
Introduction to the xps Package: Function express()

Christian Stratowa

October, 2009

Contents

1 Introduction 1

2 Computing RMA using function express() 2
2.1 Compute RMA with a single call to express . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Compute RMA stepwise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 Background Correction using express() 8
3.1 rma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 sector (mas4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 weightedsector (mas5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 gccontent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Probe-level Normalization using express() 14
4.1 quantile (rma) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 mean/median (constant) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 lowess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4 supsmu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Summarization using express() 18
5.1 medianpolish (rma) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 avgdiff (mas4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3 tukeybiweight (mas5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.4 dfw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.5 farms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6 Probeset-level Normalization using normalize() 24
6.1 mean/median (mas) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2 lowess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.3 supsmu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1 Introduction

This document describes how to use function express to combine different preprocessing methods,
which are currently available in package xps i.e. methods for (i) background correction, (ii) probe-level
normalization, and (iii) summarization. These different methods, or a subset thereof, can be computed
with a single call to function express, or in a stepwise manner by calling express consecutively with
the result of one call used as input for the next call. Applying express stepwise has certain advantages,
which will be explained later. Since express is a wrapper function to method xpsPreprocess both

1



function calls can be used.

In addition to the mentioned preprocessing steps it is sometimes advisable to add a further pre-
processing step after the summarization step, i.e. (iv) probeset-level normalization. One example is
the MAS5 algorithm where the expression measures are usually scaled to a predefined target intensity
(Affymetrix, 2002). This additional step is handled by function normalize, which is a wrapper to
method xpsNormalize.

Using a subset of the Affymetrix Exon Array Data Set ”Tissue Mixture” for the expression array
”Human Genome U133 Plus 2.0”, examples will be presented for all available algorithms for the different
preprocessing methods. The aim of this document is to explain all parameters for all methods in detail
based on the examples presented.

Note: In order to keep this document short, only example code will be presented here, the full
source code is available in file ”script4xpsPreprocess.R” located in directory ”xps/examples”.

2 Computing RMA using function express()

In the following subsections we will demonstrate how to compute RMA using the general function
express. However, first it is necessary to load the ROOT scheme and ROOT data files, as explained in
vignette ”xps.pdf” (Overview):

> scheme.u133p2 <- root.scheme(paste(scmdir, "Scheme_HGU133p2_na28.root",

+ sep = "/"))

> data.u133p2 <- root.data(scheme.u133p2, paste(datdir, "HuTissuesU133P2_cel.root",

+ sep = "/"))

Usually, RMA is computed with a simple call to function rma:

> data.rma <- rma(data.u133p2, "MixU133P2RMA", filedir = outdir)

2.1 Compute RMA with a single call to express

Using a single call to function express RMA is computed as follows:

> expr.rma <- express(data.u133p2, "U133P2Exprs", filedir = outdir,

+ tmpdir = "", update = FALSE, bgcorrect.method = "rma", bgcorrect.select = "none",

+ bgcorrect.option = "pmonly:epanechnikov", bgcorrect.params = c(16384),

+ normalize.method = "quantile", normalize.select = "pmonly",

+ normalize.option = "transcript:together:none", normalize.logbase = "0",

+ normalize.params = c(0), summarize.method = "medianpolish",

+ summarize.select = "pmonly", summarize.option = "transcript",

+ summarize.logbase = "log2", summarize.params = c(10, 0.01,

+ 1))

Valid expression levels can be obtained by calling

> expr <- validExpr(expr.rma)

2.2 Compute RMA stepwise

Alternatively, function express can be used to compute RMA step-by-step. This can have the following
advantages:

2



• different algorithms can be tested at each step and combined w/o the need to re-calculate the
earlier step(s)

• quality control tests for each array can be done separately at each step

• stepwise computation is useful when computing RMA for 10,000 CEL-files or more

1. step: background correction for DateTreeSet data.u133p2:

The code for computing rma background correction is as follows:

> bgrd.rma <- express(data.u133p2, "BgrdRMA", filedir = outdir,

+ tmpdir = "", update = FALSE, bgcorrect.method = "rma", bgcorrect.select = "none",

+ bgcorrect.option = "pmonly:epanechnikov", bgcorrect.params = c(16384))

Note: For background correction is is not allowed to define a tmpdir, otherwise all trees would be
stored in a temporary ROOT file and file BgrdRMA.root would be empty.

Now we can do some quality controls such as drawing images, density plots and boxplots.

First we draw the images for background values and background-corrected intensities, respectively,
for e.g. array ”ProstateA”:

> bgrdnames <- colnames(validBgrd(bgrd.rma))

> datanames <- colnames(validData(bgrd.rma))

> image(bgrd.rma, bg = TRUE, transfo = log2, col = heat.colors(12),

+ names = bgrdnames[4])

> image(bgrd.rma, transfo = log2, col = heat.colors(12), names = datanames[4])

3



Then we draw the density plots for raw and background-corrected intensities, respectively:

> hist(data.u133p2, which = "pm")

> hist(bgrd.rma, which = "pm")

Finally we draw the boxplots for raw and background-corrected intensities, respectively:

> boxplot(data.u133p2, which = "pm")

> boxplot(bgrd.rma, which = "pm")

