Duncan Department of Statistics, UC Davis Tem-
ple Lang, Department of Statistics, UC Davis

Table of Contents

(V< LY 1=, TR 1
N T ox G o S REER 2
0] 111 8
(@0 1 = (o (=T 10
StAtiStiCS 0N the REQUESE ... e e e e e 11
1ol N [IYA= €T o T ol {0 l4 a1r= 1o o IR 11
TR 4= (o] o T 13
(@010 TSP PP PPPPPPUPPPRPI 13
EXAMPIE APPIICALION ...ttt e e e e e e e e e e 14
YA o [(10 = I N L0 (=TT 16
Providing Text HAanAIErSooooiiiiiiiiiiee et e 16
YN L= 007 (A= 17
N[0T 17
.. 18
Overview

The RCurl package provides high-level facilitiesin R to communicate with HTTP servers. Simply, it allows
us to download URLSs, submit formsin different ways, and generally compose HTTP requests. It supports
HTTPS, the secure HTTP; handles authentication using passwords; and can use FTP to download files. It
also handles escaping characters in requests, binary data, and file uploads. Users can override or provide
additional headers in the HTTP request in order to customize the communication. The response from the
HTTP server is processed as a stream and chunk encoding automatically handled. While the default mech-
anism simply returns the text from a request, one can specify S functions to process the response as it is
received, redirecting it or processing in an application specific manner.

All of this could be written in R. We could use socket connections to write requeststo HTTP servers and
receive the response. To support HTTPS, we would have to add SSL connections. To get the same behavior
asRCurl, wewould have to implement the HT TP protocol. Thisinvolveswriting the HT TP headers correct-
ly and flexibly, escaping characters, providing authentication, following redirection commands, handling
responses by decomposing "chunked" content, binary files, etc. To submit forms, we have to compose the
body of the request by computing boundary strings and creating the "Content-Disposition” elements. In
short, thereisalot of work to do and significant potential for error. Rather than doing thisin R, RCurl uses
an existing implementation that is provided in awidely used C library - libcurl. This has several benefits:

o libcurl iswell tested and very portable. Asaresult it is available on many platforms and bugs have been
identified and fixed.

» Many people and applications use libcurl which means that it has support for common features that are
used in various contexts.

 libcurl isin C and so isfast.

http://www.omegahat.org/RCurl
http://curl.haxx.se

On the negative side, it ishard to extend libcurl. We can only hope that the hooks to customize requests are
adequate for our needs. We can expect that others have run into these extensibility issues and these needs
have been fed back to the designers of libcurl.

R already provides its own way to download URIs. Functions like

downl oad. ur |
and connection constructors such as

ur |

Since the libcurl library provides opaque data structures for implementing requests and connections, we
cannot easily adapt it to fit our special needs in R. Specificaly, it is harder to merge it with our view of
connectionsin S (R and S-Plus). Similarly, it is harder to integrate it with the event-loop in R so that we
can listen for input pending and essentially put the connection in the background. The support for threads
in libcurl might make this easier if/when we support threadsin R.

A Quick Tour

This document aims to provide a basic overview of the RCurl package. It doesn't try to provide al the
details. The R function help files and the libcurl documentation have all the relevant information. Since the
packageis an interface to libcurl, it isimportant to use the documentation for it regarding features, options,
etc. Y ou can consult the libcurl documentation and libcurl examples (in C code).

The RCurl package provides three primary high-level entry points. These alow us to fetch a URL and
submit forms. The functions are

get URL

get Form
and

post For m

. Thefirst isrelatively straightforward, given the name; it allows usto fetch the contents of a URI. The other
two functions provide ways to submit a form using the GET or POST methods. These are quite different
internally, but for users, both require aset of name-value pairsgiving the parametersfor theform submission.
The difference is in how the form is submitted and the POST method allows us to submit/upload files,
binary content, etc.

Let uslook at the

get URL

function. At it ssimplest, thisisjust like the

downl oad. ur |

function in the standard R. We can fetch a URI with the command something like

get URL("http://ww. onegahat . org/ RCurl /i ndex. htm ")

The idea is that we specify the URI. There are several other arguments to this function, but for the most
part we don't need them.

We can use HTTPS to fetch URIs securely. For example,

http://curl.haxx.se/docs
http://curl.planetmirror.com/libcurl/c/example.html

get URL("htt ps://sourceforge. net")
Thisis already more than we can do with the regular connections or built-in

downl oad. url
in R. (Using an external program allows HTTPS access.)

There are three different sets of arguments for the

get URL

function. Oneisnamed cur | and we will cover thisin section the section called “CURL Handles’ [10].
Thisis merely away to cumulate requests on a single connection with shared options.

