbability <- function(x) 1 - 2^(-x/1000)

> rows <- which(isSnp(cnSet))

> cols <- 1:50

> posterior.prob <- tryCatch(integerScoreToProbability(snpCallProbability),

error = function(e) print("This will not work for an ff object."))

[1] "This will not work for an ff object."

> posterior.prob1 <- integerScoreToProbability(snpCallProbability(cnSet)[rows,

cols])

> invisible(open(snpCallProbability(cnSet2)))

> posterior.prob2 <- integerScoreToProbability(snpCallProbability(cnSet2)[rows,

cols])

> invisible(close(snpCallProbability(cnSet2)))

> all.equal(posterior.prob1, posterior.prob2)

[1] "Mean relative difference: 0.001155494"

Next, we obtain locus-level estimates of copy number by fitting a linear model to each SNP. A variable
named ’batch’ must be indicated in the protocolData of the cnSet object. As the inverse variance of the
within-genotype normalized intensities are used as weights in the linear model (and hence the design matrix
in the regression changes for each SNP), the time is linear with the number of markers on the array. Copy
number estimation at nonpolymorphic markers and polymorphic markers with unobserved genotypes is more
difficult. We refer the interested reader to the technical report [?]. Again, we peform the copy number
estimation using the matrix version and the ff version in parallel and encourage users with large datasets
to explore the latter. As with the preprocessing and genotyping, the following code should be submitted as
part of the batch job as it is too slow for interactive analysis.

> tryCatch(print(paste("Time for matrix version:", time1)),

error = function(e) print("timing for CN estimation not available"))

> tryCatch(print(paste("Time for ff version:", time2)),

error = function(e) print("timing for CN estimation not available"))

> rm(cnSet2)

> gc()

2 Accessors

For the remainder of this vignette, we illustrate accessors and visualizations using the sample object provided
in the crlmm package.

> data(sample.CNSetLM)

> x <- sample.CNSetLM

2.1 Quantile-normalized intensities

Accessors for the quantile normalized intensities for the A allele at polymorphic loci:

> snp.index <- which(isSnp(x))

> np.index <- which(!isSnp(x))

> a <- (A(x))[snp.index,]

> dim(a)

[1] 1139 180

The extra set of parentheses surrounding A(cnSet2) above is added to emphasize the appropriate order
of operations. Subsetting the entire x object in the following code should be avoided for large datasets.

4

> a <- A(x[snp.index,])

The quantile-normalized intensities for nonpolymorphic loci are obtained by:

> npIntensities <- (A(x))[np.index,]

Quantile normalized intensities for the B allele at polymorphic loci:

> b.snps <- (B(x))[snp.index,]

Note that NAs are recorded in the ’B’ assay data element for nonpolymorphic loci:

> all(is.na((B(x))[np.index,]))

[1] TRUE

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3137861 167.6 4679654 250.0 4122692 220.2
Vcells 456898770 3485.9 861801150 6575.1 861140416 6570.0

SnpSet: Genotype calls and confidence scores Genotype calls:

> genotypes <- (snpCall(x))[snp.index,]

Confidence scores of the genotype calls:

> genotypeConf <- integerScoreToProbability(snpCallProbability(x)[snp.index[1:10],

])

CopyNumberSet: allele-specific copy number Allele-specific copy number at polymorphic loci:

> ca <- CA(x[snp.index,])/100

> cb <- CB(x[snp.index,])/100

> ct <- ca + cb

Total copy number at nonpolymorphic loci:

> cn.nonpolymorphic <- CA(x[np.index,])/100

Total copy number at both polymorphic and nonpolymorphic loci:

> cn <- crlmm:::totalCopyNumber(x, i = c(snp.index, np.index))

> apply(cn, 2, median, na.rm = TRUE)