Alternatively, it is also possible to draw boxplots for background values and background-corrected
intensities, respectively, as follows:

> bgrd <- validBgrd(bgrd.rma, which = "pm")

> data <- validData(bgrd.rma, which = "pm")

> boxplot(log2(bgrd), las = 2)

> boxplot(log2(data), las = 2)

4



2. step: quantile normalization for resulting DateTreeSet bgrd.rma:

Using the background-corrected data bgrd.rma as input the code for computing quantile normal-
ization is as follows:

> norm.qu <- express(bgrd.rma, "NormQuan", filedir = outdir, tmpdir = "",

+ update = FALSE, normalize.method = "quantile", normalize.select = "pmonly",

+ normalize.option = "transcript:together:none", normalize.logbase = "0",

+ normalize.params = c(0))

Note: For the normalization step is is also not allowed to define a tmpdir, otherwise all trees would
be stored in a temporary ROOT file and file NormQuan.root would be empty.

Now we draw density plots and boxplots of the normalized intensities as quality controls:

> hist(norm.qu, which = "pm")

> boxplot(norm.qu, which = "pm")

5



In addition we can draw scatter plots between normalized intensities at the probe-level:

> data <- validData(norm.qu, which = "pm")

> plot(log2(data[, 1]), log2(data[, 2]), xlab = "BreastA", ylab = "BreastB")

> plot(log2(data[, 1]), log2(data[, 4]), xlab = "BreastA", ylab = "ProstateA")

3. step: median-polish summarization for resulting DateTreeSet norm.qu:

Finally we do medianpolish summarization, using the normalized data norm.qu as input:

> expr.mp <- express(norm.qu, "ExprMedpol", filedir = outdir, tmpdir = "",

+ update = FALSE, summarize.method = "medianpolish", summarize.select = "pmonly",

+ summarize.option = "transcript", summarize.logbase = "log2",

+ summarize.params = c(10, 0.01, 1), bufsize = 32000)

Note 1: For the summarization step is is possible to define a tmpdir; when handling hundreds of
trees on computers with 1 GB RAM only, it is even the recommended way for multichip summarization
methods such as medianpolish.

Note 2: When using a multichip summarization method with data consisting of many thousand
trees it could also be necessary to reduce the basket size of each ROOT tree, e.g. to a size of bufsize=2000.
(Internally, each ROOT tree consists of many tree baskets, and when reading a tree, one basket after the
other is loaded into memory and not the whole tree, thus reducing memory consumption.)

Now we can draw density plots and boxplots of the final expression values:

> hist(expr.mp)

> boxplot(expr.mp)

6



In addition we can draw scatter plots between expression values at the transcript-level:

> expr <- validData(expr.mp)

> plot(log2(expr[, 1]), log2(expr[, 2]), xlab = "BreastA", ylab = "BreastB")

> plot(log2(expr[, 1]), log2(expr[, 4]), xlab = "BreastA", ylab = "ProstateA")

7



3 Background Correction using express()

Currently the following background correction methods are available as bgcorrect.method:

• rma: background is calculated using a global model for the distribution of probe intensities.

• sector: a constant background is calculated for each sector separately and subtracted from
intensities.

• weightedsector: first, a constant background is calculated for each sector separately, then a
weight is calculated and each background value multiplied with the weight to smooth the transition
between sectors, and finally the smoothed background is subtracted from intensities.

• gccontent: background is calculated based on the mean intensity of probes with identical GC
content.

Note: By default the summarization methods farms and dfw skip the background correction step.

3.1 rma

The rma background adjustment method is described in Irizarry (Irizarry et al., 2003). By default PM
probe intensities are corrected by using a global model for the distribution of probe intensities. When us-
ing function express() the following bgcorrect parameters can be used for bgcorrect.method="rma":

Settings to be used for bgcorrect.select:
none: scheme mask is not changed by selector

Settings to be used for bgcorrect.option = "<option>:<kernel>":
option: pmonly, mmonly, both
kernel: epanechnikov, gaussian, rectangular, triangular, biweight, cosine, optcosine

Settings to be used for bgcorrect.params:
numpoints: size of density array, preferrable power of 2 (default: 16384)

The default settings for rma background correction are:

> bgrd.rma <- express(data.u133p2, "BgrdRMA", filedir = outdir,

+ tmpdir = "", update = FALSE, bgcorrect.method = "rma", bgcorrect.select = "none",

+ bgcorrect.option = "pmonly:epanechnikov", bgcorrect.params = c(16384))

3.2 sector (mas4)

The sector background subtraction method divides the array into a certain number of sectors, identifies
the lowest 2% of probe intensities for each sector, and computes their average, whereby all probes are
used (Affymetrix, 2001). When using function express() the following bgcorrect parameters can be
used for bgcorrect.method="sector":

Settings to be used for bgcorrect.select:
all: all probes are selected (default)
pmonly: only PM probes are selected
mmonly: only MM probes are selected
both: both PM and MM probes are selected
none: scheme mask is not changed by selector

8



Settings to be used for bgcorrect.option:
subtractbg: subtract bgrd from intensity (default) - result can be negative
correctbg: correct bgrd with noise fraction to avoid negative results
attenuatebg: use generalized log-transform to avoid negative results