Thewr it e function is again rather specialized. It allows us to specify an R function that is called each
time libcurl has some text as part of the HTTP response. It hands this text (as a sequence of bytes) to the
function so that it can processit in whatever way it deemsfit. This correspondsto the writefunction option
for the libcurl operation described next. We have it as an explicit argument simply because we need to use
it to get the return value in asingle action as the default behavior.

The third set of arguments is the most general and is handled by the ... in the

get URL

function. With this, one can specify name-value pairs governing the actual request. There are numerous pos-
sible settingsthat one can specify. Thebasicideaisthat one can set options provided by the

routine. These allow us to set parameters for many different aspects of the request. For example, we can
specify additional headersfor the HT TP request, or include a password for the Web site. The set of possible
options can be determined via the function

get Curl Opti onConst ant s
. and the set of names for the different options can be found via the command

nanes(get Curl Opti onsConstants())

Thisisacollection of names of options that are understood by many of the functionsin the RCurl package.
At present, there are 113 possible options.

sort (nanes(get Curl Opti onsConstants()))

[1] "autoreferer" "buf f ersi ze"

[3] "cainfo" "capat h"

[5] "cl osepolicy" "connectti meout"

[7] "cookie" "cooki efile"

[9] "cookiejar" "cooki esessi on"

[11] "crlf" "cust onr equest "

[13] "debugdat a" "debugfunction"

[15] "dns.cache.tinmeout" "dns. use. gl obal . cache"
[17] "egdsocket™ "encodi ng"

[19] "errorbuffer" "fail onerror"

[21] "file" “filetine"

[23] "foll oW ocati on" "forbid.reuse"

[25] "fresh.connect" "ftp.create. nissing.dirs"
[27] "ftp.response.tineout" "ftp.ssl"

[29] "ftp.use.eprt" "ftp.use. epsv"

[31] "ftpappend" "ftplistonly"

[33] "ftpport" "header"

[35] "headerfunction" "http. version"
[37] "http200ali ases" "ht t paut h"

[39] "httpget” "ht t pheader "

[41] "httppost" “htt pproxytunnel "
[43] "infile" "infilesize"

[45] "infilesize.large" "interface"

[47] "ipresol ve" "kr b4l evel "

[49] "l ow. speed.limt" "l ow. speed. ti me"
[51] "nmaxconnect s" "maxfil esi ze"
[53] "nmaxfil esize.large" "maxr edi rs"

[55] "netrc" "netrc.file"

[57] "nobody" " nopr ogr ess"

[59] "nosignal " "port"

[61] "post” "post fiel ds"

[63] "postfieldsize" "postfieldsize.large"
[65] "postquote" "prequot e"

[67] "private" " progressdat a"

[69] "progressfunction” " proxy"

[71] "proxyauth” " proxyport"

[73] "proxytype" " pr oxyuser pwd"
[75] "put” "quot e"

[77] "random fil e" "range"

[79] "readfunction" "referer"

[81] "resune. front “resume. from | arge"
[83] "share" "ssl . cipher.list"
[85] "ssl.ctx.data" "ssl.ctx.function"
[87] "ssl.verifyhost” "ssl.verifypeer"
[89] "sslcert" "ssl cert passwd”
[91] "sslcerttype" "ssl engi ne"

[93] "sslengine.defaul t"” "ssl key"

[95] "ssl keypasswd" "ssl keyt ype"

[97] "ssl version" "stderr"

[99] "tcp. nodel ay" "tel netoptions”
[101] "timecondition" “timeout"

[103] "timeval ue" "transfertext"

[105] "unrestricted. aut h" "upl oad"

[107] "url” "user agent "

[109] "userpwd" "ver bose"

[111] "witefunction” "writeheader"
[113] "witeinfo"

Each of these and what it controlsis described in the libcurl man(ual) page for andthatis
the authoritative documentation. Anything we provide here is merely repetition or additional explanation.

The names of the options require a slight explanation. These correspond to symbolic names in the C code
of libcurl. For example, the option url in R corresponds to
<c:enumVaue>CURLOPT_URL</c.:enumVaue>

in C. Firstly, uppercase | etters are annoying to type and read, so we have mapped them to lower case |etters
in R. We have also removed the prefix "CURLOPT_" since we know the context in which they option
names are being used. And lastly, any option names that have a__ (after we have removed the CURLOPT _

prefix) are changed to replace the'_' with a'.' so we can type them in R without having to quote them. For
example, combining these three rules, "CURLOPT_URL" becomes url and
<c.enumVaue>CURLOPT_NETRC_FILE</c:enumValue>

becomes netrc.file. That is the mapping scheme.

