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1 Introduction

topGO package provides a set of classes and methods which allows the user to run the mentioned algo-
rithms/methods. Moreover the user can use the current framework to develop and test new enrichment
algorithms which make use of the GO structure.

This document gives an overview .....

The topGO package is designed to work with different test statistics and with multiple GO graph algorithms,
see [Alexa, A., et al., 2006].

The default algorithm used by the topGO package is a mixture between the elim and the weight algorithms
and it will be referred as topgo (lower-case letters).

Fisher KS t  globaltest Category

classic yes yes  yes yes yes
elim yes yes  yes yes yes
weight yes no no no no
topgo yes yes  yes yes no
parentChild yes no no no no

Table 1: The algorithms supported by topGO.

In this manuscript we will use the terms gene and probe to refer to the same entity. .....

The next section provides a quick tour into topGO and is thought to be independent of the rest of this
manuscript. The following sections will provide details on the functions used in the sample section as well
as showing more advance functionality implemented in the topGO package.

2 Sample session

This section describes a simple working-session using topGO. There are only a handful of commands necessary
to perform a gene set enrichment analysis and we will be briefly presented them bellow.

A typical session can be divided into three steps:

1. Collection and preprocessing of the data. The list of genes and the correspondent gene’ score, the
criteria for selecting genes based on their scores and the gene-to-GO annotations are all collected to
form a suitable R object.

2. Using the object created in the first step the user can perform enrichment analysis using various
statistical tests and methods that deal with the GO topology.

3. Analysis of the results.

But before going through each of these steps we need to decide which biological question we want to answer.
This will most likely dictate which test statistic we need to use. The choice of the test is also restricted by
the data available at hand. The knowledge of the test will dictate the way the gene expression data needs
to be process. Here we will test for enrichment of GO terms with differentially expressed genes using the
Kolmogorov-Smirnov test and Fisher’s exact test as examples.

2.1 Step 1: Preparing the data

In this step a convenient R object of class topGOdata is created containing all the information required for
the remaining two steps. The user needs to provide a list of genes, GO annotations and a criteria for selecting
interesting genes.

In most cases we want to test enrichment of GO terms with differentially expressed genes. Thus, the starting
point is a list of genes and the respective p-values for differential expression. A toy example of a list of gene
identifiers and the respective p-values is provided by the genelList object.



> library(topG0)
> library(ALL)

> data(ALL)

> data(geneList)

The geneList data is based on a differential expression analysis of the ALL dataset. It contains just a small
number, 323, of genes with the corespondent p-values. For these genes we need GO annotations to be able
to form the gene groups. The information on where to find the GO annotations is stored in the ALL object
and its easily accessible.

> affyLib <- paste(annotation(ALL), "db", sep = ".")
> library(package = affyLib, character.only = TRUE)

The chip used in the experiment is the hgu95av2 from Affymetrix, as we can see from the affyLib object.
When we loaded the geneList object a function which will select the differentially expressed genes from the
list was also loaded under the name of topDiffGenes. For example using this function we can see that there
are 50 genes with a row p-value less than 0.01 out of a total of 323 genes.

> sum(topDiffGenes (geneList))
[1] 50

We now have all the data necessary to build on object of type topGOdata. This object will contain all
the gene identifiers and their score, the GO annotations, the GO hierarchical structure and all the other
information needed to perform the enrichment analysis.

> sampleGOdata <- new("topGOdata", description = "Simple session", ontology = "BP",
+ allGenes = genelList, geneSel = topDiffGenes, nodeSize = 10, annot = annFUN.db,
+ affyLib = affyLib)

A summary of the sampleGOdata object can be seen by typing the object name at the R prompt. Having
all the data stored into this object facilitates the access to identifiers, annotations and to obtain basic data
statics.

> sampleGOdata

2.2 Step 2: Running the desired tests

Once we have an object of class topGOdata we can start with the enrichment analysis. Since for each gene
we have a score and there is also a procedure to select interesting genes based on the scores we will use two
types of test statistics: Fisher’s exact test which is based on gene counts, and a Kolmogorov-Smirnov like
test which needs gene scores.

The function runTest is used to apply the specified enrichment test and method to the data. It has three
basic arguments. The first argument needs to be on object of class topGOdata. The second argument is
of type character and specifies which method for dealing with the GO graph structure will be used (this
argument is optional). And the third argument specifies the test statistic and is of type character.

First we perform a classical enrichment analysis by testing the over-representation of GO terms with differ-
entially expressed genes. In the classical case each GO category is tested independently.