Settings to be used for bgcorrect.params:
The following parameters are necessary:
pcntcells: precent of cells with lowest intensities in each sector (default: 0.02)
secrows: number of sector rows (default: 4)
seccols: number of sector columns (default: 4)
smoothiter: number of iterations used for smoothing of sector bgrd values (default: 0)
Optional parameter when using bgcorrect.option="correctbg":
noisefrac: fraction of global background variation (default: 0.5)
Optional parameters when using bgcorrect.option="attenuatebg":
l: tunable parameter, 0<=l<=1 (default: 0.005)
h: parameter (default: -1)

Using the default settings the MAS4 sector background correction is obtained as follows:

> bgrd.mas4 <- express(data.u133p2, "BgrdMAS4", filedir = outdir,

+ tmpdir = "", update = FALSE, bgcorrect.method = "sector",

+ bgcorrect.select = "all", bgcorrect.option = "subtractbg",

+ bgcorrect.params = c(0.02, 4, 4, 0))

However, using the default settings has severe disadvantages:
First, using bgcorrect.option="subtractbg" results in a high percentage of background-corrected

probe intensities with negative values! This was the most severe problem of the MAS4 algorithm
(Affymetrix, 2001) since it resulted in negative expression levels, too.

Second, to divide an array into 16 sectors was sufficient for the initial expression arrays, e.g.
HuGeneFL, but for the newer arrays, e.g. HG-U133 Plus 2, and especially the whole genome and
exon arrays it would be of advantage to divide the array into more sectors, e.g. 64 sectors.

Thus, the following setup is recommended for sector background correction:

> bgrd.mas <- express(data.u133p2, "BgrdMAS8x8", filedir = outdir,

+ tmpdir = "", update = FALSE, bgcorrect.method = "sector",

+ bgcorrect.select = "both", bgcorrect.option = "correctbg",

+ bgcorrect.params = c(0.02, 8, 8, 3, 0.5))

Here we divide each array into 8x8 sectors, use only PM+MM probes, and use bgcorrect.option="correctbg",
which is the default option for MAS5 and avoids negative probe intensities.

Now we can compare the resulting background values by drawing the corresponding images:

> bgrdnames <- colnames(validBgrd(bgrd.mas4))

> image(bgrd.mas4, bg = TRUE, transfo = log2, col = heat.colors(12),

+ names = bgrdnames[4])

> bgrdnames <- colnames(validBgrd(bgrd.mas))

> image(bgrd.mas, bg = TRUE, transfo = log2, col = heat.colors(12),

+ names = bgrdnames[4])

9



As both figures show there is a density gradient indicating that there might have been a problem
with the staining/washing step of this specific array. However, the right image shows this effect more
clearly, and additionally it results in more smooth transitions between adjacent sectors.

Note: To test the quality of arrays with respect to potential density gradients, I would propose to
use the sector background with 8x8 sectors and option "correctbg". In addition, these settings could
also replace the default MAS5 weightedsector background algorithm described below.

3.3 weightedsector (mas5)

The weightedsector background correction method divides the array into a certain number of sectors
and identifies the lowest 2% of probe intensities for each sector. However, in contrast to sector only PM
and MM probes are used and each probe is adjusted based upon a weighted average of the backgrounds
for each of the sectors. The weights are based on the distances between the location of the probe and
the centriods of the different sectors (Affymetrix, 2002). When using function express() the following
bgcorrect parameters can be used for bgcorrect.method="weightedsector":

Settings to be used for bgcorrect.select:
all: all probes are selected
pmonly: only PM probes are selected
mmonly: only MM probes are selected
both: both PM and MM probes are selected (default)
none: scheme mask is not changed by selector

Settings to be used for bgcorrect.option:
subtractbg: subtract bgrd from intensity - result can be negative
correctbg: correct bgrd with noise fraction to avoid negative results (default)
attenuatebg: use generalized log-transform to avoid negative results

Settings to be used for bgcorrect.params:
The following parameters are necessary:
pcntcells: precent of cells with lowest intensities in each sector (default: 0.02)
secrows: number of sector rows (default: 4)
seccols: number of sector columns (default: 4)

10



smoothiter: number of iterations used for smoothing of sector bgrd values (default: 0)
smooth: smoothing parameter added to avoid infinite weights (default: 100)
Parameter when using default mas5 background bgcorrect.option="correctbg":
noisefrac: fraction of global background variation (default: 0.5)
Optional parameters when using alternative background bgcorrect.option="attenuatebg":
l: tunable parameter, 0<=l<=1 (default: 0.005)
h: parameter (default: -1)

Using the default settings the MAS5 weightedsector background correction is obtained as follows:

> bgrd.mas5 <- express(data.u133p2, "BgrdMAS5", filedir = outdir,

+ tmpdir = "", update = FALSE, bgcorrect.method = "weightedsector",

+ bgcorrect.select = "both", bgcorrect.option = "correctbg",

+ bgcorrect.params = c(0.02, 4, 4, 0, 100, 0.5))

For quality control purposes we can e.g. draw density plots of the background-corrected intensities,
and boxplots of the background values:

> hist(bgrd.mas5, which = "both")

> bgrd <- validBgrd(bgrd.mas5)

> boxplot(log2(bgrd), las = 2)

The density plot of the background-corrected intensities reveals a small peak around zero log in-
tensity indicating that for a certain fraction of probes intensities were replaced by the noise fraction.
Reducing the lowest percentage of cells used for background correction to 0.5%, i.e. pcntcells=0.005
eliminated this peak almost completely.