The code that handles options in RCurl automatically maps the user's inputs to lower case. This means
that you can use any mixture of upper-case that makes your code more readable to you and others. For
example, we might write or

We specify one or more options by using the names. To make interactive use easier, we perform partia
matching on the names relative to the set of know names. So, for example, we could specify

get URL("http://ww. onegahat . org/ RCurl /t est Password",
verbose = TRUE)
or, more succinctly,
get URL("htt p://ww. onegahat . org/ RCurl /t est Password",
v = TRUE)
Obviously, thefirst is more readable and less ambiguous. Please use the full form when writing "software".
But you might use the abbreviated form when working interactively.

Each option expects a certain type of value from R. For example, the following options expect a number
or logical value.

[1] "autoreferer" "buf f ersi ze"

[3] "closepolicy" "connectti meout "

[5] "cooki esessi on" "crlf"

[7] "dns.cache.tineout" "dns. use. gl obal . cache"
[9] "failonerror” "foll oM ocation”
[11] "forbid.reuse" "fresh. connect "
[13] "ftp.create.nissing.dirs" "ftp.response.tinmeout"
[15] "ftp.ssl" "ftp.use.eprt”

[17] "ftp.use.epsv" "ftpappend"

[19] "ftplistonly" "header"

[21] "http.version" "ht t paut h"

[23] "httpget" "ht t ppr oxyt unnel "
[25] "infilesize" "i presol ve"

[27] "l ow. speed. limt" "l ow. speed. ti nme"
[29] "nmaxconnects" "maxfil esi ze"

[31] "nmaxredirs" "netrc"

[33] "nobody" "nopr ogr ess”

[35] "nosignal " "port"

[37] "post" "postfiel dsize"
[39] "proxyauth" "proxyport"

[41] "proxytype" "put "

[43] "resune.front "ssl.verifyhost"
[45] "ssl.verifypeer" "ssl engi ne. defaul t"
[47] "sslversion” "tcp. nodel ay"

[49] "tinecondition" "timeout"

[51] "tineval ue" "transfertext"

[53] "unrestricted. aut h" "upl oad"

[55] "verbose"

The connecttimeout gives the maximum number of seconds the connection should take before raising an
error, so thisis anumber. The header option, on the other hand, is merely aflag to indicate whether header
information from the response should be included. So this can be alogical value (or a hnumber that is O to
say FALSE or non-zero for TRUE.) At present, all humbers passed from R are converted to long when
used in libcurl.

Many options are specified as strings. For example, we can specify the user password for aURI as

get URL("http://ww. omegahat . org/ RCurl /t est Password/i ndex. ht M ", userpwd = "bob: dun

Note that we also turned on the "verbose" option so that we can see what libcurl is doing. Thisis extremely
convenient when trying to understand why things aren't working (or are working in a particular way!).

Another example of using strings isto specify areferer URI and a user-agent.

get URL("http://ww. onegahat.org/ RCurl/index. htm ", useragent="RCurl", referer="htt
(Again, you might want to turn on the "verbose" option to see what libcurl is doing with this information.)

Thelibcurl facilitiesallow usto not only set our own valuesfor fieldsused inthe HT TP request header (such
as the referer or user-agent), but it also allows us to set an entire collection of new fields or replacements
for any existing field. We do thisin R using the httpheader option for libcurl and we specify avalue which
isanamed character vector. For example, suppose we want to provide avalue for the Accept field and add
anew field named, say, Made-up-field. We could do thisin the request as

get URL("http://ww. onegahat.org/ RCurl ", httpheader = c(Accept="text/htm", 'Made-u
If you turn on the verbose option again for this request, you will see these fields being set.

> get URL("http://ww. onegahat . org", httpheader = c(Accept="text/htm", 'Made-up-fi
* About to connect() to www. onmegahat.org port 80

* Connected to www. onegahat.org (169.237.46.32) port 80

> GET / HITP/ 1.1

Host: www. onegahat. org

Pragma: no-cache

Accept: text/htnl

Made- up-fiel d: bob

(Note that not all serverswill tolerate setting header fields arbitrarily and may return an error.)

The key thing to note is that headers are specified as name-value pairsin a character vector. R takes these
and pastes the name and value together and passes the resulting character vector to libcurl. So while it is
convenient to express the headers as

c(name = "val ue", nane = "val ue")

if you already have the datain the form

c("nane: value", "nane: val ue")
you can use that directly.

