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1 Introduction

This vignette contains the computations that underlie the numerical code of vsn. If you are
a new user and looking for an introduction on how to use wvsn, please refer to the vignette
Robust calibration and variance stabilization with vsn, which is provided separately.

2 Setup and Notation

Consider the model
arsinh (f(b;) - Yri + a;) = pir + €p (1)

where ug, for k = 1,...,n, and a;, b;, for ¢ = 1,...,d are real-valued parameters, f is a
function R — R (see below), and y; are i.i.d. Normal with mean 0 and variance o2. yy; are
the data. In applications to parray data, k indexes the features and i the arrays and/or
colour channels.

Examples for f are f(b) = b and f(b) = e’. The former is the most obvious choice;
in that case we will usually need to require b; > 0. The choice f(b) = e’ assures that the
factor in front of yg; is positive for all b € R, and as it turns out, simplifies some of the
computations.



In the following calculations, I will also use the notation

Y=Y(ab) = fO)-y+a @)
h=h(y,a,b) = arsinh(f(b)-y+a). (3)

The probability of the data (ygi)k=1..n, i=1..4 lying in a certain volume element of y-
space (hyperrectangle with sides [ygl,yfz]) is
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where 41, is the expectation value for feature k and o2 the variance.
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the likelihood is
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For the following, I will need the derivatives
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Note that for f(b) = b, we have f/(b) = 1, and for f(b) = e, f'(b) = f(b) = €.
3 Likelihood for Incremental Normalization
Here, incremental normalization means that the model parameters 1, ..., i, and o2 are

already known from a fit to a previous set of parrays, i.e. a set of reference arrays. See
Section 4 for the profile likelihood approach that is used if pg,...,u, and o2 are not



known and need to be estimated from the same data. Versions > 2.0 of the vsn package
implement both of these approaches; in versions 1.X only the profile likelihood approach
was implemented, and it was described in the initial publication [1].

First, let us note that the likelihood (6) is simply a product of independent terms for
different i. We can optimize the parameters (a;, b;) separately for each i = 1,...,d. From
the likelihood (6) we get the i-th negative log-likelihood

d
—log(L) = Y -LL (12)
i=1
n 2 V1+Y2
—~LL;, = glog (2m0?) + Z k) + log 700 i (13)

= glog (2770 ) —nlog f(b; Z (M % 1 + Ykz)>(14)

This is what we want to optimize as a function of a; and b;. The optimizer benefits from
the derivatives. The derivative with respect to a; is
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and with respect to b;
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Here, I have introduced the following shorthand notation for the “intermediate results”
terms
i = h(Yki) — b (17)
1
Api = —F——. (18)

V1+Y2

Variables for these intermediate values are also used in the C code to organise the compu-
tations of the gradient.



4 Profile Likelihood

If p1,..., 1, and o? are not already known, we can plug in their maximum likelihood
estimates, obtained from optimizing LL for ui,..., p, and o2:
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into the negative log-likelihood.

The result is called the negative profile log-likelihood
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Note that this no longer decomposes into a sum of terms for each j that are independent
of each other — the terms for different j are coupled through Equations (19) and (20). We

need the following derivatives.
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So, finally
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5 Summary

Likelihoods, from Equations (12) and (21):
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The computations in the C code are organised into steps for computing the terms “scale”,
“residuals” and “jacobian”.
Partial derivatives with respect to a;, from Equations (15) and (24):
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Partial derivatives with respect to b;, from Equations (16) and (25):
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Note that the terms have many similarities — this is used in the implementation in the
C code.
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