As already explained for sector background, it is of advantage to increase the number of sectors
used to 8x8 sectors:

> bgrd.mas <- express(data.u133p2, "BgrdMAS5_8x8", filedir = outdir,

+ tmpdir = "", update = FALSE, bgcorrect.method = "weightedsector",

+ bgcorrect.select = "both", bgcorrect.option = "correctbg",

+ bgcorrect.params = c(0.02, 8, 8, 3, 100, 0.5))

11



As above, we can compare the resulting background values by drawing the corresponding images:

> bgrdnames <- colnames(validBgrd(bgrd.mas5))

> image(bgrd.mas5, bg = TRUE, transfo = log2, col = heat.colors(12),

+ names = bgrdnames[4])

> bgrdnames <- colnames(validBgrd(bgrd.mas4))

> image(bgrd.mas, bg = TRUE, transfo = log2, col = heat.colors(12),

+ names = bgrdnames[4])

Due to the weighting algorithm used, each sector is smoothed so that it is a ”cone” centered in the
middle of the sector. Once again, the right image shows the density gradient more clearly and results
in more smooth transitions between adjacent sectors.

Note: Due to the weighting algorithm used computing the weightedsector background consumes
large amounts of memory, which can be a severe problem when trying to use 8x8 sectors for high density
arrays, especially exon arrays.

3.4 gccontent

The gccontent background attenuation method identifies MM probes and PM probes with the same GC
content and uses the mean intensity of the MM probes to ”attenuate” the corresponding PM intensities.
It was introduced by Affymetrix for the exon arrays containing special ”genomic” and ”antigenomic”
probes (Affymetrix, 2005), but can also be used for expression arrays. When using function express()
the following bgcorrect parameters can be used for bgcorrect.method="gccontent":

Settings to be used for bgcorrect.select:
all: all probes are selected
pmonly: only PM probes are selected
mmonly: only MM probes are selected
both: both PM and MM probes are selected
none: scheme mask is not changed by selector

Settings to be used for bgcorrect.option:
subtractbg: subtract bgrd from intensity - result can be negative

12



correctbg: correct bgrd with noise fraction to avoid negative results
attenuatebg: use generalized log-transform to avoid negative results (default)

Settings to be used for bgcorrect.params:
The following parameters are necessary:
trim: trim value for trimmed mean (default: 0.5)
Parameters when using default background bgcorrect.option="attenuatebg":
l: tunable parameter, 0<=l<=1 (default: 0.005)
h: parameter (default: -1)
Optional parameter when using background bgcorrect.option="correctbg":
noisefrac: fraction of global background variation (default: 0.5)

The gccontent background correction is computed as follows:

> bgrd.gc <- express(data.u133p2, "BgrdGC", filedir = outdir, tmpdir = "",

+ update = FALSE, bgcorrect.method = "gccontent", bgcorrect.select = "none",

+ bgcorrect.option = "attenuatebg", bgcorrect.params = c(0.4,

+ 0.005, -1))

For quality control purposes we can draw density plots of the background-corrected intensities, and
boxplots of the background values:

> hist(bgrd.gc, which = "pm")

> bgrd <- validBgrd(bgrd.gc, which = "pm")

> boxplot(log2(bgrd), las = 2)

In addition we can draw the image for the background values:

> bgrdnames <- colnames(validBgrd(bgrd.gc))

> image(bgrd.gc, bg = TRUE, transfo = log2, col = heat.colors(12),

+ names = bgrdnames[4])

13



4 Probe-level Normalization using express()

Currently the following probe-level normalization methods are available as normalize.method:

• quantile: normalization is done by replacing sorted intensities with the respective column means.

• mean: all arrays are scaled so that they have the same trimmed mean value.

• median: all arrays are scaled so that they have the same median value.

• lowess: each array is normalized to a reference array using locally-weighted polynomial regression.

• supsmu: each array is normalized to a reference array by applying Friedmann’s super smoother.

Note 1: The following examples will be based on sector background bgrd.mas although we could
use any of the above background algorithms, or even skip the background correction by using the raw
data data.u133p2.

Note 2: By default the summarization methods avgdiff (MAS4) and tukeybiweight (MAS5) skip
the probe-level normalization step, i.e. use data.u133p2.