Some of the libcurl options expect a C routine. For example, when libcurl is receiving the response from
the HTTP server, it will call the C routine specified via the option
<c.enumVaue>CURLOPT WRITEFUNCTION</c.enumValue>

eachtimeit hasafull buffer of bytes. Whileitispossiblefor usto beableto specify aC routinefrom R (using

get Nat i veSynbol I nfo

), we currently don't support this. Instead, it is more natural to specify an R function which isto be called
when appropriate. And thisisindeed how we do thingsin RCurl. One can specify afunction for the write-
functionwriteheader and debugfunction options. (We can add support for the others such as readfunction.)
To use these is quite simple. We expect an R function that takes a single argument which is the character
of bytes to process. The function can do what it wants with this argument. Typicaly, it will accumulate
it in a persistent variable (e.g. using closures) or process it on-the-fly such as adding to a plot, passing it
toan HTML parser,

The function

basi cText Gat her er
isan example of the idea and this mechanismisusedin

get URL

. Suppose, for some reason, we wanted to read the header information that was returned by HTTP server
in the response to our request. (This has interesting things like cookies, content type, etc. that libcurl uses
internally, but we may also want to process.) Then we would firstly use the header option to turn on the
libcurl facility to report the response header information. If we just do this, the header information will be
included in the text that

get URL
returns. Thisis fine, but we will have to separate it out by finding the first line, etc. Instead, it is easier to
ask libcurl to hand the header information to use separate from the text/body of the response. We can do
this by creating a callback function viathe
basi cText Gat herer
function.
h = basi cText Gat herer ()
txt = getURL("http://ww. omegahat.org/ RCurl", header = TRUE, headerfunction = h$u

All we have done is create a collection of functions (stored in h) and passed the update callback to libcurl.
Each time libcurl receives more of the headers, it calls this function with the header text. It may cal this
just once or severa times. This depends on how large the header information is, how libcurl buffers the
information, etc.

Having called

get URL
, we havethetext fromthe URI. The header informationisavailablefrom h, specifically itsval ue function
element.

h$val ue()

The

debugGat her er

is another example of a callback that can be used with libcurl. If we set the "verbose" option to TRUE,
libcurl will provide alot of information about its actions. By default, these will be written on the console
(e.g. stderr). In some cases, we would not want these to be on the screen but instead, for example, displayed
inaGUI or stored in avariable for closer examination. We can do this by providing a callback function for
the debugging output via the debugfunction option for libcurl. The

debugGat her er

is a simple one that merely cumulates its inputs in different categories and makes them available via the
val ue function. The setup is easy:

d = debugGat herer ()
X = getURL("http://ww. onegahat. org/ RCurl", debugfuncti on=d$update, verbose = TF
At the end of the request, again we have the text from the URI in x, but we also have the debugging
information. libcurl has called our updat e function each time it has some information (either from the
HTTP server or from its own internal dialog).

(R names(d$val ue())

[1] "text™" "header| n" "headerQut" "dataln" "dataCut "

The headerln and headerOut fields report the text of the header for the response from the Web server and for
our request respectively. Similarly, the dataln and dataOut fields give the body of the response and request.
And the text is just messages from libcurl.

We should notethat not all optionsare (currently)) meaningful in R. For example, itisnot currently possible
to redirect standard error for libcurl to a different FILE* viathe "stderr" option. (In the future, we may be
ableto specify an R function for writing errors from libcurl, but we have not put that in yet.)

Forms

The RCurl package provides many additional mechanisms for downloading URIsthat R does not currently
have built-in. But perhapsthe most pressing reason for devel oping the RCurl package wasthe need to submit
forms. The [1] [18] package is a package that can read an HTML page with one or more forms and
create an S function for each form that alows S users to submit the form programmatically rather than
requiring interactively browsing the page, saving the result to afile and then loading it into R. In order for
these functions to work, we need to be able to submit the contents of the form from S asiif it came from
aregular browser. We use RCurl to do this.

There are two mechanisms used for submitting HTML forms: GET and POST. Both take a set of name-
value pairs giving the arguments to parameterize the call. The difference between the mechanismsis how
these name-value pairs are delivered to the HTTP server. The GET method puts the name-value pairs of
parameters at the end of the URI name, e.g.

http://www.omegahat.org/cgi-bin/form.pl ?a=1& b=2

The POST method expects the name-value pairsto be sent as the body of the HTTP request, each put in its
own "paragraph" or stanza. Thisis more complicated but supports sending binary data, etc.

Which of the GET and POST mechanism is appropriate is specified with the HTML form itself via the

attribute of the itself. To the user, however, the browser takes care of figuring out the
correct way to deliver the name-value pairs specified by the user when interacting with the components of
the form. In RCurl, we don't have access to the original HTML form so we cannot tell what mechanism to
use. It isup to the caller to determine whether to use

get Form
or

post Form
depending on the value of the attribute in the origina HTML file.

After determining whether to use POST or GET, the interface to the functionsis typically the same to the
user. Essentially, she need only specify the name-value pairs for each of the form elements. We do thisvia
anamed list or named character vector. (The list simply allows us to have objects of different type other
than strings!) We must specify all the fields, including the hidden fields, if the the processor on the HTTP
server isto make sense of it. RCurl doesn't try to interpret the name-value pairs, but just transports them.

