
edgeR
October 5, 2010

DGEList-class Digital Gene Expression data - class

Description

A simple list-based class for storing read counts from digital gene expression technologies and other
important information for the analysis of DGE data.

Slots/List Components

Objects of this class contain (at least) the following list components:

counts: numeric matrix containing the read counts.

samples: data.frame containing the library size and group labels.

Methods

This class inherits directly from class list so any operation appropriate for lists will work on
objects of this class. DGEList objects also have a show method.

Author(s)

Mark Robinson

See Also

DGEList

1

2 DGEList

DGEList DGEList Constructor

Description

A function to create a DGEList object from a table of counts (rows=features, columns=samples),
group indicator for each column, library size (optional) and a table of annotation (optional)

Usage

DGEList(counts = matrix(0, 0, 0), lib.size = NULL, group = factor(), genes = NULL, remove.zeros = FALSE)

Arguments

counts numeric matrix containing the read counts.

lib.size numeric vector containing the total to normalize against for each sample (op-
tional)

group vector giving the experimental group/condition for each sample/library

genes data frame containing annotation information for the tags/transcripts/genes for
which we have count data (optional).

remove.zeros whether to remove rows that have 0 total count; default is FALSE so as to retain
all information in the dataset

Details

If no lib.size argument is passed to the constructor, the column totals are used.

The optional genes argument is meant to be an annotation data.frame, with rows matching those
in the counts argument.

Value

a DGEList object

Author(s)

Mark Robinson

See Also

DGEList

Examples

y <- matrix(rnbinom(10000,mu=5,size=2),ncol=4)
d <- DGEList(counts=y, group=rep(1:2,each=2), lib.size=colSums(y))

EBList-class 3

EBList-class Differential Expression of Digital Gene Expression data - class

Description

A simple list-based class for storing results of the approximate empirical Bayes rule parameters

Slots/List Components

Objects of this class contain the following list components: sigma2.0.est: numeric scale
sigma_0^2 estimate. alpha: numeric scalar alpha estimate. scores: numeric scalar (likeli-
hood) score. infos: numeric vector containing the (likelihood) information for each tag. quantileAdjusted:
list from output of quantileAdjust).

Methods

This class inherits directly from class list so any operation appropriate for lists will work on
objects of this class. EBList objects also have a show method.

Author(s)

Mark Robinson, Davis McCarthy

Tu102 Raw Data for Several SAGE Libraries from the Zhang 1997 Science
Paper.

Description

SAGE dataset for 2 tumour samples, 2 normal samples.

Usage

data(Tu102)

Format

Data frames with 22713, 18794, 16270 and 17703 observations (for Tu102, Tu98, NC2, NC1,
respectively) on the following 2 variables.

Tag_Sequence a character vector

Count a numeric vector

Source

Zhang et al. (1997) Gene Expression Profiles in Normal and Cancer Cells. Science, 276, 1268-72.

4 alpha.approxeb

alpha.approxeb Estimate the Prior Weight, Alpha

Description

Estimate the prior weight, using an approximate empirical Bayes rule

Usage

alpha.approxeb(object, verbose=TRUE)

Arguments

object DGEList object containing the raw counts with elements counts (table of
counts), group (vector indicating group) and lib.size (vector of library
sizes)

verbose whether to write comments, default true

Details

An older function, no longer called by the functions recommended to carry out analysis of DGE
data, namely estimateCommonDisp, estimateTagwiseDisp and exactTest. Estima-
tion of the prior weight should now be done using estimateSmoothing, if at all.

Value

EBList object with elements sigma2.0.est (numeric scale sigma_0^2 estimate), alpha
(estimate for the prior weight, alpha), scores (likelihood scores), infos (Fisher expected infor-
mation), quantileAdjusted (list from output of quantileAdjust)

Author(s)

Mark Robinson, Davis McCarthy

Examples

y<-matrix(rnbinom(20,size=1,mu=10),nrow=5)
d<-DGEList(counts=y,group=rep(1:2,each=2),lib.size=rep(c(1000:1001),2))
alpha<-alpha.approxeb(d)

approx.expected.info 5

approx.expected.info
Approximate Expected Information (Fisher Information)

Description

Using a linear fit (for simplicity), the expected information from the conditional log likelihood of
the dispersion parameter of the negative binomial is calculated over all genes.

Usage

approx.expected.info(object, d, pseudo, robust = FALSE)

Arguments

object DGEList object containing the raw counts with (at least) elements counts
(table of counts), group (vector indicating group) and lib.size (vector of
library sizes)

d numeric vector giving the delta parameter for negative binomial - phi/(phi+1)
; either of length 1 or of length equal to the number of tags/transcripts (i.e. num-
ber of rows of object$counts.

pseudo numeric matrix of pseudocounts from output of estimateDispIter

robust logical on whether to use a robust fit, default FALSE

Value

numeric vector of approximate values of the Fisher information for each tag/transcript (with length
same as the number of rows of the original counts)

Author(s)

Mark Robinson

See Also

This function is used in the algorithm for estimating an appropriate amount of smoothing for the
dipsersion estimates carried out by estimateSmoothing.

Examples

set.seed(0)
y<-matrix(rnbinom(40,size=1,mu=10),ncol=4)
d<-DGEList(counts=y,group=rep(1:2,each=2),lib.size=rep(c(1000:1001),2))
qA<-estimateDispIter(d,prior.n=10)
exp.inf<-approx.expected.info(d,1/(1 + qA$dispersion[1]),qA$pseudo)

6 calcNormFactors

calcNormFactors Calculates Normalization Factors for a Matrix of Count Data

Description

Using a reference sample, calculate the normalization factors, over and above accounting for library
size.

Usage

calcNormFactors(dataMatrix, refColumn = 1, logratioTrim = .3, sumTrim = 0.05, doWeighting=TRUE, Acutoff=-1e10)

Arguments

dataMatrix matrix of raw (read) counts

refColumn column to use as reference

logratioTrim amount of trim to use on log-ratios ("M" values)

sumTrim amount of trim to use on the combined absolute levels ("A" values)

doWeighting logical, whether to compute (asymptotic binomial precision) weights

Acutoff cutoff on "A" values to use before trimming

Details

The weighted trimmed mean of M values (to the reference) is used as the normalization factor,
where the weights are from the delta method on Binomial data (more details to come).

The normalization factor for the reference sample will always be 1.

Value

vector with length ncol(dataMatrix) giving the relative normalization factors

Author(s)

Mark Robinson

Examples

d <- matrix(rpois(1000, lambda=5), nrow=200)
f <- calcNormFactors(d)

commonCondLogLikDerDelta 7

commonCondLogLikDerDelta
Conditional Log-Likelihoods in Terms of Delta

Description

Common conditional log-likelihood parameterized in terms of delta (phi / (phi+1))

Usage

commonCondLogLikDerDelta(y, delta, der = 0, doSum = FALSE)

Arguments

y list with elements comprising the matrices of count data (or pseudocounts) for
the different groups

delta delta (phi / (phi+1)) parameter of negative binomial

der derivative, either 0 (the function), 1 (first derivative) or 2 (second derivative)

doSum logical, whether to sum over samples or not (default FALSE

Details

The common conditional log-likelihood is constructed by summing over all of the individual tag
conditional log-likelihoods. The common conditional log-likelihood is taken as a function of the
dispersion parameter (phi), and here parameterized in terms of delta (phi / (phi+1)). The
value of delta that maximizes the common conditional log-likelihood is converted back to the phi
scale, and this value is the estimate of the common dispersion parameter used by all tags.

Value

numeric scalar of function/derivative evaluated at given delta

Author(s)

Davis McCarthy

See Also

estimateCommonDisp is the user-level function for estimating the common dispersion param-
eter.

Examples

counts<-matrix(rnbinom(20,size=1,mu=10),nrow=5)
d<-DGEList(counts=counts,group=rep(1:2,each=2),lib.size=rep(c(1000:1001),2))
y<-splitIntoGroups(d)
ll1<-commonCondLogLikDerDelta(y,delta=0.5,der=0,doSum=FALSE)
ll2<-commonCondLogLikDerDelta(y,delta=0.5,der=1)

8 condLogLikDerDelta

condLogLikDerDelta Conditional Log-Likelihood in Terms of Delta

Description

Conditional negative binomial log-likelihood parameterized in terms of delta (phi / (phi+1))

Usage

condLogLikDerDelta(y, delta, grid = TRUE, der = 1, doSum = TRUE)

Arguments

y matrix with count data (or pseudocounts)

delta delta (phi / (phi+1))parameter of negative binomial

grid logical, whether to calculate a grid over the values of delta

der derivative, either 0 (the function), 1 (first derivative) or 2 (second derivative)

doSum logical, whether to sum over samples or not (default TRUE

Details

This function computes the individual tag conditional log-likelihood for each tag. It is neces-
sary for computing both the common conditional log-likelihood and the weighted conditional log-
likelihood, which are used to find the common and tagwise (moderated) estimates of the dipsersion
parameter. The delta scale for convenience (delta is bounded between 0 and 1).