[1] 1.990 1.990 2.110 2.020 1.950 2.050 2.020 2.040 1.990 2.050
[11] 1.960 1.970 1.980 2.060 2.060 2.070 2.010 2.040 2.070 2.070
[21] 2.080 2.020 1.990 2.060 1.970 2.050 2.050 2.140 2.010 1.980
[31] 2.020 2.070 2.010 2.070 2.010 2.030 1.990 2.080 1.950 2.030
[41] 1.990 1.990 1.990 2.020 1.990 2.110 1.970 2.030 1.980 2.020
[51] 1.970 2.020 1.990 2.070 2.080 2.040 2.000 2.040 1.970 2.010
[61] 1.990 2.000 2.000 2.060 2.060 1.980 2.000 2.080 1.970 2.020
[71] 1.970 2.030 2.030 2.060 2.030 2.040 2.020 2.000 2.000 2.000
[81] 1.970 2.000 2.060 2.020 2.020 2.050 2.000 2.000 2.040 2.000
[91] 2.050 1.970 1.990 2.040 2.130 1.970 2.040 2.090 2.000 2.020
[101] 2.060 2.040 2.060 2.180 1.990 2.000 2.020 2.030 2.020 2.040
[111] 2.030 1.970 2.070 2.080 1.970 2.010 2.050 2.000 2.020 2.060
[121] 1.960 2.030 2.030 2.020 1.990 2.030 2.030 1.980 1.950 2.010
[131] 1.980 2.070 2.020 2.000 2.070 2.020 2.010 2.010 2.020 1.990
[141] 2.020 1.960 2.020 2.020 2.030 2.040 2.020 2.010 2.080 2.040
[151] 1.990 2.040 2.050 2.080 2.050 2.040 2.080 2.040 2.020 2.020
[161] 1.990 1.990 2.040 2.020 2.010 2.030 2.030 2.020 2.030 2.010
[171] 1.990 2.005 2.060 2.060 1.980 1.970 2.060 1.930 2.045 1.970

(Note: the accessor totalCopyNumber method is sourced from a few helper functions. Documentation
will be available in the devel version of the oligoClasses package.)

5

SNR

F
re

qu
en

cy

6.0 6.5 7.0 7.5 8.0 8.5 9.0

0
5

10
15

Figure 1: Signal to noise ratios for the HapMap samples.

2.2 Other accessors

Information on physical position and chromosome can be accessed as follows:

> xx <- position(x)

> yy <- chromosome(x)

Parameters from the linear model used to estimate copy number are stored in the slot lM.

> names(lM(x))

[1] "tau2A" "tau2B" "sig2A" "sig2B" "nuA"
[6] "nuB" "phiA" "phiB" "phiPrimeA" "phiPrimeB"
[11] "corrAB" "corrBB" "corrAA"

> dim(lM(x)[[1]])

[1] 2119 2

3 Suggested visualizations

SNR. A histogram of the signal to noise ratio for the HapMap samples:

> hist(x$SNR, xlab = "SNR", main = "", breaks = 25)

6

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

● ●

●●

●●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●
●

●

● ●
●

●

●
●

●

● ●
●

●

●

●

●

●

●
●

● ●
●

●
●

●

●
●

●●
●

●● ● ●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
● ●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●
●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●
●

●

● ●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

● ●● ●

●

●

●

●●
●

●

●

●

● ●●

●

●

●

●

●
●●

●

●

● ●
●● ●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

● ●

●
●

●

●●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

● ●●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●●

●
●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●
●

● ●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●
● ●

●

● ●

●

●

● ●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

● ●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●
●

●
●

●
●

●

●

●●
●

●
●

●

●●

●

●
●

●
●

●

●

●

●

●● ●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
● ●

●

●

●

●
● ●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●●

●
●

● ●

●

●

●
●

●

●

●

●●

●

●
●●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●●

●

●

●

●

●●

●

●

●●

●
●

●
●

●
●

● ●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

● ●

●
●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●●
● ●

●

● ●● ●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●
● ●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

● ●

●●

●

●●
●

●

●

●●

●

●
●

●

●
●

●
●

●

●●
●

●

●

●

●

●

●●

●

●●●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●
●
●●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●
●●