Let'slook at an example of sending a query to Google (viaHTTP rather thanits AP).

get Form("http://ww. googl e. conf search”, hl="en", Ir="", ie="1S0O 8859-1",
Theresult isthe HTML you would ordinarily seein your browser. Y ou might use

ht M Tr eePar se

to parse it. What is important in the example is that we are specifying the required fields in the query as
named argumentsto R.

get Form

takes care of bringing them together and constructing the full URI name. Note that libcurl also handles
escaping the special characters, e.g. converting a space to %20. Note that if you wanted to explicitly do this
escaping on a string rather than having libcurl implicitly do it, you can use

curl Escape
. Similarly, there is afunction

curl Unescape
to reverse the escaping and make a string "human-readable”.

post Form
isalmost identical. Let's submit a POST form to http://www.speakeasy.org/~cgires/perl_form.cgi

post Form("http://ww. speakeasy. org/ ~cgi res/ perl _formcgi",

"some_text" = "Duncan",
“choi ce" = "Ho",
“radbut" = "eep",

"box" = "box1l, box2"

)

Here, the form elements are named some_text, choice, radbut, box. We have smply provided values for
them. Again, the result is the regular response from the HTTP server.

Sometimes we already have the argumentsin a list. It is slightly more complex then to pass them to the
function viathe ... argument. The two form submission functionsin RCurl (

get Form

and

post Form

) aso accept the name-value arguments via the ... parameter. This arises in programmatic access to the
functions rather than interactive use.

Sinceweuse ... for the name-value pairs of the form, we cannot specify thelibcurl options (unambiguously)
in thisway and we require than any such options to control the HTTP request at the libcurl-level be passed

g="RCur

http://www.speakeasy.org/~cgires/perl_form.cgi

viathe. opt s parameter. RCurl and libcurl construct the HTTP request and after that, the request is just
like aregular URI download. All of the usual techniques for reading the response, its header, etc. work.

CURL Handles

The functions we have presented above are the high-level entry pointsthat allow R users to make the com-
mon-style HTTP requests. The RCurl package is capable of more however. It provides access to the basic
libcurl primitives which one can use to compose more complicated and non-standard HT TP requests. For
the most part, one merely specifies libcurl options by name to the different functions and these take effect
for that call. An alternative model (used morein C code) is that we first create alibcurl object to represent
the HTTP request, then we customize it by setting options and then we invoke the request. Thisisfar more
involved than we need in R. Thereis asimplicity about the

get URL

function that removes the need to know about the internal C structure representing the call. However, there
are occasions when it is useful to know about this and exploit it. Specifically, one can create an instance
of thislibcurl "handle" and use it in several requests. This has the advantage that we do not have to set the
optionsin each call, but rather can do thisjust once. This saves amarginal amount of timein R by reducing
the computations, but it will be essentially negligiblerelative to the network latency involved in the request
itself. What is more important is that if the sequence of requests are to the same server, the libcurl engine
can maintain the connection to the server and avoid having to reestablish it each time. This handshaking
is quite expensive, so reusing the "handle" in such situations can yield non-trivial performance gains. It is
also even possible to "pipeline” requests by sending multiple requests before getting the answer back for
the first one. This again can improve performance.

Now that we both know about theinternal libcurl structures and know why we might beinterested in reusing
them across requests, the question remains how do we do this. It is quite easy. Each of the "action" func-
tionsin the package (i.e. that work with libcurl directly) have a parameter named cur | . For each of these
functions, the default valueis

get Curl Handl e

and what this means is that, if no value is given for cur | , anew handleis created for the duration of this
call. So it is easy for us to create such a handle before calling one of these functions and then pass that
as the value for cur | . For example, we can make two requests to the www.omegahat.org site using the
same handle as follows:

handl e = get Curl Handl e()
a = getURL("http://ww. onegahat.org/RCurl", curl = handle)
b get URL("http://ww. onegahat.org/", curl = handl e)

Itisimportant to remember that if we set any optionsin any of the calls, thesewill be setin thelibcurl handle
and these will persist across requests unless they are reset. For example, if we had set the

option in thefirst call above, it would remain set for the second call. This can be sometimes inconvenient.
In such cases, either use separate libcurl handles, or reset the options.

The function

dupCur | Handl e

allows us to create a new libcurl handle that is an exact copy of the existing one. This allows us to quickly
reuse existing settings without having them affect other requests. (The data in the option values are not
copied). See

10

By reusing libcurl handles, we avoid reallocating a new one and potentially benefit from improved con-
nectivity. One downside, however, when reusing handles is that the options we set in R need to be copied
as C data since they will persist across R function calls in the libcurl handle itself. As a result, there are
additional computations needed. Again, thisis negligible in amost all cases and will be dominated by the
network speed.

libcurl doesn't have any explicit function for fetching aURL. Instead, it uses apowerful but simpleinterface
which involves merely setting the optionsin the libcurl handle as desired and then invoking the request. So
one just prepares the request and forces it to be sent. Thisisdone viathe

curl Perform

functionin R. Thisis how

get URL
is actually implemented.