Value

vector or matrix of function/derivative evaluations

Author(s)

Mark Robinson, Davis McCarthy

See Also

commonCondLogLikDerDelta and weightedCondLogLikDerDelta rely on condLogLikDerDelta,
and at a user level, estimateCommonDisp and estimateTagwiseDisp are used to estimate
the common and (moderated) tagwise dispersion estimates, respectively. condLogLikDerDelta
calls condLogLikDerSize, the function that does the mathematical calculations.

Examples

y1<-matrix(rnbinom(10,size=1,mu=10),nrow=5)
v1<-seq(.1,.9,length=9)
ll1<-condLogLikDerDelta(y1,v1,grid=TRUE,der=0,doSum=FALSE)
ll2<-condLogLikDerDelta(y1,delta=.5,grid=FALSE,der=0)

condLogLikDerSize 9

condLogLikDerSize Log-Likelihood of the Common Dispersion for a Single Equalized
Group

Description

Derivatives of the conditional negative-binomial log-likelihood (for each tag/transcript) with respect
to the common dispersion parameter, for a single group of replicate libraries of the same size.
Parameterized in terms of size or precision (1/phi).

Usage

condLogLikDerSize(y, r, der=1)

Arguments

y matrix of (pseudo) count data

r size parameter of negative binomial distribution

der order of derivative required, either 0 (the function), 1 (first derivative) or 2 (sec-
ond derivative)

Details

The library sizes must be equalized before running this function. This function carries out the
actual mathematical computations for the conditional log-likelihood and its derivatives, calculating
the conditional log-likelihood for each tag/transcript.

Value

vector of function/derivative evaluations, one for each transcript

Author(s)

Mark Robinson, Davis McCarthy

Examples

y <- matrix(rnbinom(10,size=1,mu=10),nrow=5)
condLogLikDerSize(y,r=1,der=1)

10 de4DGE

de4DGE Compute Moderated Differential Expression Scores for Digital Gene
Expression (DGE) Data

Description

Runs weighted likelihood calculation for moderated estimates of dispersion, and tests for differ-
ences in ’tag’ abundance between groups

Usage

de4DGE(object,prior.n=10, disp.init=NULL, doPoisson=FALSE, useCommonDisp=TRUE, verbose=TRUE)

Arguments

object DGEList object containing (at least) elements counts (matrix: rows-tags/genes,
columns-libraries), lib.size, group indicating class

prior.n numeric scalar for the smoothing parameter that indicates the weight to put on
the common likelihood compared to the individual tag’s likelihood; default 10
means that the common likelihood is given 10 times the weight of the individual
tag/gene’s likelihood in the estimation of the tag/genewise dispersion

disp.init initialized value(s) of the dispersion parameter, can be a common value or tag/genewise
values; if NULL, then the common value on Poisson-adjusted counts is used

doPoisson logical, if TRUE then use a Poisson model rather than Negative Binomial to
analyse the data; default FALSE

useCommonDisp
logical, if TRUE then the common dispersion estimate is used for all tags/genes,
otherwise tag/genewise dispersion parameters are estimated; default TRUE

verbose logical, whether to write comments, default TRUE

Details

An older function, no longer included in the recommended analysis pathway for DGE data. Instead,
see estimateCommonDisp, estimateTagwiseDisp and exactTest.

Value

deDGEList object with elements

conc list containing concentration estimates

dispersion estimates of dispersion parameter)

pseudo numeric matrix of pseudocounts generated by quantileAdjust

group vector or factor indicating the experimental class of each sample

M numeric scalar giving the library size to which counts are adjusted; the geometric
mean of the original library sizes

Author(s)

Mark Robinson, Davis McCarthy

de4DGEList-class 11

References

Robinson MD, Smyth GK. ’Small-sample estimation of negative binomial dispersion, with appli-
cations to SAGE data.’ Biostatistics. 2008 Apr;9(2):321-32.

Robinson MD, Smyth GK. ’Moderated statistical tests for assessing differences in tag abundance.’
Bioinformatics. 2007 Nov 1;23(21):2881-7.

Examples

generate raw counts from NB, create list object
y<-matrix(rnbinom(20,size=1,mu=10),nrow=5)
d<-DGEList(counts=y,group=rep(1:2,each=2),lib.size=rep(c(1000:1001),2))

estimate common dispersion, find smoothing parameter and call main procedure to find differences in expression between groups
d<-estimateCommonDisp(d)
prior.n<-estimateSmoothing(d)
ms<-de4DGE(d,prior.n=prior.n,disp.init=d$common.dispersion)

de4DGEList-class differential expression for Digital Gene Expression data - class

Description

A simple list-based class for storing results of differential expression analysis for DGE data

Slots/List Components

Objects of this class contain the following list components: ps: list containing estimates of p
parameter, the expression proportions for the tags/genes. dispersion: numeric vector of dis-
persion parameter (phi, the negative binomial dispersion). pseudo: numeric matrix with the
pseudo-counts. group: vector giving the experimental group/condition. M: numeric scalar with
the library size that pseudo counts are mapped to.

Methods

This class inherits directly from class list so any operation appropriate for lists will work on
objects of this class. deDGEList objects also have a show method.

Author(s)

Mark Robinson, Davis McCarthy

12 deDGE

deDGE Compute Moderated Differential Expression Scores for Digital Gene
Expression (DGE) Data

Description

Runs weighted likelihood calculation for moderated estimates of dispersion, and tests for differ-
ences in ’tag’ abundance between groups

Usage

deDGE(object,alpha=500,doPoisson=FALSE,verbose=TRUE)

Arguments

object DGEList containing elements counts (matrix: rows-tags, columns-libraries),
lib.size, group indicating class

alpha weight to put on the individual tag’s likelihood

doPoisson logical, whether to fit Poisson model instead of Negative Binomial, default
FALSE

verbose logical, whether to write comments, default TRUE

Details

An older function, no longer included in the recommended analysis pathway for DGE data. Instead,
see estimateCommonDisp, estimateTagwiseDisp and exactTest.

Value

deDGEList with elements ps (list containing proportion estimates), r (estimates of 1/overdis-
persion), pseudo (pseudocounts generated by quantileAdjust), group (indicating class of
each sample), M (geometric mean of library sizes)

Author(s)

Mark Robinson, Davis McCarthy

References

Robinson MD, Smyth GK. ’Small-sample estimation of negative binomial dispersion, with appli-
cations to SAGE data.’ Biostatistics. 2008 Apr;9(2):321-32.

Robinson MD, Smyth GK. ’Moderated statistical tests for assessing differences in tag abundance.’
Bioinformatics. 2007 Nov 1;23(21):2881-7.

deDGEList-class 13

Examples

generate raw counts from NB, create list object
y<-matrix(rnbinom(20,size=1,mu=10),nrow=5)
d<-DGEList(counts=y,group=rep(1:2,each=2),lib.size=rep(c(1000:1001),2))

find alpha and call main procedure to find differences
alpha<-alpha.approxeb(d)
ms<-deDGE(d,alpha=alpha$alpha)

deDGEList-class differential expression of Digital Gene Expression data - class

Description

A simple list-based class for storing results of differential expression analysis for DGE data

Slots/List Components

Objects of this class contain the following list components:

table: data frame containing the log-concentration (i.e. expression level), the log-fold change in
expression between the two groups/conditions and the exact p-value for differential expression, for
each tag.

comparison: vector giving the two experimental groups/conditions being compared.

genes: a data frame containing information about each transcript (can be NULL).

Methods

This class inherits directly from class list so any operation appropriate for lists will work on
objects of this class. deDGEList objects also have a show method.

Author(s)

Mark Robinson, Davis McCarthy

edgeR-package Empirical analysis of digital gene expression data in R

Description

edgeR is a library for the analysis of digital gene expression data arising from RNA sequencing
technologies such as SAGE, CAGE, Tag-seq or RNA-seq, with emphasis on testing for differential
expression.