4.1 quantile (rma)

The quantile normalization method was introduced by Bolstad (Bolstad et al., 2003) with the goal to
give each array the same empirical distribution. To allow quantile normalization of many thousand
arrays on computers with 1-2 GB RAM only, package xps uses ROOT trees for quantile normalization:
Intensities for each array are sorted and stored in ROOT trees together with their ranks. After replac-
ing the sorted tree entries with the mean entries of all trees, the trees are sorted according to their
original ranks. When using function express() the following normalize parameters can be used for
normalize.method="quantile":

Settings to be used for normalize.select:
pmonly: only PM probes are selected
mmonly: only MM probes are selected
both: both PM and MM probes are selected
none: scheme mask is not changed by selector

14



Settings to be used for normalize.option = "<option>:<dataopt>:<bgrdopt>":
option: use unit tree for ”transcript”, ”exon”, ”probeset”
dataopt: applied to PM and MM ”together” or ”separate”
bgrdopt: ”none” - no background subtraction (already done)

Settings to be used for normalize.params:
trim: trim value for trimmed mean (default: 0.0)
delta: use robust ties (0.4 for package affy >=1.16.0) or not (default: 1.0)

The quantile probe-level normalization is computed as follows:

> norm.qu <- express(bgrd.mas, "NormQuan", filedir = outdir, update = FALSE,

+ normalize.method = "quantile", normalize.select = "all",

+ normalize.option = "transcript:together:none", normalize.logbase = "0",

+ normalize.params = c(0, 1))

As for the initial example of step-wise RMA computation (see chapter 2.2 above), density plots,
boxplots and scatter plots can be drawn as quality controls.

4.2 mean/median (constant)

All arrays are scaled so that they have the same mean/median value. This value is determined either
by the mean/median value of a reference tree or by a given target intensity. When using function
express() the following normalize parameters can be used for normalize.method="mean" or for
normalize.method="median", respectively:

Settings to be used for normalize.select:
all: all probes are selected
pmonly: only PM probes are selected
mmonly: only MM probes are selected
both: both PM and MM probes are selected

Settings to be used for normalize.option = "<option>:<dataopt>":
option: use unit tree for ”transcript”, ”exon”, ”probeset”
dataopt: applied to ”all” selected probes

Settings to be used for normalize.logbase:
logbase: ”0” - linear, ”log”, ”log2”, ”log10” - log with base e, 2, 10

Settings to be used for normalize.params:
trim: trim value for trimmed mean (only for method ”mean”)
targetinten: if > 0 then scale mean/median to value of target intensity

The trimmed mean probe-level normalization is computed as follows (by default, a mean reference
tree is computed first):

> norm.mn <- express(bgrd.mas, "NormMean", filedir = outdir, tmpdir = "",

+ update = FALSE, normalize.method = "mean", normalize.select = "both",

+ normalize.option = "transcript:all", normalize.logbase = "0",

+ normalize.params = c(0, -1))

Analogously, when determining a certain target intensity (e.g. 500) as reference, the median probe-
level normalization is computed as follows:

15



> norm.md <- express(bgrd.mas, "NormMedian", filedir = outdir,

+ tmpdir = "", update = FALSE, normalize.method = "median",

+ normalize.select = "pmonly", normalize.option = "transcript:all",

+ normalize.logbase = "log2", normalize.params = c(500), reference.index = 1)

Here the reference index is set to reference.index=1 to prevent computing a mean reference tree
which will not be used since the intensities are normalized to target intensity 500 and not to a reference
tree.

4.3 lowess

Each array is normalized to a reference array using locally-weighted polynomial regression. The reference
array can be one of the arrays or the mean/median of all arrays. When using function express() the
following normalize parameters can be used for normalize.method="lowess":

Settings to be used for normalize.select:
all: all probes are selected
pmonly: only PM probes are selected
mmonly: only MM probes are selected
both: both PM and MM probes are selected

Settings to be used for normalize.option = "<option>:<dataopt>":
option: use unit tree for ”transcript”, ”exon”, ”probeset”
dataopt: applied to ”all” selected probes

Settings to be used for normalize.logbase:
logbase: ”0” - linear, ”log”, ”log2”, ”log10” - log with base e, 2, 10

Settings to be used for normalize.params:
The following parameters are necessary:
span: smoother span (default: 2/3)
iter: number of robustifying iterations (default: 3)
rule: 0, 1 or 2, determines how approx interpolation should be done at ends
f: for approx method ”constant” a value between 0 and 1 (not used)

The lowess probe-level normalization is computed as follows:

> norm.low <- express(bgrd.mas, "NormLowess", filedir = outdir,

+ tmpdir = "", update = FALSE, normalize.method = "lowess",

+ normalize.select = "pmonly", normalize.option = "transcript:all",

+ normalize.logbase = "log2", normalize.params = c(0.67, 3,

+ 0, 0))

4.4 supsmu

Each array is normalized to a reference array by applying Friedmann’s super smoother. The reference
array can be one of the arrays or the mean/median of all arrays. When using function express() the
following normalize parameters can be used for normalize.method="supsmu":

Settings to be used for normalize.select:
all: all probes are selected
pmonly: only PM probes are selected
mmonly: only MM probes are selected
both: both PM and MM probes are selected

16



Settings to be used for normalize.option = "<option>:<dataopt>":
option: use unit tree for ”transcript”, ”exon”, ”probeset”
dataopt: applied to ”all” selected probes

Settings to be used for normalize.logbase:
logbase: ”0” - linear, ”log”, ”log2”, ”log10” - log with base e, 2, 10

Settings to be used for normalize.params:
The following parameters are necessary:
bass: controls smoothness of fitted curve (default: 0.0)
span: fraction of observations in span (default: 0.0)
rule: 0, 1 or 2, determines how approx interpolation should be done at ends
f: for approx method ”constant” a value between 0 and 1 (not used)