Statistics on the Request

Sisastatistical programming language and environment so why not gather datawhen we can. The function

getCurllnfo
allows us to find out information about the last request made for a given libcurl handle. (Of course, this
assumes we have explicitly created the handle rather than used the default value for cur | and so lost it.)

h = get Curl Handl e()
get URL("htt p://ww. onegahat.org", curl = h)
nanes(get Curl I nfo(h))

The names of the resulting elements are

[1] "effective.url" "response. code"
[3] "total.time" "namel ookup. ti me"
[5] "connect.tine" "pretransfer.time"
[7] "size.upl oad" "si ze. downl oad"
[9] "speed. downl oad" "speed. upl oad"
[11] "header. si ze" "request. si ze"
[13] "ssl.verifyresult” "filetinme"
[15] "content. | ength.downl oad" "content. | ength. upl oad"
[17] "starttransfer.tinme" "content.type"
[19] "redirect.tine" "redirect.count”
[21] "private" "http. connect code"
[23] "httpauth.avail" "proxyaut h. avai | "

These provide us the actual name of the URI downloaded after redirections, etc.; information about the
transfer speed, etc.; etc. See the man page for

libcurl Version Information

The RCurl package provides away to obtain reflectance information about libcurl itself. The function

curl Versi on

returns the contents of the
<c:struct>curl_version info_data</c:struct>
structure.

11

For my installation, the return value from

curl Versi on
is

ps”

The help page for the R function explains the fields which are hopefully clear from the names. The on-
ly ones that might be obscure are ar es and | i bi dn. ar es refers to asynchronous domain name serv-
er (DNS) lookup for resolving the IP address (e.g. 128.41.12.2) corresponding to a machine name (e.g.
www.omegahat.org). "GNU Libidn isan implementation of the Stringprep, Punycode and IDNA specifica-
tions defined by the IETF Internationalized Domain Names (IDN)" (taken from http://www.gnu.org/soft-
ware/libidn/).

12

http://www.gnu.org/software/libidn/
http://www.gnu.org/software/libidn/

Initialization

As with most C libraries, one must typically initiaize it to get the basic run-time structure established.
Fortunately, when we call any of the R functions, thisis taken care of implicitly; libcurl handles this when
we create anew handle. However, sometimesit isimportant to explicitly specify optionsto control how the
library isinitialized. RCurl provides away to do this viathe

curl d obal I nit

function. The only argument isaflag that indicates what featuresto initiaize. For the most part, the defaults
work best and we can leave libcurl to perform this initialization. However, we may need to be careful that
weare not re-initializing asetting that R (or generally the host application) has already set. Thismay happen
on Windows aslibcurl initialize the Win32 socket library. We can avoid this, if necessary, but telling libcurl
to initialize only the SSL facilities.

The argument to

curl d obal I nit

is typically a character vector of names of features to turn on. The possible names can be obtained from
Cur | d obal Bi t s whichisanamed integer vector:

none ssl w n32 al |

0 1 2 3
attr(,"class")
[1] "Curl dobal Bits" "Bitlndicator"

We would call

curl G obal I nit

as

curldoballnit(c("ssl", "win32"))
or

curldobal lnit(c("ssl"))
to activate both SSL and Win32 sockets, or just SSL respectively.

One can specify integer values directly, but thisisless readable to others (or yourself in afew weeks!). The
names are converted and combined to aflag using

setBitlndicators

Options

Itishopefully clear that itisthelibcurl optionsthat makethisinterface work and allow usto makeinteresting
queries. From specifying the URI to how to read the text, to providing passwords, it is the options that are
critical. For the most part, these options are passed by name to functionsin RCurl viathe ... mechanismin
R and the . opt s argument. These two collections of arguments are merged, with those in ... overriding
corresponding onesin the . opt s object.

Why do we havethe. opt s argument? Thereason issimilar to the. par ans in the form functions: often
we havetheoptionsinalist and it isnot as convenient to use the ... approach. Having both allowsthe caller/
programmer to use whichever is most convenient.

13

Onecaseinwhichthe. opt s argument isuseful isif wewant to prepare aset of optionsthat areto beusedin
al (or aset of) calls. We can combine these argumentsinto alist just once and then passthemto each HTTP
reguest easily by simply using that variable. Sincewe mergethevauesin ... and. opt s, thisworksnicely.

To create such alist of options, we can use the function

curl Opts

. This creates an S3-style object with class
<s.class>CURL Options</s.class>
. Thisfunction never involveslibcurl, but sortsout the names of the options by using partial matching (viathe

mapCur | Opt Nanes

function) and returns an R object with the options as name-value pairsin alist. The fact that thisisaclass
means that if we access any elements, the full names are used, even when we set an element. This means
that the names are kept resolved aswe use it in R and correspond unambiguously to real libcurl options.