Particular strengths of the package include the ability to estimate biological variation between repli-
cate libraries, and to conduct exact tests of significance which are suitable for small counts. The
package is able to make use of even minimal numbers of replicates.

A User’s Guide is available as well as the usual help page documentation for each of the individual
functions.

The library implements statistical methodology developed by Robinson and Smyth (2007, 2008).

14 equalizeLibSizes

Author(s)

Mark Robinson <mrobinson@wehi.edu.au>, Davis McCarthy <dmccarthy@wehi.edu.au>, Gordon
Smyth

References

Robinson MD and Smyth GK (2007). Moderated statistical tests for assessing differences in tag
abundance. Bioinformatics 23, 2881-2887

Robinson MD and Smyth GK (2008). Small-sample estimation of negative binomial dispersion,
with applications to SAGE data. Biostatistics, 9, 321-332

Robinson MD, McCarthy DJ and Smyth GK (2010). edgeR: a Bioconductor package for differential
expression analysis of digital gene expression data. Bioinformatics 26, 139-140

equalizeLibSizes Quantile Adjustment to Equalize Library Sizes for a Fixed Value of the
Dispersion Parameter

Description

A function that uses a NB quantile-to-quantile method to adjust the libraries of counts so that library
sizes are equal for a fixed value of the dispersion parameter.

Usage

equalizeLibSizes(object, disp=0, N=exp(mean(log(object$samples$lib.size))),null.hypothesis=FALSE)

Arguments

object DGEList object containing the raw counts with elements counts (table of
counts), group (vector indicating group) and lib.size (vector of library
sizes)

disp numeric scalar or vector of dispersion parameters; if a scalar, then a com-
mon dispersion parameter is used for all tags

N numeric scalar, the library size to normalize to; default is the geometric mean of
the original library sizes

null.hypothesis
logical, whether to calculate the input.mean and output.mean under the
null hypothesis; default is FALSE

Details

The function equalizeLibSizes provides the necessary framework and calculations to call
q2qnbinom, for given value(s) of the dispersion parameter. The function q2qnbinom actu-
ally generates the pseudocounts, the counts that have been adjusted for normalized library sizes.
These pseudocounts are required to estimate the dispersion parameter, as the methods used by
estimateCommonDisp and estimateTagwiseDisp rely on the assumption of equal library
sizes. This function calls estimatePs to estimate the expression proportion for each tag, which
is needed to calculate the input.mean and output.mean for each tag, which are passed to
q2qnbinom along with the unadjusted counts and the fixed value(s) for the dispersion parameter.

estimateCommonDisp 15

Value

A list with elements

pseudo numeric matrix of pseudocounts, i.e. adjusted counts for equalized libraries

conc list with elements conc.common (vector giving overall proportion/concentration
for each tag), and conc.group (matrix with columns giving estimates of
tag/gene concentrations (proportion of total RNA for that group that that par-
ticular tag/gene contributes) for different groups); output from estimatePs

N normalized library size

Author(s)

Mark Robinson, Davis McCarthy

Examples

y<-matrix(rnbinom(10000,size=2,mu=10),ncol=4)
d<-DGEList(counts=y,group=rep(1:2,each=2),lib.size=rep(c(1000,1010),2))
ps<-estimatePs(d,r=2)
q2q.out<-equalizeLibSizes(d,disp=0.5,null.hypothesis=FALSE)

estimateCommonDisp Estimates the Negative Binomial Common Dispersion by Maximizing
the Negative Binomial Conditional Common Likelihood

Description

Maximizes the negative binomial conditional common likelihood to give the estimate of the com-
mon dispersion across all tags for the unadjusted counts provided.

Usage

estimateCommonDisp(object, tol=1e-06, rowsum.filter=5)

Arguments

object DGEList object with (at least) elements counts (table of unadjusted counts),
and samples (vector indicating group) and lib.size (vector of library sizes)

tol numeric scalar providing the tolerance to be passed to optimize; default value
is 1e-06

rowsum.filter
numeric scalar giving a value for the filtering out of low abundance tags in the
estimation of the common dispersion. Only tags with total sum of counts above
this value are used in the estimation of the common dispersion. Low abun-
dance tags can adversely affect the estimation of the common dispersion, so
this argument allows the user to select an appropriate filter threshold for the tag
abundance.

16 estimateCommonDisp

Details

The method of conditional maximum likelihood assumes that library sizes are equal, which is not
true in general, so pseudocounts (counts adjusted so that the library sizes are equal) need to be
calculated. The function equalizeLibSizes is called to adjust the counts using a quantile-to-
quantile method, but this requires a fixed value for the common dispersion parameter. To obtain
a good estimate for the common dispersion, pseudocounts are calculated under the Poisson model
(dispersion is zero) and these pseudocounts are used to give an estimate of the common dispersion.
This estimate of the common dispersion is then used to recalculate the pseudocounts, which are
used to provide a final estimate of the common dispersion.

Value

estimateCommonDisp produces an object of class DGEList with the following components.

common.dispersion
estimate of the common dispersion; the value for phi, the dispersion parameter
in the NB model, that maximizes the negative binomial common likelihood on
the phi scale

counts table of unadjusted counts

group vector indicating the group to which each library belongs

lib.size vector containing the unadjusted size of each library

pseudo.alt table of adjusted counts; quantile-to-quantile method (see q2qnbinom) used to
adjust the raw counts so that library sizes are equal; adjustment here done under
the alternative hypothesis that there is a true difference between groups

conc list containing the estimates of the concentration of each tag in the underly-
ing sample; conc$p.common gives estimates under the null hypothesis of no
difference between groups; conc$p.group gives the estimate of the concen-
tration for each tag within each group; concentration is a measure of abundance
and thus expression level for the tags

common.lib.size
the common library size to which the count libraries have been adjusted

Author(s)

Mark Robinson, Davis McCarthy

References

Robinson MD and Smyth GK (2008). Small-sample estimation of negative binomial dispersion,
with applications to SAGE data. Biostatistics, 9, 321-332

See Also

estimateTagwiseDisp can be used to estimate a value for the dispersion parameter for each
tag/transcript. The estimates are stabilized by squeezing the estimates towards the common value
calculated by estimateCommonDisp.

Examples

y<-matrix(rnbinom(1000,mu=10,size=2),ncol=4)
d<-DGEList(counts=y,group=c(1,1,2,2),lib.size=c(1000:1003))
cmdisp<-estimateCommonDisp(d)

estimateDispIter 17

estimateDispIter Normalizes a Dataset Using Quantile Adjustment and Iteratively Esti-
mates the Dispersion Parameter

Description

The function equalizes the library sizes of a dataset (this could be understood as normalization),
creating pseudocounts that represents quantile-adjusted counts as if all samples had the same library
size, while using an iterative procedure to estimate the dispersion parameter.

Usage

estimateDispIter(object,N=exp(mean(log(object$samples$lib.size))),prior.n=10,common.disp=FALSE, null.hypothesis=FALSE,n.iter=5,disp.init=NULL,tol=1e-6,verbose=TRUE)

Arguments

object object of class DGEList containing (at least) the elements counts (table of
raw counts), group (vector indicating group) and lib.size (vector of library
sizes)

N numeric scalar giving the library size to which to normalize; default is the geo-
metric mean of the original library sizes

prior.n numeric scalar; the smoothing parameter that indicates the weight to give to the
common likelihood compared to the individual tag’s likelihood; default value
of 10 means that the common likelihood is given 10 times the weight of the
individual tag/gene’s likelihood in the estimation of the tag/genewise dispersion

common.disp logical, if TRUE then the common dispersion estimate is used for all tags/genes,
otherwise tag/genewise dispersion parameters are estimated; default FALSE

null.hypothesis
logical, whether to calculate the means and percentile under the null hypothesis;
default is FALSE

n.iter number of iterations in estimating the dispersion parameter
disp.init numeric vector or scalar giving initialized value(s) of the dispersion parameter,

can be a common value or tag/genewise values; if NULL, then the common value
on Poisson-adjusted counts is used

tol numeric scalar, tolerance in estimating the dispersion parameter
verbose logical, whether to write comments, default TRUE

Value

list containing the following elements.

dispersion numeric vector giving the estimate of the dispersion parameter for each tag/gene
pseudo numeric matrix of quantile-adjusted pseudocounts
conc list containing the estimates of the concentration of each tag in the underly-

ing sample; conc$p.common gives estimates under the null hypothesis of no
difference between groups; conc$p.group gives the estimate of the concen-
tration for each tag within each group; concentration is a measure of abundance
and thus expression level for the tags

18 estimatePs

N numeric scalar, the common library size to which the counts have been adjusted

mu numeric matrix of means that the quantile adjustment is based on

Author(s)

Mark Robinson, Davis McCarthy

See Also

The use of estimateCommonDisp and estimateTagwiseDisp are preferred for the calcu-
lation of the common dispersion and tagwise dispersion estimates, respectively.