> resultFisher <- runTest (sampleGOdata, algorithm = "classic", statistic = "fisher")
runTest returns an object of class topGOresult. A short summary of this object is shown bellow.

> resultFisher



GO.ID Term Annotated  Significant Expected Rank in classicFisher classicFisher classicKS —elimKS

1 GO:0007067 mitosis 182 17 28.89 431 0.9999 2.0e-09 2.0e-09
2 GO:0051301  cell division 129 15 20.48 411 0.9711 3.8e-06 3.8e-06
3 GO:0000087 M phase of mitotic cell cycle 187 22 29.68 427 0.9946 5.2e-10 0.0020
4 GO:0000226 microtubule cytoskeleton organization 31 5 4.92 270 0.5675 0.0039 0.0039
5 GO:0022403  cell cycle phase 192 27 30.48 373 0.8949 1.2e-10 0.0044
6  GO:0050793 regulation of developmental process 54 16 8.57 33 0.0036 0.0049 0.0049
7 GO:0030098 lymphocyte differentiation 22 9 3.49 27 0.0031 0.0084 0.0084
8 GO:0008202 steroid metabolic process 11 5 1.75 60 0.0181 0.0091 0.0091
9 GO:0051329 interphase of mitotic cell cycle 19 2 3.02 341 0.8368 0.0092 0.0092
10 GO:0019219 regulation of nucleobase, nucleoside, nu... 52 12 8.25 130 0.0921 0.0097 0.0097

Table 2: Significance of GO terms according to classic and elim methods.

Description: Simple session
Ontology: BP
'classic' algorithm with the 'fisher' test
470 GO terms scored: 44 terms with p < 0.01
Annotation data:
Annotated genes: 315
Significant genes: 50
Min. no. of genes annotated to a GO: 10
Nontrivial nodes: 435

Next we will test the enrichment using the Kolmogorov-Smirnov test. We will use the both the classic and
the elim methods.

> resultKS <- runTest (sampleGOdata, algorithm = "classic", statistic = "ks")
> resultKS.elim <- runTest(sampleGOdata, algorithm = "elim", statistic = "ks")

Please note that some statistical tests will not work with any method. The compatibility matrix between
the methods and statistical tests is shown in Table 1.

The p-values computed by the runTest function are unadjusted for multiple testing. We do note advocate
against adjusting the p-values of the tested groups, but in many cases the an adjusted p-value can be
misleading.

2.3 Step 3: Analysis of results

After the enrichment tests are performed the researcher needs tools for analysing and interpreting the results.
GenTable is an easy to use function for analysing the most significant GO terms and the corresponding p-
values. For example, we want to see which are the top 10 significant GO terms identified by the elim method.
We also want to compare the ranks and the p-values of these GO terms in the case where the classic method
was employe used.

> allRes <- GenTable(sampleGOdata, classicFisher = resultFisher, classicKS = resultkS,
+ elimKS = resultKS.elim, orderBy = "elimKS", ranksOf = "classicFisher",
+ topNodes = 10)

The GenTable function returns a data.frame containing the top topNodes GO terms identified by the elim
algorithm, see orderBy argument. The data.frame includes some statistics on the GO terms and the p-values
obtained from the methods passes as arguments. Table 2 shows the results.

For accessing the GO term’s p-values from a topGOresult object the user should use the score functions.
As a simple example, we look at the differences between the results of the classic and the elim methods in the
case of the Kolmogorov-Smirnov test. Due to the fact that there are few significant GO terms, 22 terms with
a p-value less than 0.01 in the classic method, one would expect that only few GO terms will have different
p-values between these two methods. This, of course, depends on the value of the cutoff parameter used by
the elim method.

We can see in Figure 1 that there are indeed few differences between the two methods. Some GO terms
witch are found significant by the classic method are less significant in the elim, as expected.



> pValue.classic <- score(resultKS)

> pValue.elim <- score(resultKS.elim) [names(pValue.classic)]

> plot(pValue.classic, pValue.elim, xlab = "p-value classic", ylab = "p-value elim",
+ cex = 0.5)
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Figure 1: p-values scatter plot for the classic and elim methods.

Another insightful way of looking at the results of the analysis is to investigate how the significant GO terms
are distributed over the GO graph. For the elim algorithm the subgraph induced by the 5 most significant
GO terms is plotted. In the plot, the significant nodes are represented as boxes. The plotted graph is the
upper induced graph generated by these significant nodes.