We can use this function something like the following.

opts = curl Opti ons(header = TRUE, userpwd = "bob:duncantl", netrc = TRUE)
get URL("http://ww. onegahat . org/ RCurl /test Password/i ndex. htm ", verbose = TRUE,

Here we create the options ahead of time and use them in a call while specifying additiona options (i.e.
"verbose").

Some readers will have noticed that we could achieve the same effect of having a set of fixed options that
are used in a collection of calls by reusing a libcurl handle. We could create the handle, set the common
options, and then use that handle in the set of calls. Thisisindeed anatural and often good way to do things.
The following code does what we want.

h = get Curl Handl e(header = TRUE, userpwd = "bob: duncantl", netrc = TRUE)

get URL("htt p://ww. onegahat . or g/ RCurl /t est Password/i ndex. htm ", verbose = TRUE,

Thefirst line creates a new handle and fillsin the three "persistent” options. These are in the handle itself,
not in R at this stage. Now, when we perform the request via

get URL
, we specify thislibcurl handle and provide the "verbose" option.

The function

curl Set Opt

is used implicitly in the code above and this actually sets the option-values in a libcurl handle. It can also
be used to simply resolve them.

Example Application

In thissection, wewill outline amore complex use of the RCurl facilities. Specifically, wewill useit to send
SOAP [2] [18] requests. SOAP uses HTTP to send XML content that encodes a method invocation. We
haveto add the appropriate fieldsto the HT TP header to identify the SOAP call and then insert the XML that
definesthe method call in the body of the request. Using our favorite client SOAP facility (e.g. SOAP::Lite,
SSOAP), we can send the SOAP request that performs the HTTP request. We can find out what the actual
HTTP request looks like using facilities in those tools or actually sniffing the packets as they go across the
wire using tcpdump or ethereal or some such tool. Thisiswhat we see. The HTTP header in the request is

14

. C

cu

http://www.omegahat.org/SSOAP

POST /hibye.cgi HTTP/1.1

Connection: close

Accept: text/xml

Accept: multipart/*

Host: services.soaplite.com

User-Agent: SOAP::Lite/Perl/0.55

Content-L ength: 450

Content-Type: text/xml; charset=utf-8
SOAPAction: "http://www.soaplite.com/Demo#hi”

The body of the request is

<?2xml version="1.0" encoding="UTF-8"7>
<SOAP-ENV :Envelope SOAP-ENV :encodingStyle="http://schemas.xml soap.org/soap/encoding/"
xmins. SOAP-ENV ="http://schemas.xml soap.org/soap/envel ope/”
xmins:xsd="http://www.w3.0rg/1999/X M L Schema"
xmins. SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/
xmins:xsi="http://www.w3.0rg/1999/X ML Schema-instance" >
<SOAP-ENV:Body>
<namespl:hi xmlns.namespl="http://www.soaplite.com/Demao"/>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

So we need to add fields to the HTTP header. Specifically, we need

Accept: text/xml

Accept: multipart/*

SOAPAcction: "http://www.soaplite.com/Demo#hi"
Content-Type: text/xml; charset=utf-8

libcurl should take care of the Content-Length field. The body is specified for the HTTP request using the
postfields option. To do thisusing the RCur | package, we use the following code.

body = '<?xm version="1.0" encodi ng="UTF- 8" ?>\
<SOAP- ENV: Envel ope SOAP- ENV: encodi ngStyl e="htt p://schemas. xm soap. or g/ soap/ encodi n
xm ns: SOAP- ENV="htt p: / / schemas. xm soap. or g/ soap/ envel ope/ " \
xm ns: xsd="http://ww. w3. org/ 1999/ XM_Schema" \
xm ns: SOAP- ENC="htt p: / / schemas. xm soap. or g/ soap/ encodi ng/ " \
xm ns: xsi ="http://ww. w3. or g/ 1999/ XM_Schena- i nst ance" >\
<SOAP- ENV: Body>\
<namespl: hi xm ns: namespl="http://ww. soaplite.conl Denp"/ >\
</ SOAP- ENV: Body>\
</ SOAP- ENV: Envel ope>\ n'

curl Perform(url ="http://services.soaplite.cont hi bye.cgi",

15

http://cran.r-project.org/web/packages/RCurl/index.html

htt pheader =c(Accept="text/xm ", Accept="nultipart/*", SOAPAction=""htt
"Content-Type' = "text/xm; charset=utf-8"),

post fi el ds=body,

verbose = TRUE

)

Note that this similar to calling

get URL
and we have used it to illustrate how we can use

curl Perform

directly. The only difference is that the result is printed to the console, not returned to us as a character
vector. Thisisaproblem when we really want to process the response. So for that, we would simply replace
the call to

curl Perform
with
get URL

curl Perfornm(url ="http://services.soaplite.coni hibye.cgi"
htt pheader =c(Accept="text/xm ", Accept="nultipart/*", SOAPAction=""htt
"Content-Type' = "text/xm; charset=utf-8"),
post fi el ds=body,
verbose = TRUE

)
Additional Notes

These were written before the package was finished. They are left here, but may not be helpful.