Examples

set.seed(0)
y<-matrix(rnbinom(40,size=1,mu=10),ncol=4)
d<-DGEList(counts=y,group=rep(1:2,each=2),lib.size=rep(c(1000:1001),2))
disp.out<-estimateDispIter(d,prior.n=10)

estimatePs Estimate Expression Levels

Description

Estimate expression levels (i.e. proportion of all sample mRNA corresponding to each tag; or,
concentration of mRNA for each tag in sample mRNA) using maximum likelihood with disper-
sion parameter fixed based on the negative binomial model for each tag/gene and sample group.
Expression proportions are used to determine overall abundance of each tag/gene and differential
expression of tags/genes between groups.

Usage

estimatePs(object, r, tol = 1e-10, maxit = 30)

Arguments

object list containing (at least) the elements counts (table of counts), group (vector
or factor indicating group) and lib.size (numeric vector of library sizes)

r numeric vector providing the size parameter of negative binomial model (size
= 1/phi where phi is the dispersion parameter in the NB model)

tol numeric scalar, tolerance between iterations

maxit positive integer scalar, maximum number of iterations

Details

The Newton-Raphson method is used to calculate iteratively the maximum likelihood estimate of
the expression level (i.e. concentration of mRNA for a particular tag in the sample mRNA) for each
tag/gene.

estimateSmoothing 19

Value

A list with elements:

conc.common numeric vector giving overall proportion/concentration for each tag
conc.group numeric matrix with columns giving estimates of tag/gene concentrations (pro-

portion of total RNA for that group that that particular tag/gene contributes) for
different groups)

Author(s)

Mark Robinson, Davis McCarthy

Examples

set.seed(0)
y<-matrix(rnbinom(40,size=1,mu=10),ncol=4)
d<-DGEList(counts=y,group=rep(1:2,each=2),lib.size=rep(c(1000:1001),2))
conc<-estimatePs(d,r=1)

estimateSmoothing Estimate the Prior Weight

Description

Estimate the prior weight, prior.n, using an approximate empirical Bayes rule given the estimate of
the common dispersion. The prior weight determines how much smoothing takes place to squeeze
tag/genewise estimates of the dispersion closer to the estimate of the common dispersion.

Usage

estimateSmoothing(object,verbose=TRUE)

Arguments

object DGEList object, output of estimateCommonDisp
verbose logical, whether to write comments, default true

Details

We are not recommending this function for routine use at the moment, as it has given unexpected
results on some deep-sequenced data sets. It should be considered experimental. We are instead
recommending that prior.n be chosen by the user. Values in the range 10-50 give good results
in practice.

Value

estimateSmoothing produces an object of class DGEList with the following components.

prior.n scalar; estimate of the prior weight, i.e. the smoothing parameter that indi-
cates the weight to put on the common likelihood compared to the individual
tag’s likelihood; prior.n of 10 means that the common likelihood is given 10
times the weight of the individual tag/gene’s likelihood in the estimation of the
tag/genewise dispersion

20 estimateTagwiseDisp

Author(s)

Mark Robinson, Davis McCarthy

Examples

y<-matrix(rnbinom(20,size=1,mu=10),nrow=5)
d<-DGEList(counts=y,group=rep(1:2,each=2),lib.size=rep(c(1000:1001),2))
d<-estimateCommonDisp(d)
prior.n<-estimateSmoothing(d)

estimateTagwiseDisp
Maximizes the Negative Binomial Weighted Conditional Likelihood

Description

Maximizes the negative binomial weighted likelihood (a weighted version using the common like-
lihood given weight according the the smoothing parameter prior.n and the individual tag/gene
likelihood) for each tag from the pseudocounts provided (i.e. assuming library sizes are equal), to
give an estimate of the dispersion parameter for each tag (i.e. tagwise dispersion estimation).

Usage

estimateTagwiseDisp(object, prior.n=10, tol=1e-06, grid=TRUE, grid.length=200, verbose=TRUE)

Arguments

object a DGEList object containing (at least) the elements counts (table of raw
counts), group (factor indicating group), lib.size (numeric vector of li-
brary sizes) and pseudo,alt (numeric matrix of quantile-adjusted pseudo-
counts calculated under the alternative hypothesis of a true difference between
groups; recommended to use the DGEList object provided as the output of
estimateCommonDisp

prior.n numeric scalar, smoothing parameter that indicates the weight to give to the
common likelihood compared to the individual tag’s likelihood; default 10means
that the common likelihood is given 10 times the weight of the individual tag/gene’s
likelihood in the estimation of the tag/genewise dispersion

tol numeric scalar, if grid=FALSE, tolerance for Newton-Rhapson iterations

grid logical, whether to use a grid search (default = TRUE); if FALSE, uses optimize,
but this is very slow if there is a large number of tags/genes to be analysed (i.e.
more than 5000)

grid.length if grid=TRUE, the number of points at which the likelihood is evaluated for
each tag, so larger values improve the accuracy of the dispersion estimates; de-
fault 1000

verbose logical, whether to write comments, default TRUE

estimateTagwiseDisp 21

Value

estimateSmoothing produces an object of class DGEList with the following components.

common.dispersion
estimate of the common dispersion; the value for phi, the dispersion parameter
in the NB model, that maximizes the negative binomial common likelihood on
the phi scale

prior.n estimate of the prior weight, i.e. the smoothing parameter that indicates the
weight to put on the common likelihood compared to the individual tag’s like-
lihood; prior.n of 10 means that the common likelihood is given 10 times the
weight of the individual tag/gene’s likelihood in the estimation of the tag/genewise
dispersion

tagwise.dispersion
tag- or gene-wise estimates of the dispersion parameter

counts table of unadjusted counts

group vector indicating the group to which each library belongs

lib.size vector containing the unadjusted size of each library

pseudo.altn table of adjusted counts; quantile-to-quantile method (see q2qnbinom) used to
adjust the raw counts so that library sizes are equal; adjustment here done under
the alternative hypothesis that there is a true difference between groups

conc list containing the estimates of the concentration of each tag in the underly-
ing sample; conc$p.common gives estimates under the null hypothesis of no
difference between groups; conc$p.group gives the estimate of the concen-
tration for each tag within each group; concentration is a measure of abundance
and thus expression level for the tags

common.lib.size
the common library size to which the count libraries have been adjusted

Author(s)

Mark Robinson, Davis McCarthy

References

Robinson MD and Smyth GK (2007). Moderated statistical tests for assessing differences in tag
abundance. Bioinformatics 23, 2881-2887

See Also

estimateCommonDisp estimates a common value for the dispersion parameter for all tags/genes
- should generally be run before estimateTagwiseDisp.

Examples

y<-matrix(rnbinom(1000,mu=10,size=2),ncol=4)
d<-DGEList(counts=y,group=c(1,1,2,2),lib.size=c(1000:1003))
d<-estimateCommonDisp(d)
tgwdisp<-estimateTagwiseDisp(d, prior.n=10)

22 exactTest

exactTest An Exact Test for Differences between Two Negative Binomial Groups

Description

Carry out an exact test for differences between two negative binomial groups, based on conditioning
on sums of (quantile-adjusted pseudo-)counts; calculations performed by exactTest.matrix

Usage

exactTest(object,pair=NULL,dispersion=NULL,common.disp=TRUE)
exactTest.matrix(y1,y2,mus,r,allZeros=rep(FALSE,nrow(y1)))

Arguments

object a DGEList object, output of estimateCommonDisp, on which to compute
Fisher-like exact statistics for the pair of groups specified.

pair vector of length two, either numeric or character, providing the pair of groups
to be compared; if a character vector, then should be the names of two groups
(e.g. two levels of object$samples$group); if numeric, then groups to
be compared are chosen by finding the levels of object$samples$group
corresponding to those numeric values and using those levels as the groups to
be compared; if NULL, then first two levels of object$samples$group (a
factor) are used.