> showSigOfNodes (sampleGOdata, score(resultKS.elim), firstSigNodes = 5, useInfo = "all")
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Figure 2: The subgraph induced by the top 5 GO terms identified by the elim algorithm for scoring GO terms for
enrichment. Rectangles indicate the 5 most significant terms. Rectangle color represents the relative significance,
ranging from dark red (most significant) to light yellow (least significant). Black arrows indicate is-a relationships
and red arrows part-of relationships. For each node, some basic information is displayed. The first two lines show
the GO identifier and a trimmed GO name. In the third line the raw p-value is shown. The forth line is showing

the number of significant genes and the total number of genes annotated to the respective GO term.



3 Setup

To demonstrate the package functionality we will use the ALL gene expression data from [Chiaretti, S., et al., 2004].
The dataset consists of 128 microarrays from different patients with ALL. Additionally, custom annotations
and artificial datasets will be used to demonstrate specific futures.

We first load the libraries and the data:

> library(topGO)
> library(ALL)
> data(ALL)

When the topGO package is loaded three environments GOBPTerm, GOMFTerm and GOMFTerm are created and
binded to the package environment. These environments are build based on the GOTERM environment from
package GO.db. They are used for fast recovering of the information specific to each ontology. In order to
access all GO groups that belong to a specific ontology, e.g. Biological Process (BP), one can type:

> BPterms <- 1s(GOBPTerm)
> head (BPterms)

[1] "GD:0000001" "GO:0000002" "GO:0000003" "GO:0000011" "GO:0000012" "GO:0000017"

Usually one needs to remove probes with low expression value and genes which might have very small
variability across the samples. Package genefilter provides tools for filtering genes. In this analysis we
choose to filter as many genes as possible for computational reasons. Having a smaller gene universe allows
as to exemplify here the functionality of the topGO package in a relatively short time. The effect of the gene
filtering will be discuss in more details in Section 4.4.

> library(genefilter)

> selProbes <- genefilter(ALL, filterfun(pOverA(0.2, 1og2(100)), function(x) (IQR(x) >
+ 0.25)))

> eset <- ALL[selProbes, ]

The filter selects only 4101 probesets out of 12625 probesets available on the hgu95av2 array.

4 Creating a topGOdata object

The central step in using the topGO package is to create a topGOdata object. This object will be the input
of the testing procedures ... . This object will contain all information necessary for the GO analysis, namely
the list of genes, the list of interesting genes, the gene’ score, if available and the part of the GO ontology
(the GO graph) which needs to be used in the analysis.

To build such an object the user needs the followings:

e A list of gene identifiers and optionally their score. The gene-wise score can be the t-test statistic (or
the p-value) for differential expression, correlation with a phenotype, or any other relevant score.

e A mapping between gene identifiers and GO terms. In most cases this mapping is directly available
in Bioconductor as a chip specific annotation package. In this case the user just needs to specify the
name of the annotation to be used. For example, the annotation package needed for the ALL dataset
is hgu95av2.db.

However it can happen that there is no annotation package available in Bioconductor (custom chips or
new mappings between genes and GO terms). Section 4.1 will describe how custom annotations can
be used.

e The GO hierarchical structure. The structure is obtained from the GO.db package. At the moment
user cannot use a different version of the ontology than the one provided by GO.db.



The gene universe and the interesting genes

The set of all genes from the array/study will be referred from now on as the gene universe. From the gene
universe, the user needs to define the list of interesting genes or to compute gene-wise scores that quantify the
significance of each gene. The topGO package deals with these two cases in a unified way once the topGOdata
object is constructed. The only difference stands in the way the object is build.

Usually one starts with all feasible genes present on the array as the gene universe. In the case of the ALL
dataset we start with 4101 genes, genes that were not removed by the filtering procedure.

4.1 Custom annotations

This section describes how custom GO annotations can be used in building a topGOdata object.

Annotations need to be provided either as gene-to-GOs or as GO-to-genes mappings. An example of such
mapping can be found in the "topGO/examples” directory. The file contains gene-to-GOs mappings, meaning
that for each gene identifier the GO terms to which this genes is specifically annotated are listed. To read
this file we use the readMappings function.