●
●

●

●

●●

●

●

●

●
●

●●●
●

●

●

●

●
●●

●

●
●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●
●●

●
●
●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●●

●
●

●

●
●●

●

●

●
●

●

●

●●
●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●● ●

●

●

● ●

●

●

●●
●

●

●

●●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●
●
●

●

●
●

●
●

●
●
●
●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●●●

●

●
●

●

●

●●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●●
●●

●

●
●●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●
●●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●
●
●

●

●

●
●

●

●

●
●

0

1

2

3

4

5

NA06985_GW6_C.CEL , CHR: 1

physical position (Mb)

co
py

 n
um

be
r

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

● ●

●●

●

●●
●

●

●

●●

●

●
●

●

●
●

●
●

●

●●
●

●

●

●

●

●

●●

●

●●●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●
●
●●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●
●●

●
●

●

●

●●

●

●

●

●
●

●●●
●

●

●

●

●
●●

●

●
●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●
●●

●
●
●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●●

●
●

●

●
●●

●

●

●
●

●

●

●●
●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●● ●

●

●

● ●

●

●

●●
●

●

●

●●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●
●
●

●

●
●

●
●

●
●
●
●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●●●

●

●
●

●

●

●●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●●
●●

●

●
●●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●
●●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●
●
●

●

●

●
●

●

●

●
●

0 1 2 3 4 5

Figure 2: Total copy number (y-axis) for chromosome 1 plotted against physical position (x-axis) for one
sample. Estimates at nonpolymorphic loci are plotted in light blue.

One sample at a time: locus-level estimates Figure 2 plots physical position (horizontal axis) versus
copy number (vertical axis) for the first sample. There is less information to estimate copy number at
nonpolymorphic loci; improvements to the univariate prediction regions at nonpolymorphic loci are a future
area of research.

> cn <- crlmm:::totalCopyNumber(x, j = 1)

> par(las = 1, mar = c(4, 5, 4, 2))

> plot(position(x), cn, pch = 21, cex = 0.4, xaxt = "n",

col = "grey20", ylim = c(0, 5), ylab = "copy number",

xlab = "physical position (Mb)", main = paste(sampleNames(x)[1],

", CHR:", unique(chromosome(x))))

> points(position(x)[!isSnp(x)], cn[!isSnp(x)], pch = 21,

cex = 0.4, col = "lightblue", bg = "lightblue")

> axis(1, at = pretty(range(position(x))), labels = pretty(range(position(x)))/1e+06)

> abline(h = 2)

7

One SNP at a time Scatterplots of the A and B allele intensities (log-scale) can be useful for assessing
the biallelic genotype calls. This section of the vignette is currently under development.

4 Session information

> toLatex(sessionInfo())

� R version 2.11.1 RC (2010-05-27 r52117), x86_64-unknown-linux-gnu

� Locale: LC_CTYPE=en_US.iso885915, LC_NUMERIC=C, LC_TIME=en_US.iso885915,
LC_COLLATE=en_US.iso885915, LC_MONETARY=C, LC_MESSAGES=en_US.iso885915,
LC_PAPER=en_US.iso885915, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.iso885915, LC_IDENTIFICATION=C

� Base packages: base, datasets, graphics, grDevices, methods, stats, tools, utils

� Other packages: Biobase 2.8.0, bit 1.1-4, crlmm 1.6.5, ff 2.1-4, oligoClasses 1.10.0

� Loaded via a namespace (and not attached): affyio 1.16.0, annotate 1.26.0, AnnotationDbi 1.10.1,
Biostrings 2.16.5, DBI 0.2-5, ellipse 0.3-5, genefilter 1.30.0, IRanges 1.6.6, mvtnorm 0.9-9,
preprocessCore 1.10.0, RSQLite 0.9-1, splines 2.11.1, survival 2.35-8, xtable 1.5-6

References

References

[1] Robert B Scharpf, Ingo Ruczinski, Benilton Carvalho, Betty Doan, Aravinda Chakravarti, and Rafael
Irizarry. A multilevel model to address batch effects in copy number estimation using snp arrays. Bio-
statistics, July 2010.

8