dispersion optional vector either of length 1 or the same length as the number of tags. If
not NULL (default), then the supplied value(s) will be used as the dispersion
parameter for calculating p-values for differential expression. If NULL, then
either the common or tagwise dispersion estimates from the DGEList object
will be used, according to the value of common.disp. If dispersion is
zero, then p-values are equivalent to exact Poisson rather than NB p-values.

common.disp logical, if TRUE, then testing carried out using common dispersion for each
tag/gene, if FALSE then tag-wise estimates of the dispersion parameter are used;
default TRUE.

y1 numeric matrix of counts for one of the two given experimental groups to be
tested for differences. Libraries are assumed to be equal in size - e.g. adjusted
pseudocounts from the output of equalizeLibSizes.

y2 numeric matrix of counts for one of the two given experimental groups to be
tested for differences. Libraries are assumed to be equal in size - e.g. adjusted
pseudocounts from the output of equalizeLibSizes. Must have the same
number of rows as y1.

mus vector of count means for each tag/transcript under the null hypothesis (of no
difference between groups)

r vector of negative binomial size parameter values (size = 1/phi where
phi is the dispersion parameter in the NB model); if r is of length 1, then a
common value of the dispersion is used for all transcripts, otherwise, must be a
vector with length equal to the number of rows of y1 and y2. If you want to run
a Poisson test, set r very large (e.g. 1000)

allZeros logical vector indicating for each tag whether it has zero counts in each library
(TRUE) or not (FALSE), with the default being not to remove any tags.

exactTest 23

Details

For each transcript, conditioning on the total sum of counts within each group and the total sum of
counts across all groups allows us to construct an exact test for differences between two group. The
conditional distribution for the sum of counts in a group is known (given the values for the mean
counts, mus, and the dispersion parameter, 1/r), exact p-values can be computed by summing over
all sums of counts that have a probability less than the probability under the null hypothesis of the
observed sum of counts.

exactTest.matrix is the function that actually computes the exact p-values. exactTest is
intended to have a more object-orientated flavor as it produces objects containing all the necessary
components for downstream analysis.

Value

exactTest produces an object of class deDGEList containing the following elements.

table a data frame containing the elements logConc, the log-average concentra-
tion/abundance for each tag in the two groups being compared, logFC, the
log-abundance ratio, i.e. fold change, for each tag in the two groups being com-
pared, p.value, exact p-value for differential expression using the NB model

comparison a vector giving the names of the two groups being compared

genes a data frame containing information about each transcript; taken from object
and can be NULL

exactTest.matrix produces a numeric vector of exact p-values with length equal to the num-
ber of transcripts, taken to be the number of rows of y1.

Author(s)

Mark Robinson, Davis McCarthy

References

Robinson MD and Smyth GK (2008). Small-sample estimation of negative binomial dispersion,
with applications to SAGE data. Biostatistics, 9, 321-332

See Also

Computing p-values for differential expression for each transcript between two (only) digital gene
expression libraries can also be done using the sage.test function in the statmod package.

Examples

generate raw counts from NB, create list object
y<-matrix(rnbinom(80,size=1,mu=10),nrow=20)
d<-DGEList(counts=y,group=rep(1:2,each=2),lib.size=rep(c(1000:1001),2))
rownames(d$counts)<-paste("tagno",1:nrow(d$counts),sep=".")

estimate common dispersion and find differences in expression
d<-estimateCommonDisp(d)
de<-exactTest(d)

example using exactTest.matrix directly
y<-matrix(rnbinom(20,mu=10,size=1.5),nrow=5)
group<-factor(c(1,1,2,2))

24 findMaxD2

y<-splitIntoGroupsPseudo(y,group,pair=c(1,2))
mus<-rep(10,5)
f<-exactTest.matrix(y$y1,y$y2,mus,r=1.5,allZeros=rep(FALSE,length=nrow(y$y1)))

findMaxD2 Maximizes the Negative Binomial Likelihood

Description

Maximizes the negative binomial likelihood (a weighted version using the common likelihood given
weight alpha) for each tag

Usage

findMaxD2(object, alpha = 0.5, grid = TRUE, tol = 1e-05, n.iter = 10, grid.length = 200)

Arguments

object list containing the raw counts with elements counts (table of counts), group
(vector indicating group) and lib.size (vector of library sizes)

alpha weight given to common likelihood, set to 0 for individual estimates or large
(e.g. 100) for common likelihood

grid logical, whether to use a grid search (default = TRUE); if FALSE use Newton-
Rhapson steps

tol if grid=FALSE, tolerance for Newton-Rhapson iterations

n.iter if grid=FALSE, number of Newton-Rhapson iterations

grid.length length of the grid over which to maximize; default 200

Details

An older function, no longer called by the functions recommended to carry out analysis of DGE
data, namely estimateCommonDisp, estimateTagwiseDisp and exactTest.

Value

vector of the values of delta that maximize the negative binomial likelihood for each tag (where
delta = phi / (phi+1) and phi is the overdispersion parameter)

Author(s)

Mark Robinson, Davis McCarthy

Examples

y<-matrix(rnbinom(1000,mu=10,size=2),ncol=4)
d<-DGEList(counts=y,group=c(1,1,2,2),lib.size=c(1000:1003))
cml1<-findMaxD2(d,alpha=10)
cml2<-findMaxD2(d,alpha=0)

getCounts 25

getCounts Extract Table of Counts from DGEList Object

Description

Returns the counts slot of a DGEList object

Usage

getCounts(object)

Arguments

object DGEList object containing (at least) the elements counts (table of raw counts),
group (factor indicating group) and lib.size (numeric vector of library
sizes)

Value

getCounts returns a matrix of counts (presumably integers)

Author(s)

Mark Robinson, Davis McCarthy

See Also

DGEList for more information about the DGEList class.

Examples

generate raw counts from NB, create list object
y<-matrix(rnbinom(20,size=1,mu=10),nrow=5)
d<-DGEList(counts=y,group=rep(1:2,each=2),lib.size=rep(c(1000:1001),2))
should be 5x4
print(dim(getCounts(d)))

interpolateHelper Quantile Adjustment Interpolator

Description

Helper function to interpolate the quantile function. This is the function that actually generates the
pseudocounts required by quantileAdjust to adjust (normalise) the library sizes and estimate the
dispersion parameter. Given fixed values of the estimated mean (mu) and proportion in the library
(p) for each tag, as well as a fixed (tagwise or common) value for the dispersion parameter (r),
the function interpolates linearly the quantiles used as pseudocounts. If any value of r is infinite
(corresponding to phi=0, the dispersion parameter for the negative binomial model), then a Poisson
model is used, as setting phi=0 in the negative binomial model is equivalent to using a Poisson
model. Otherwise, quantiles are calculated from the negative binomial distribution.

26 logLikDerP

Usage

interpolateHelper(mu, p, r, count.max, verbose=TRUE)

Arguments

mu matrix of means

p matrix of percentiles

r scalar, vector or matrix of size parameters

count.max vector of maximum counts for all tags

verbose whether to write comments, default true

Details

An older function, no longer called by the functions recommended to carry out analysis of DGE
data, namely estimateCommonDisp, estimateTagwiseDisp and exactTest.

Value

numeric matrix of quantile-adjusted pseudocounts

Author(s)

Mark Robinson, Davis McCarthy

See Also

The function q2qnbinom now performs the quantile-adjustment to equalize library sizes and gen-
erate pseudocounts - this newer function is faster and more accurate.

Examples

y<-matrix(rnbinom(10000,size=2,mu=10),ncol=4)
d<-DGEList(counts=y,group=rep(1:2,each=2),lib.size=rep(c(1000,1010),2))
conc<-estimatePs(d,r=2)
N<-exp(mean(log(d$samples$lib.size)))
perc<-pnbinom(d$counts-1,size=2,mu=outer(conc$conc.common,d$samples$lib.size))+dnbinom(d$counts,size=2,mu=outer(conc$conc.common,d$samples$lib.size))/2
maxcounts<-apply(d$counts,1,max)
pseudo<-interpolateHelper(outer(conc$conc.common,rep(N,4)),perc,r=2,maxcounts)

logLikDerP Log-Likelihood for Proportion

Description

Log-likelihood and derivatives for the proportion parameter (i,e, expression level) of negative bino-
mial (mean = library size * proportion)

Usage

logLikDerP(p, y, lib.size, r, der = 0)

maPlot 27

Arguments

p vector of proportion parameters to be evaluated

y matrix of counts

lib.size vector of library sizes

r size parameter of negative binomial distribution

der derivative, either 0 (the function), 1 (first derivative) or 2 (second derivative)

Value

vector of the likelihood or specified derivative evaluations for each tag/gene

Author(s)

Mark Robinson, Davis McCarthy

See Also

estimatePs calls logLikDerP as part of the procedure for estimating the expression level(s)
of each tag.