The supsmu probe-level normalization is computed as follows:

> norm.sup <- express(bgrd.mas, "NormSupsmuR2", filedir = outdir,

+ tmpdir = "", update = FALSE, normalize.method = "supsmu",

+ normalize.select = "pmonly", normalize.option = "transcript:all",

+ normalize.logbase = "log2", normalize.params = c(0, 0, 2,

+ 0))

As quality control we can draw density plots and boxplots of the normalized probe intensities:

> hist(norm.sup, which = "pm")

> boxplot(norm.sup, which = "pm")

17



5 Summarization using express()

Summarization converts the (background-corrected and/or normalized) probe intensities to the corre-
sponding expression levels for probe sets defined with summarize.option:

transcript: summarization units are transcripts (default)
exon: summarization units are exons (exon arrays only)
probeset: summarization units are probesets (exon arrays only)

Currently the following summarization methods are available as summarize.method:

• medianpolish: fits an additive model using Tukey’s median polish procedure.

• avgdiff: computes the average difference between PM and MM.

• tukeybiweight: a Tukey biweight estimator is used to compute a robust mean of (adjusted)
intensities.

• dfw: a distribution-free weight is applied to each probe before summarization.

• farms: a factor analysis model is used for noise correction of measurement values before summa-
rization.

5.1 medianpolish (rma)

This multichip summarization method fits a robust linear model using Tukey’s median polish proce-
dure. When using function express() the following summarize parameters can be used for summa-
rize.method="medianpolish":

Settings to be used for summarize.select:
pmonly: only PM probes are selected (default)
mmonly: only MM probes are selected

Settings to be used for summarize.logbase:
logbase: ”0” - linear, ”log”, ”log2”, ”log10” - log with base e, 2, 10

Settings to be used for summarize.params:
maxiter: maximal number of iterations (default: 10)
eps: epsilon of test for convergence (default: 0.01)
neglog: substitution for logarithm of negative values (default: 1.0)

The default RMA medianpolish summarization is computed as follows:

> expr.mp <- express(norm.qu, "ExprMedpol", filedir = outdir, update = FALSE,

+ summarize.method = "medianpolish", summarize.select = "pmonly",

+ summarize.option = "transcript", summarize.logbase = "log2",

+ summarize.params = c(10, 0.01, 1))

As for the initial example of step-wise RMA computation (see chapter 2.2 above), density plots,
boxplots and scatter plots can be drawn as quality controls.

18



5.2 avgdiff (mas4)

This summarization method takes the difference PM-MM of every probe pair and averages the differences
over the entire probe set. When using function express() the following summarize parameters can be
used for summarize.method="avgdiff":

Settings to be used for summarize.select:
none: scheme mask is not changed by selector (default)

Settings to be used for summarize.logbase:
logbase: ”0” - linear, ”log”, ”log2”, ”log10” - log with base e, 2, 10

Settings to be used for summarize.params:
STP: number of standard deviations (default: 3)

The MAS4 avgdiff summarization is computed as follows (here we use the background-corrected
intensities bgrd.mas w/o normalization):

> expr.adf <- express(bgrd.mas, "ExprAvgDif", filedir = outdir,

+ update = FALSE, summarize.method = "avgdiff", summarize.select = "none",

+ summarize.option = "transcript", summarize.logbase = "0",

+ summarize.params = c(3))

5.3 tukeybiweight (mas5)

After subtracting an ideal mismatch value from PM, a 1-step Tukey biweight estimator is used to
compute a robust mean of the resulting values. When using function express() the following summarize
parameters can be used for summarize.method="tukeybiweight":

Settings to be used for summarize.select:
none: scheme mask is not changed by selector (default)

Settings to be used for summarize.logbase:
logbase: ”0” - linear, ”log”, ”log2”, ”log10” - log with base e, 2, 10

Settings to be used for summarize.params:
tau: contrast tau (default: 0.03)
scaletau: scale tau (default: 10)
delta: delta for probe value calculation (default: 2.0e-20)
c: a tuning constant (default: 5.0)
eps: small value to avoid zeros in division (default: 0.0001)
neglog: substitution for logarithm of negative values (default: 1.0)
noisefrac: fraction of global background variation (default: 0.5)

The MAS5 tukeybiweight summarization is computed as follows (here we use the background-
corrected intensities bgrd.mas w/o normalization):

> expr.tbw <- express(bgrd.mas, "ExprTukey", filedir = outdir,

+ update = FALSE, summarize.method = "tukeybiweight", summarize.select = "none",

+ summarize.option = "transcript", summarize.logbase = "log2",

+ summarize.params = c(0.03, 10, 2e-20, 5, 1e-04, 1, 0.5))

19



Now we can draw density plots and boxplots of the final expression values:

> hist(expr.tbw)

> boxplot(expr.tbw)

As the boxplot reveals no probe-level normalization was done since the MAS5 algorithm usually
scales the expression levels to a certain target intensity (see function normalize).