> ensembl2G0 <- readMappings(file = system.file("examples/ensembl2go.map",
+ package = "topGO"))
> str(head(ensembl2G0))

List of 6

$ 068724: chr [1:5] "GO:0005488" "GO:0003774" "GO:0001539" "GO:0006935"
119608: chr [1:6] "GD:0005634" "G0:0030528" "G0O:0006355" "GO:0045449"
049239: chr [1:13] "G0:0016787" "GO:0017057" "GO:0005975" "GO:0005783"
067829: chr [1:16] "G0:0045926" "GO:0016616" "GO:0000287" "G0O:0030145"
106331: chr [1:10] "G0:0043565" "G0O:0000122" "GO:0003700" "GO:0005634"
214717: chr [1:7] "GO0:0004803" "GO:0005634" "GO:0008270" "GO:0003677"

P hH P P &P

The object returned by the readMappings function is a named list of character vectors. The list names are
genes identifiers and for each gene identifier the character vector contains the GO identifiers it maps to. It is
sufficient for the mapping to contain only the most specific GO annotations. However, there is no problem
if all or some ancestors of the most specific GO terms are included. This redundancy is not making for a
faster running time and if possible it should be avoided.

The user can read the annotations from text files or they can build an object such as ensembl2G0 directly
into R. The text file format required by the readMappings function is very simple. It consists of one line for
each gene with the following line structure:

gene_ID<TAB>GO_ID1, GO_ID2, GO_ID3,

Reading GO-to-genes mappings from a file is done in the same way using the readMappings function.
However, it is the user responsibility to know the direction of the mappings. The user can easily transform
a mapping from gene-to-GOs to GO-to-genes (or vice-versa) using the inverseList function:

> GO2ensembl <- inverseList(ensembl2G0)
> str(head(GO2ensembl))

List of 6

$ G0:0000122: chr "106331"

G0:0000139: chr [1:6] "133103" "111846" "109956" "161395"
G0:0000166: chr [1:10] "067829" "157764" "100302" "074582"
G0:0000186: chr "181104"

G0:0000209: chr "159461"

G0:0000228: chr "214717"

R e A



4.2 Predefined list of interesting genes

If the user has some a priori knowledge about a set of interesting genes, he can test the enrichment of GO
terms with regard to this list of interesting genes. In this scenario, when only a list of interesting genes is
provided, the user can use only tests statistics that are based on gene counts, like Fisher’s exact test, Z score
and alike.

To demonstrate how custom annotation can be used this section is based on the toy dataset, the ensembl12G0
data, from Section 4.1. The gene universe in this case is given by the list names:

> geneNames <- names (ensembl2G0)
> head(geneNames)

Since for the available genes we do not have any measurement and thus no criteria to select interesting genes,
we randomly select 10% genes from the gene universe and consider them as interesting genes.

> myInterestedGenes <- sample(geneNames, length(geneNames)/10)

> genelList <- factor(as.integer(geneNames Jinj, myInterestedGenes))
> names (genelList) <- geneNames

> str(geneList)

Factor w/ 2 levels "O","1": 1111111111 ...
- attr(x, "names")= chr [1:100] "068724" "119608" "049239" "067829"

The geneList object is a named factor that indicates which genes are interesting and which not. It should
be straightforward to compute such a named vector in a real case situation, where the user has his own
predefined list of interesting genes.

We now have all the elements to construct a topGOdata object. The arguments of the initialize function
used to construct an instance of this object are described bellow.

ontology: character string specifying the ontology of interest (BP, MF or CC)
description: character string containing a short description of the study [optional].

allGenes: named object of type numeric of factor. The names attribute contains the genes identifiers. The
genes listed in this object define the gene universe.

geneSelectionFun: function to specify which genes are interesting based on the gene scores. It should be
present iff the allGenes object is of type numeric.

nodeSize: an integer larger or equal to 1. This parameter is used to prune the GO hierarchy from the terms
which have less than nodeSize annotated genes (after the true path rule is applied).

annotationFun: function which maps genes identifiers to GO terms. There are a couple of annotation
function included in the package trying to address the user’s needs. The annotation functions take
three arguments. One of those arguments is specifying where the mappings can be found, and needs
to be provided by the user. Here we give a short description of each:

annFUN.db this function is intended to be used as long as the chip used by the user has an annotation
package available in Bioconductor.

annFUN.org this function is using the mappings from the org. XX.XX” annotation packages. Currently,
the function supports the following gene identifiers: Entrez, GenBank, Alias, Ensembl, Gene
Symbol, GeneName and UniGene.

annFUN.gene2G0 this function is used when the annotations are provided as a gene-to-GOs mapping.

annFUN.GO2gene this function is used when the annotations are provided as a GO-to-genes mapping.

annFUN.file this function will read the annotationsof the type gene2GO or GO2genes from a text
file.