Examples

y<-matrix(rnbinom(20,size=1.5,mu=10),nrow=5)
d<-DGEList(counts=y,group=rep(1:2,each=2),lib.size=rep(c(1000:1001),2))

this.p<-rowMeans(y/ outer(rep(1,nrow(y)),d$samples$lib.size))
d1p<-logLikDerP(this.p,y,d$samples$lib.size,r=1.5,der=1)

maPlot Plots Log-Fold Change versus Log-Concentration (or, M versus A) for
Count Data

Description

To represent counts that were low (e.g. zero in 1 library and non-zero in the other) in one of the two
conditions, a ’smear’ of points at low A value is presented.

Usage

maPlot(x, y, normalize=FALSE, smearWidth = 1, col = NULL, allCol = "black", lowCol = "orange", deCol="red", de.tags=NULL, ...)

Arguments

x vector of counts or concentrations (group 1)

y vector of counts or concentrations (group 2)

normalize logical, whether to divide x and y vectors by their sum

smearWidth scalar, width of the smear

col vector of colours for the points (if NULL, uses allCol and lowCol)

allCol colour of the non-smeared points

28 plotMDS.dge

lowCol colour of the smeared points

deCol colour of the DE (differentially expressed) points

de.tags indices for tags identified as being differentially expressed; use exactTest to
identify DE genes

... further arguments passed on to plot

Details

The points to be smeared are identified as being equal to the minimum in one of the two groups.
The smear is created by using random uniform numbers of width smearWidth to the left of the
minimum A value.

Value

a plot to the current device

Author(s)

Mark Robinson

See Also

plotSmear

Examples

y <- matrix(rnbinom(10000,mu=5,size=2),ncol=4)
maPlot(y[,1], y[,2])

plotMDS.dge Multidimensional scaling plot of SAGE data

Description

Plot the sample relations based on Multidimensional Scaling.

Usage

plotMDS.dge(x, top=500, col=NULL, cex=1, dim.plot=c(1,2), ndim=max(dim.plot),...)

Arguments

x any matrix or DGEList object.

top number of top genes used to calculate pairwise distances.

col numeric or character vector of colors for the plotting characters.

cex numeric vector of plot symbol expansions.

dim.plot which two dimensions should be plotted, numeric vector of length two.

ndim number of dimensions in which data is to be represented

... any other arguments are passed to plot.

plotSmear 29

Details

This function is a variation on the usual multdimensional scaling (or principle coordinate) plot,
in that a distance measure particularly appropriate for the digital gene expression (DGE) context
is used. The distance between each pair of samples (columns) is the square root of the common
dispersion for the top top genes which best distinguish that pair of samples. These top top genes
are selected according to the tagwise dispersion of all the samples.

See text for possible values for col and cex.

Value

A plot is created on the current graphics device.

Author(s)

Yunshun Chen and Gordon Smyth

Examples

Simulate DGE data for 1000 genes(tags) and 6 samples.
Samples are in two groups
First 300 genes are differentially expressed in second group

x <- 10*runif(1000)
counts <- rnbinom(6000, size = 5, mu = x)
m <- matrix(counts, 1000, 6)
rownames(m) <- paste("Gene",1:1000)
m[1:300,4:6] <- m[1:300,4:6] + 10
plotMDS.dge(m)

Indexes of samples are plotted.
plotMDS.dge(m, col=c(rep("black",3), rep("red",3)))

plotSmear Plots log-Fold Change versus log-Concentration (or, M versus A) for
Count Data

Description

Both of these functions plot the log-fold change (i.e. the log of the ratio of expression levels for
each tag between two experimential groups) against the log-concentration (i.e. the overall average
expression level for each tag across the two groups). To represent counts that were low (e.g. zero in
1 library and non-zero in the other) in one of the two conditions, a ’smear’ of points at low A value
is presented in plotSmear.

Usage

plotSmear(object, pair = NULL, de.tags=NULL, xlab = "logConc", ylab = "logFC", pch = 19, cex = 0.2, smearWidth = 0.5, panel.first=grid(), ...)
plotFC(de.object,xlab="logConc",ylab="logFC",ylim=NULL,pch=19,cex=0.2,...)

30 plotSmear

Arguments

object DGEList object to plot data from (uses $conc element)

de.object deDGEList object , as output from exactTest

pair pair of experimental conditions to plot (if NULL, the first two conditions are
used)

de.tags rownames for tags identified as being differentially expressed; use exactTest
to identify DE genes

xlab x-label of plot

ylab y-label of plot

pch scalar or vector giving the character(s) to be used in the plot; default value of 19
gives a round point.

cex character expansion factor, numerical value giving the amount by which plotting
text and symbols should be magnified relative to the default; default cex=0.2
to make the plotted points smaller

smearWidth width of the smear

panel.first an expression to be evaluated after the plot axes are set up but before any plotting
takes place; the default grid() draws a background grid to aid interpretation
of the plot

ylim vector of length two giving limits on y-axis, if left at NULL, scaled to be sym-
metric about 0

... further arguments passed on to plot

Details

While both functions do essentially the same thing, plotSmear is a more sophisticated and supe-
rior way to produce an ’MA plot’. plotFC is an earlier and rawer version of the plotting function
and has difficulty dealing with tags which have a total count of zero for one of the groups—this
issue is resolved in plotSmear by adding the ’smear’ of points at low A value. The points to be
smeared are identified as being equal to the minimum estimated concentration in one of the two
groups. The smear is created by using random uniform numbers of width smearWidth to the
left of the minimum A. plotSmear also allows easy highlighting of differentially expressed (DE)
tags, and the use of plotSmear is strongly recommended over plotFC.

Value

A plot to the current device

Author(s)

Mark Robinson, Davis McCarthy

See Also

maPlot

q2qnbinom 31

Examples

y <- matrix(rnbinom(10000,mu=5,size=2),ncol=4)
d <- DGEList(counts=y, group=rep(1:2,each=2), lib.size=colSums(y))
rownames(d$counts) <- paste("tag",1:nrow(d$counts),sep=".")
d <- estimateCommonDisp(d)
plotSmear(d)

find differential expression
de<-exactTest(d)

plot it
plotFC(de)
highlighting the top 500 most DE tags
de.tags <- rownames(topTags(de, n=500)$table)
plotSmear(d, de.tags=de.tags)

q2qnbinom Quantile to Quantile Mapping between Negative-Binomial Distribu-
tions

Description

Approximate quantile to quantile mapping between negative-binomial distributions with the same
dispersion but different means. The Poisson distribution is a special case.

Usage

q2qpois(x, input.mean, output.mean)
q2qnbinom(x, input.mean, output.mean, dispersion=0)

Arguments

x numeric matrix of unadjusted count data from a DGEList object

input.mean numeric matrix of estimated mean counts for tags/genes in unadjusted libraries

output.mean numeric matrix of estimated mean counts for tags/genes in adjusted (equalized)
libraries, the same for all tags/genes in a particular group, different between
groups

dispersion numeric scalar, vector or matrix of dispersion parameters

Details

This function finds the quantile with the same left and right tail probabilities relative to the out-
put mean as x has relative to the input mean. q2qpois is equivalent to q2qnbinom with
dispersion=0.

This is the function that actually generates the pseudodata for equalizeLibSizes and required
by estimateCommonDisp to adjust (normalize) the library sizes and estimate the dispersion
parameter. The function takes fixed values of the estimated mean for the unadjusted libraries (in-
put.mean) and the estimated mean for the equalized libraries (output.mean) for each tag, as well as
a fixed (tagwise or common) value for the dispersion parameter (phi).

32 quantileAdjust

The function calculates the percentiles that the counts in the unadjusted library represent for the
normal and gamma distributions with mean and variance defined by the negative binomial rules:
mean=input.mean and variance=input.mean*(1+dispersion*input.mean). The per-
centiles are then used to obtain quantiles from the normal and gamma distributions respectively, with
mean and variance now defined as above but using output.mean instead of input.mean. The
function then returns as the pseudodata, i.e., equalized libraries, the arithmetic mean of the quan-
tiles for the normal and the gamma distributions. As the actual negative binomial distribution is not
used, we refer to this as a "poor man’s" NB quantile adjustment function, but it has the advantage
of not producing Inf values for percentiles or quantiles as occurs using the equivalent NB functions.
If, for any tag, the dispersion parameter for the negative binomial model is 0, then it is equivalent
to using a Poisson model. Lower tails of distributions are used where required to ensure accuracy.