In addition we can draw scatter plots between expression values at the transcript-level:

> expr <- validData(expr.tbw)

> plot(log2(expr[, 1]), log2(expr[, 2]), xlab = "BreastA", ylab = "BreastB")

> plot(log2(expr[, 1]), log2(expr[, 4]), xlab = "BreastA", ylab = "ProstateA")

20



5.4 dfw

This multichip summarization method uses the Tukey weight function to give probes with unusually
high or low variability across arrays small weights. These weighted probe intensities are used to obtain
the summarized expression values (Chen et al., 2007). When using function express() the following
summarize parameters can be used for summarize.method="dfw":

Settings to be used for summarize.select:
pmonly: only PM probes are selected (default)
mmonly: only MM probes are selected
both: both PM and MM probes are selected

Settings to be used for summarize.logbase:
logbase: ”0” - linear, ”log”, ”log2”, ”log10” - log with base e, 2, 10

Settings to be used for summarize.params:
m: exponent for range WR (default: 3)
n: exponent for stdev WSD (default: 1)
c: scale parameter (default: 0.01)

The dfw summarization is computed as follows (w/o background correction):

> expr.dfw <- express(norm.qu, "ExprDFW", filedir = outdir, update = FALSE,

+ summarize.method = "dfw", summarize.select = "pmonly", summarize.option = "transcript",

+ summarize.logbase = "log2", summarize.params = c(3, 1, 0.01))

Now we can draw density plots and boxplots of the final expression values:

> hist(expr.dfw)

> boxplot(expr.dfw)

In addition we can draw scatter plots between expression values at the transcript-level:

> expr <- validData(expr.dfw)

> plot(log2(expr[, 1]), log2(expr[, 2]), xlab = "BreastA", ylab = "BreastB")

> plot(log2(expr[, 1]), log2(expr[, 4]), xlab = "BreastA", ylab = "ProstateA")

21



5.5 farms

This multichip summarization method is based on a factor analysis model for which a Bayesian max-
imum a posteriori method optimizes the model parameters under the assumption of Gaussian mea-
surement noise. Afterwards, the expression levels are estimated from the model (Hochreiter et al.,
2006). When using function express() the following summarize parameters can be used for summa-
rize.method="farms":

Settings to be used for summarize.select:
pmonly: only PM probes are selected (default)
mmonly: only MM probes are selected
both: both PM and MM probes are selected

Settings to be used for summarize.logbase:
logbase: ”0” - linear, ”log”, ”log2”, ”log10” - log with base e, 2, 10

Settings to be used for summarize.params:
version: version of farms package, 131 (farms 1.3.1); 130 (farms 1.3) (default: 131)
weight: hyperparameter (default: 0.5)
mu: hyperparameter (default: 0.0)
scale: scaling parameter (default: 1.0)
tol: termination tolerance (default: 0.00001)
cyc: maximum number of cycles (default: 100)
weighted: weighted mean (for 131 only) (default: 1.0)

The default farms summarization is computed as follows (w/o background correction):

> expr.frm <- express(norm.qu, "ExprFARMS", filedir = outdir, update = FALSE,

+ summarize.method = "farms", summarize.select = "pmonly",

+ summarize.option = "transcript", summarize.logbase = "log2",

+ summarize.params = c(131, 0.5, 0, 1, 1e-05, 100, 1))

22



Now we can draw density plots and boxplots of the final expression values:

> hist(expr.frm)

> boxplot(expr.frm)

In addition we can draw scatter plots between expression values at the transcript-level:

> expr <- validData(expr.frm)

> plot(log2(expr[, 1]), log2(expr[, 2]), xlab = "BreastA", ylab = "BreastB")

> plot(log2(expr[, 1]), log2(expr[, 4]), xlab = "BreastA", ylab = "ProstateA")

Note: Although package farms is available under the GNU GPL License, the authors state on their
web site that: ”This package (i.e. farms 1.x) is only free for non-commercial users. Non-academic users
must have a valid license.” Since I do not know if this statement applies for my C++ implementation,
too, it is recommended that respective users contact the authors of the original package.

23



6 Probeset-level Normalization using normalize()

Currently the following probeset-level normalization methods are available as method:

• mean: all arrays are scaled so that they have the same trimmed mean value.

• median: all arrays are scaled so that they have the same median value.

• lowess: each array is normalized to a reference array using locally-weighted polynomial regression.

• supsmu: each array is normalized to a reference array by applying Friedmann’s super smoother.

6.1 mean/median (mas)

All arrays are scaled so that they have the same mean/median value. This value is determined either by
the mean/median value of a reference tree or by a given target intensity. When using function normal-
ize() the following parameters can be used for method="mean" or for method="median", respectively:

Settings to be used for select:
separate: use separate mask for each normalization (default)
together: use combined masks for normalization

Settings to be used for normalize.option = "<option>:<dataopt>":
option: use unit tree for ”transcript”, ”exon”, ”probeset”
dataopt: applied to ”all” selected probes

Settings to be used for normalize.logbase:
logbase: ”0” - linear, ”log”, ”log2”, ”log10” - log with base e, 2, 10

Settings to be used for normalize.params:
trim: trim value for trimmed mean (only for method ”mean”)
targetinten: if > 0 then scale mean/median to value of target intensity

The trimmed mean probeset-level normalization is computed as follows:

> nrxp.mn <- normalize(expr.tbw, "NrmExpMean", filedir = outdir,

+ update = FALSE, select = "separate", method = "mean", option = "transcript:all",

+ logbase = "0", refindex = 1, refmethod = "mean", params = c(0.02,

+ 500))

Here the reference index is set to refindex=1 to prevent computing a mean reference tree which
will not be used since the intensities are normalized to target intensity 500 and not to a reference tree.