Providing Text Handlers

One can provide a different text handler to consume/process the text that is received by the libcurl engine
from the HTTP response. We can do this with either an S function or with a C routine. At the lowest level,
thereisaCroutine, but R userswill typically be most comfortable with ahigher-level function. Functionsare
more robust, and also provide a more obvious way of maintaining state. We use closures and environments
in R to endow afunction with its own local variablesthat persist across calls.

One can envisage a scenario in which the text handler would want to be able to access the CURL handle
that was being used in the request. For example, it might use this to find the base URL, to determine the
actual host, or identify settings that are in effect, or simply reuse the handle (by duplicating it). Rather than
make the curl object explicitly available, one can initialize it separately ahead of the call to

get URL

, and then make it available to the R function as a variable in the function's environment. A more realistic
example s the following. Suppose we want to parse HTML files and follow the links within those files to
find their links. Thisis aspider or 'bot. We can fetch the entire document via

get URL

and then parseit (using

16

ht m Tr eePar se
). Alternatively, we can use

ht m Tr eePar se

and provide it with a connection from which the HTML/XML parser requests content as it is needed. We
can then setup this connection from which the XML parser reads by having it be supplied by the

get URL

text gatherer. We can parse a document and collect the names of all the links to which it refers and then
process each of them. An aternativeisto process anindividual link when it is discovered. There are trade-
offs between the two approaches. However, it is good to be able to do both.

In order to do this, we might want to have access to the CURL handle within the XML parser. When we
handle an HREF element (i.e.), we would then duplicate the handle and start another HTML
parser.

Obvioudly, this example is a'so somewhat contrived as the XML/HTML parsing facilities have their own
HTTPfacilities. However, they do not understand all thefiner pointsof HTTP such as SSL, FTP, passwords,
etc.

Note
@ Thisis not avery compelling example anymore!

Alternatives

Using libcurl is by no means the only approach to getting HTTP accessin R. Firstly, we have HT TP access
in R via the facilities incorporated from libxml (nanohttp and nanoftp). These are, as the names suggest,
basi ¢ implementations of the protocolsand do not provideall the bellsand whistleswe might need generally.
Also, they are not customizable from within R. Specifically, we cannot add header fields, handle binary
data, set the body of the request, etc.

We can use R's socket connections and implement the details of HTTP ourselves. Thereis a great deal of
work in this as we have discussed before. Also, we currently don't have secure sockets (i.e. using SSL)
inR1 initially started using this approach so that | could discover the nuances of HTTP. It quickly gets
overwhelming to handle al the details. It is more tedious than technically challenging, especialy when
others have doneit already in C libraries and done it well. The code that | haveisin an unreleased package
named ht t pCl i ent . If anyone is interested, please contact me. Using R's sockets is also used in the
httpRequest package on CRAN. This allows submitting forms and retrieving URIs. It is useful and, as
the authors state, a "basic HTTP request”" implementation. It doesn't escape characters, handle chunked
responses, do redirects, support SSL, etc. It isflexible but leaves alot to the user to do to setup the request
and process the response. RCurl inherits many, many good features for "free" from libcurl.

libcurl is not the only C-level library that we could have used. Alternative libraries include libwww from
the W3 group. We may find that that is more suitable, but libcurl will definitely suffice for the present.

Notes

libcurl can use ares for asynchronous DNS resolution.

! havealocal version (not with SSL) but they are not connections since the connection data structure is not exposed inthe R AP, yet!

17

http://cran.r-project.org/web/packages/httpClient/index.html
http://cran.r-project.org/src/contrib/DESCRIPTIONS/httpRequest.html
http://www.w3.org/Library/
ftp://athena-dist.mit.edu/pub/ATHENA/ares/

Bibliography

[1] Sandrine Dudoit, Sunduz K eles, and Duncan Temple Lang. The odbAccess package: creating Sfunctions
from HTML forms.. odbAccess (coming soon)

[2] James Snell, Doug Tidwell, and Pavel Kulchenko. Programming Web Services with SOAP. O'Relilly

18

http://www.omegahat.org/odbAccess
http://www.oreilly.com/catalog/progwebsoap/

	
	Table of Contents
	Overview
	A Quick Tour
	Forms

	CURL Handles
	Statistics on the Request
	libcurl Version Information
	Initialization
	Options
	Example Application
	Additional Notes
	Providing Text Handlers
	Alternatives
	Notes

	
	Bibliography