Value

numeric matrix of the same size as x with quantile-adjusted pseudodata

Author(s)

Gordon Smyth

Examples

y<-matrix(rnbinom(10000,size=2,mu=10),ncol=4)
d<-DGEList(counts=y,group=rep(1:2,each=2),lib.size=rep(c(1000,1010),2))
conc<-estimatePs(d,r=2)
N<-exp(mean(log(d$samples$lib.size)))
in.mean<-matrix(0,nrow=nrow(d$counts),ncol=ncol(d$counts))
out.mean<-matrix(0,nrow=nrow(d$counts),ncol=ncol(d$counts))
for(i in 1:2) {
in.mean[,d$samples$group==i]<-outer(conc$conc.group[,i],d$samples$lib.size[d$samples$group==i])
out.mean[,d$samples$group==i]<-outer(conc$conc.group[,i],rep(N,sum(d$samples$group==i)))
}
pseudo<-q2qnbinom(d$counts, input.mean=in.mean, output.mean=out.mean, dispersion=0.5)

quantileAdjust Normalizes a Dataset by Using a Quantile Adjustment

Description

The function adjusts (you might say normalizes) a dataset, creating pseudocounts that represents
quantile-adjusted counts as if all samples had the same library size, while estimating the dispersion
parameter.

Usage

quantileAdjust(object, N = exp(mean(log(object$samples$lib.size))), alpha = 0, null.hypothesis = FALSE, n.iter = 5, r.init = NULL, tol = 0.001, verbose=TRUE)

quantileAdjust 33

Arguments

object list containing the raw counts with elements counts (table of counts), group
(factor indicating group) and lib.size (numeric vector of library sizes)

N library size to normalize to; default is the geometric mean of the original library
sizes

alpha weight to put on the individual tag’s likelihood

null.hypothesis
logical, whether to calculate the means and percentile under the null hypothesis;
default is FALSE

n.iter number of iterations in estimating the size parameter

r.init initialized value of the size parameter; if NULL, then the common value on un-
adjusted counts is used

tol tolerance in estimating the size parameter

verbose whether to write comments, default true

Details

An older function, no longer called by the functions recommended to carry out analysis of DGE
data, namely estimateCommonDisp, estimateTagwiseDisp and exactTest. No longer
recommended for use.

Value

list containing several elements used in downstream function calls.

r is the dispersion estimate

pseudo is the quantile-adjusted pseudocounts

ps is a list containing the abundance estimates

N is the common library size

p percentiles on which the quantile is based

mu means on which the quantile is based

Author(s)

Mark Robinson, Davis McCarthy

Examples

set.seed(0)
y<-matrix(rnbinom(40,size=1,mu=10),ncol=4)
d<-DGEList(counts=y,group=rep(1:2,each=2),lib.size=rep(c(1000:1001),2))
qA<-quantileAdjust(d,alpha=100)

34 readDGE

readDGE Read and Merge a Set of Files Containing DGE Data

Description

Reads and merges a set of text files containing digital gene expression data.

Usage

readDGE(files,path=NULL,columns=c(1,2),group=NULL,...)

Arguments

files character vector of filenames, or alternatively a data.frame with a column con-
taining the file names of the files containing the libraries of counts and, option-
ally, columns containing the group to which each library belongs, descriptions
of the other samples and other information.

path character string giving the directory containing the files. The default is the cur-
rent working directory.

columns numeric vector stating which two columns contain the tag names and counts,
respectively

group vector, or preferably a factor, indicating the experimental group to which each
library belongs. If group is not NULL, then this argument overrides any group
information included in the files argument.

... other are passed to read.delim

Details

Each file is assumed to contained digital gene expression data for one sample (or library), with
transcript identifiers in the first column and counts in the second column. Transcript identifiers are
assumed to be unique and not repeated in any one file. By default, the files are assumed to be
tab-delimited and to contain column headings. The function forms the union of all transcripts and
creates one big table with zeros where necessary.

Value

DGEList object

Author(s)

Mark Robinson and Gordon Smyth

See Also

DGEList provides more information about the DGEList class and the function DGEList, which
can also be used to construct a DGEList object, if readDGE is not required to read in and construct
a table of counts from separate files.

splitIntoGroups 35

Examples

Read all .txt files from current working directory

Not run: files <- dir(pattern="*\\.txt$")
RG <- readDGE(files)
End(Not run)

splitIntoGroups Split the Counts or Pseudocounts from a DGEList Object According
To Group

Description

Split the counts from a DGEList object according to group, creating a list where each element
consists of a numeric matrix of counts for a particular experimental group. Given a pair of groups,
split pseudocounts for these groups, creating a list where each element is a matrix of pseudocounts
for a particular gourp.

Usage

splitIntoGroups(object)
splitIntoGroupsPseudo(pseudo, group, pair)

Arguments

object DGEList, object containing (at least) the elements counts (table of raw counts),
group (factor indicating group) and lib.size (numeric vector of library
sizes)

pseudo numeric matrix of quantile-adjusted pseudocounts to be split
group factor indicating group to which libraries/samples (i.e. columns of pseudo

belong; must be same length as ncol(pseudo)
pair vector of length two stating pair of groups to be split for the pseudocounts

Value

splitIntoGroups outputs a list in which each element is a matrix of count counts for an in-
dividual group. splitIntoGroupsPseudo outputs a list with two elements, in which each
element is a numeric matrix of (pseudo-)count data for one of the groups specified.

Author(s)

Davis McCarthy

Examples

generate raw counts from NB, create list object
y<-matrix(rnbinom(80,size=1,mu=10),nrow=20)
d<-DGEList(counts=y,group=rep(1:2,each=2),lib.size=rep(c(1000:1001),2))
rownames(d$counts)<-paste("tagno",1:nrow(d$counts),sep=".")
z1<-splitIntoGroups(d)

z2<-splitIntoGroupsPseudo(d$counts,d$group,pair=c(1,2))

36 subsetting

subsetting Subset DGEList Objects

Description

Extract a subset of a DGEList object.

Usage

S3 method for class 'DGEList':
object[i, j, ...]

Arguments

object object of class DGEList

i,j elements to extract. i subsets the tags or genes while j subsets the libraries

... not used

Details

i,j may take any values acceptable for the matrix components of object. See the Extract help
entry for more details on subsetting matrices.

Value

An object of class DGEList holding data from the specified subset of tags/genes and libraries.

Author(s)

Davis McCarthy, Gordon Smyth

See Also

Extract in the base package.

Examples

d <- matrix(rnbinom(8,size=1,mu=10),4,2)
rownames(d) <- c("a","b","c","d")
colnames(d) <- c("A","B")
d <- new("DGEList",list(counts=d,group=factor(c("A","B"))))
d[1:2,]
d[1:2,2]
d[,2]

tau2.0.objective 37

tau2.0.objective Objective Function for Tau2

Description

Objective function for tau2, which is used in the approximate empirical Bayes rule which deter-
mines how much to squeeze the dispersion parameters towards the common value. Tau2 is anal-
ogous to the prior variance for each tag/gene in an hierarchical model for the estimators of the
tag/genewise dispersion parameter, and must be estimated in order to select the smoothing parame-
ter as an approximate EB rule.

Usage

tau2.0.objective(tau2.0, info.g, score.g)

Arguments

tau2.0 scalar, value for tau2

info.g numeric vector, observed information for each tag/gene

score.g scalar, observed score (first derivative of log-likelihood) over all tags/genes

Value

scalar, value of objective function at tau2.0

Author(s)

Mark Robinson, Davis McCarthy

Examples

y<-matrix(rnbinom(20,size=1,mu=10),nrow=5)
x<-DGEList(counts=y,group=rep(1:2,each=2),lib.size=rep(1000:1001,each=2))
scores <- condLogLikDerDelta(y, delta=0.5, der = 1, doSum = TRUE)
q2q.out<-equalizeLibSizes(x,disp=1,null.hypothesis=TRUE)
exp.inf<-approx.expected.info(x,d=0.5,q2q.out$pseudo)
sigma2.0.est<-optimize(tau2.0.objective,c(0,500),info.g=exp.inf,score.g=scores)$min

topTags Table of the Top Differentially Expressed Tags

Description

Extracts the top DE tags in a data frame for a given pair of groups, ranked by p-value or absolute
log-fold change.