Now we can draw density plots and boxplots of the normalized expression values:

> hist(nrxp.mn)

> boxplot(nrxp.mn)

24



Note: Probeset-level normalization is usually necessary for the MAS4 and MAS5 algorithms, since
no probe-level normalization is done and the average expression level (after removing the 2% high-
est and lowest expression values) (Affymetrix, 2002) is usually scaled to a ”Target Intensity” such as
targetinten=500 for expression arrays or targetinten=100 for exon arrays.

6.2 lowess

Each array is normalized to a reference array using locally-weighted polynomial regression. The reference
array can be one of the arrays or the mean/median of all arrays. When using function normalize()
the following parameters can be used for method="lowess":

Settings to be used for select:
separate: use separate mask for each normalization (default)
together: use combined masks for normalization

Settings to be used for option = "<option>:<dataopt>":
option: use unit tree for ”transcript”, ”exon”, ”probeset”
dataopt: applied to ”all” probes, selected ”sel” probes only, or percentage probes (range (0,1])

Settings to be used for logbase:
logbase: ”0” - linear, ”log”, ”log2”, ”log10” - log with base e, 2, 10

Settings to be used for params:
The following parameters are necessary:
span: smoother span (default: 2/3)
iter: number of robustifying iterations (default: 3)
rule: 0, 1 or 2, determines how approx interpolation should be done at ends
f: for approx method ”constant” a value between 0 and 1 (not used)

The lowess probeset-level normalization is computed as follows:

> nrxp.low <- normalize(expr.tbw, "tmp_NrmExpLow", filedir = outdir,

+ update = FALSE, select = "separate", method = "lowess", option = "transcript:all",

+ logbase = "log2", refindex = 0, refmethod = "mean", params = c(0.67,

+ 3, 0, 0))

25



6.3 supsmu

Each array is normalized to a reference array by applying Friedmann’s super smoother. The reference
array can be one of the arrays or the mean/median of all arrays. When using function normalize()
the following parameters can be used for method="supsmu":

Settings to be used for select:
separate: use separate mask for each normalization (default)
together: use combined masks for normalization

Settings to be used for option = "<option>:<dataopt>":
option: use unit tree for ”transcript”, ”exon”, ”probeset”
dataopt: applied to ”all” probes, selected ”sel” probes only, or percentage probes (range (0,1])

Settings to be used for logbase:
logbase: ”0” - linear, ”log”, ”log2”, ”log10” - log with base e, 2, 10

Settings to be used for params:
The following parameters are necessary:
bass: controls smoothness of fitted curve (default: 0.0)
span: fraction of observations in span (default: 0.0)
rule: 0, 1 or 2, determines how approx interpolation should be done at ends
f: for approx method ”constant” a value between 0 and 1 (not used)

The supsmu probeset-level normalization is computed as follows:

> nrxp.sup <- normalize(expr.tbw, "tmp_NrmExpSupR2", filedir = outdir,

+ update = FALSE, select = "separate", method = "supsmu", option = "transcript:all",

+ logbase = "log2", refindex = 0, refmethod = "mean", params = c(0,

+ 0, 2, 0))

References

Affymetrix. Genechip expression analysis algorithm tutorial. Technical report, Affymetrix, 2001.

Affymetrix. Statistical algorithms description document. Technical report, Affymetrix, 2002.

Affymetrix. Exon array background correction. Technical report, Affymetrix, 2005.

B.M. Bolstad, R.A. Irizarry, M. Åstrand, and T.P. Speed. A comparison of normalization methods for
high density oligonucleotide array data based on variance and bias. Bioinformatics, 19(2):185–193,
Jan 2003.

Z. Chen, M. McGee, Q. Liu, and R.H. Scheuermann. A distribution free summarization method for
affymetrix genechip arrays. Bioinformatics, 23(3):321–327, Feb 2007.

S. Hochreiter, D.A. Clevert, and K. Obermayer. A new summarization method for affymetrix probe
level data. Bioinformatics, 22(8):943–949, Apr 2006.

Rafael A. Irizarry, Bridget Hobbs, Francois Collin, Yasmin D. Beazer-Barclay, Kristen J. Antonellis,
Uwe Scherf, and Terence P. Speed. Exploration, normalization, and summaries of high density
oligonucleotide array probe level data. Biostatistics, 4(2):249–264, 2003.

26


	Introduction
	Computing RMA using function express()
	Compute RMA with a single call to express
	Compute RMA stepwise

	Background Correction using express()
	rma
	sector (mas4)
	weightedsector (mas5)
	gccontent

	Probe-level Normalization using express()
	quantile (rma)
	mean/median (constant)
	lowess
	supsmu

	Summarization using express()
	medianpolish (rma)
	avgdiff (mas4)
	tukeybiweight (mas5)
	dfw
	farms

	Probeset-level Normalization using normalize()
	mean/median (mas)
	lowess
	supsmu