Usage

topTags(object, n=10, adjust.method="BH", sort.by="p.value")

38 topTags

Arguments

object a deDGEList object, as output from exactTest, containing the elements:
table: data frame containing the log-concentration (i.e. expression level), the
log-fold change in expression between the two groups/conditions and the exact
p-value for differential expression, for each tag.
comparison: vector giving the two experimental groups/conditions being
compared.
genes: data frame containing information about each transcript (can be NULL).

n scalar, number of tags to display/return
adjust.method

character string stating the method used to adjust p-values for multiple testing,
passed on to p.adjust

sort.by character string, indicating whether tags should be sorted by p-value ("p.value")
or absolute log-fold change ("logFC"); default is to sort by p-value.

Value

an object of class TopTags containing the following elements for the top n most differentially
expressed tags as determined by sort.by. There is a show method for this class.

table a data frame containing the elements logConc, the log-average concentra-
tion/abundance for each tag in the two groups being compared, logFC, the
log-abundance ratio, i.e. fold change, for each tag in the two groups being
compared, p.value, exact p-value for differential expression using the NB
model, adj.p.val, the p-value adjusted for multiple testing as found using
p.adjust using the method specified

comparison a vector giving the names of the two groups being compared

Author(s)

Mark Robinson, Davis McCarthy, Gordon Smyth

References

Robinson MD, Smyth GK. ’Small-sample estimation of negative binomial dispersion, with appli-
cations to SAGE data.’ Biostatistics. 2008 Apr;9(2):321-32.

Robinson MD, Smyth GK. ’Moderated statistical tests for assessing differences in tag abundance.’
Bioinformatics. 2007 Nov 1;23(21):2881-7.

See Also

exactTest, p.adjust.

Analogous to topTable in the limma package.

Examples

generate raw counts from NB, create list object
y <- matrix(rnbinom(80,size=1,mu=10),nrow=20)
d <- DGEList(counts=y,group=rep(1:2,each=2),lib.size=rep(c(1000:1001),2))
rownames(d$counts) <- paste("tag",1:nrow(d$counts),sep=".")

estimate common dispersion and find differences in expression

weightedCondLogLikDerDelta 39

d<-estimateCommonDisp(d)
de<-exactTest(d)

look at top 10
topTags(de)
Can specify how many tags to view
tp <- topTags(de, n=15)
Here we view top 15
tp
Or order by fold change instead
topTags(de,sort.by="logFC")

weightedCondLogLikDerDelta
Weighted Conditional Log-Likelihood in Terms of Delta

Description

Weighted conditional log-likelihood parameterized in terms of delta (phi / (phi+1)) for a
given tag/gene - maximized to find the smoothed (moderated) estimate of the dispersion param-
eter

Usage

weightedCondLogLikDerDelta(y, delta, tag, prior.n=10, ntags=nrow(y[[1]]), der=0, doSum=FALSE)

Arguments

y list with elements comprising the matrices of count data (or pseudocounts) for
the different groups

delta delta (phi / (phi+1))parameter of negative binomial

tag tag/gene at which the weighted conditional log-likelihood is evaluated

prior.n smoothing paramter that indicates the weight to put on the common likelihood
compared to the individual tag’s likelihood; default 10 means that the common
likelihood is given 10 times the weight of the individual tag/gene’s likelihood in
the estimation of the tag/genewise dispersion

ntags numeric scalar number of tags/genes in the dataset to be analysed

der derivative, either 0 (the function), 1 (first derivative) or 2 (second derivative)

doSum logical, whether to sum over samples or not (default FALSE

Details

This function computes the weighted conditional log-likelihood for a given tag, parameterized in
terms of delta. The value of delta that maximizes the weighted conditional log-likelihood is con-
verted back to the phi scale, and this value is the estimate of the smoothed (moderated) dispersion
parameter for that particular tag. The delta scale for convenience (delta is bounded between 0 and
1).

40 weightedCondLogLikDerDelta

Value

numeric scalar of function/derivative evaluated for the given tag/gene and delta

Author(s)

Mark Robinson, Davis McCarthy

Examples

counts<-matrix(rnbinom(20,size=1,mu=10),nrow=5)
d<-DGEList(counts=counts,group=rep(1:2,each=2),lib.size=rep(c(1000:1001),2))
y<-splitIntoGroups(d)
ll1<-weightedCondLogLikDerDelta(y,delta=0.5,tag=1,prior.n=10,der=0)
ll2<-weightedCondLogLikDerDelta(y,delta=0.5,tag=1,prior.n=10,der=1)

Index

∗Topic algebra
de4DGE, 10
deDGE, 12
equalizeLibSizes, 14
estimateCommonDisp, 15
estimateTagwiseDisp, 20
exactTest, 22
findMaxD2, 24
interpolateHelper, 25
q2qnbinom, 31
splitIntoGroups, 35
tau2.0.objective, 37
topTags, 37

∗Topic classes
de4DGEList-class, 11
deDGEList-class, 13
DGEList-class, 1
EBList-class, 3

∗Topic datasets
Tu102, 3

∗Topic file
alpha.approxeb, 4
approx.expected.info, 5
commonCondLogLikDerDelta, 7
condLogLikDerDelta, 8
condLogLikDerSize, 9
estimateDispIter, 17
estimatePs, 18
estimateSmoothing, 19
getCounts, 25
logLikDerP, 26
plotSmear, 29
quantileAdjust, 32
readDGE, 34
weightedCondLogLikDerDelta,

39
∗Topic hplot

plotMDS.dge, 28
∗Topic manip

subsetting, 36
∗Topic package

edgeR-package, 13
[.DGEList (subsetting), 36

[.TopTags (topTags), 37

alpha.approxeb, 4
approx.expected.info, 5

calcNormFactors, 6
commonCondLogLikDerDelta, 7, 8
condLogLikDerDelta, 8
condLogLikDerSize, 9

de4DGE, 10
de4DGEList-class, 11
deDGE, 12
deDGEList-class, 13
DGEList, 1, 2, 2, 25, 34
DGEList-class, 1

EBList-class, 3
edgeR (edgeR-package), 13
edgeR-package, 13
equalizeLibSizes, 14, 22
estimateCommonDisp, 4, 7, 8, 10, 12, 14,

15, 18, 21, 24, 26, 33
estimateDispIter, 17
estimatePs, 18, 27
estimateSmoothing, 4, 5, 19
estimateTagwiseDisp, 4, 8, 10, 12, 14,

16, 18, 20, 24, 26, 33
exactTest, 4, 10, 12, 22, 24, 26, 33, 38
Extract, 36

findMaxD2, 24

getCounts, 25

interpolateHelper, 25

logLikDerP, 26

maPlot, 27, 30

NC1 (Tu102), 3
NC2 (Tu102), 3

p.adjust, 38
plotFC (plotSmear), 29

41

42 INDEX

plotMDS.dge, 28
plotSmear, 28, 29

q2qnbinom, 26, 31
q2qpois (q2qnbinom), 31
quantileAdjust, 32

readDGE, 34

show,de4DGEList-method
(de4DGEList-class), 11

show,deDGEList-method
(deDGEList-class), 13

show,EBList-method
(EBList-class), 3

show,TopTags-method (topTags), 37
splitIntoGroups, 35
splitIntoGroupsPseudo

(splitIntoGroups), 35
subsetting, 36

tau2.0.objective, 37
text, 29
topTable, 38
topTags, 37
TopTags-class (topTags), 37
Tu102, 3
Tu98 (Tu102), 3

weightedCondLogLikDerDelta, 8, 39

	DGEList-class
	DGEList
	EBList-class
	Tu102
	alpha.approxeb
	approx.expected.info
	calcNormFactors
	commonCondLogLikDerDelta
	condLogLikDerDelta
	condLogLikDerSize
	de4DGE
	de4DGEList-class
	deDGE
	deDGEList-class
	edgeR-package
	equalizeLibSizes
	estimateCommonDisp
	estimateDispIter
	estimatePs
	estimateSmoothing
	estimateTagwiseDisp
	exactTest
	findMaxD2
	getCounts
	interpolateHelper
	logLikDerP
	maPlot
	plotMDS.dge
	plotSmear
	q2qnbinom
	quantileAdjust
	readDGE
	splitIntoGroups
	subsetting
	tau2.0.objective
	topTags
	weightedCondLogLikDerDelta
	Index