: list of arguments to be passed to the annotationFun



To build the topGOdata object, we will use the MF ontology. The mapping is given by the ensembl12G0 list
which will be used with the annFUN. gene2G0 function.

> GOdata <- new('"topGOdata", ontology = "MF", allGenes = genelList, annot = annFUN.gene2GO,
+ gene2G0 = ensembl2G0)

The building of the GOdata object can take some time, depending on the number of annotated genes and on
the chosen ontology.

In our example the running time is quite fast given that we have few genes and the size of the ontology is
relatively small (compared to the BP ontology)

104 4 4 A A A A 1A L A A A
The advantage of having all the necessary data stored into one object is ......

The advantage of having (information on) the gene scores (or better genes measurements) as well as a way
to define which are the interesting genes, in the topGOdata object is that one can apply different group test.

We are able to test multiple hypothesis or play with different parameters .....
By typing GOdata at the R prompt, the user can see a summary of the data.

> GOdata

Description:

Ontology:
- MF

100 available genes (all genes from the array):
- symbol: 068724 119608 049239 067829 106331
- 10 significant genes.

89 feasible genes (genes that can be used in the analysis):
- symbol: 068724 119608 049239 067829 106331
- 9 significant genes.

GO graph (nodes with at least 1 genes):
- a graph with directed edges
- number of nodes = 226
- number of edges = 269

One important point to notice is that not all the genes that are provided by genelList, the initial gene
universe, can be annotated to the GO. This can be seen by comparing the number of all available genes,
the genes present in geneList, with the number of feasible genes. We are therefore forced at this point to
restrict the gene universe to the set of feasible genes for the rest of the analysis.

The summary on the GO graph shows the number of GO terms and the relations between them of the
specified GO ontology. This graph contains only GO terms which have at least one gene annotated to them.

4.3 Using the genes score

In many cases the set of interesting genes can be computed based on a score assigned to all genes, for example
based on the p-value returned by a study of differential expression. In this case, the topGOdata object can



store the genes score and a rule specifying the list of interesting genes. The advantage of having both the
scores and the procedure to select interesting genes encapsulated in the topGOdata object is that the user
can choose different types of tests statistics for the GO analysis without modifying the input data.

A typical example for the ALL dataset is the study where we need to discriminate between ALL cells delivered
from either B-cell or T-cell precursors.

> y <- as.integer (sapply(eset$BT, function(x) return(substr(x, 1, 1) == "T")))
> table(y)

There are 95 B-cell ALL samples and 95 T-cell ALL samples in the dataset. A two-sided t-test can by applied
using the function getPvalues (a wraping function for the mt.teststat from the multtest package). By
default the function computes FDR (false discovery rate) adjusted p-value in order to account for multiple
testing. A different type of correction can be specified using the correction argument.

> genelist <- getPvalues (exprs(eset), classlabel = y, alternative = '"greater')
g g §2 y g

genelist is a named numeric vector. The gene identifiers are stored in the names attribute of the vector.
This set of genes defines the gene universe.

Next, a function for specifying the list of interesting genes must be defined. This function needs to select
genes based on their scores (in our case the adjusted p-values) and must return a logical vector specifying
which gene is selected and which not. The function must have one argument, named allScore and must
not depend on any attributes of this object. In this example we will consider as interesting genes all genes
with an adjusted p-value lower than 0.01. This criteria is implemented in the following function:

topDiffGenes <- function(allScore) {
return(allScore < 0.01)

>

+

+ }
> x <- topDiffGenes(genelList)

> sum(x)

With all these steps done, the user can now build the topGOdata object. For a short description of the
arguments used by the initialize function see Section4.2

> GOdata <- new('"topGOdata", description = "GO analysis of ALL data based on diff. expression.",
+ ontology = "BP", allGenes = genelList, geneSel = topDiffGenes, annot = annFUN.db,
+ nodeSize = 5, affyLib = affyLib)

It is often the case that many GO terms which have few annotated genes are detected to be significantly
enriched due to artifacts in the statistical test. These small sized GO terms are of less importance for the
analysis and in many cases they can be omitted. By using the nodeSize argument the user can control the
size of the GO terms used in the analysis. Once the genes are annotated to the each GO term and the true
path rule is applied the nodes with less than nodeSize annotated genes are removed from the GO hierarchy.
We found that values between 5 and 10 for the nodeSize parameter yield more stable results. The default
value for the nodeSize parameter is 1, meaning that no pruning is performed.

Note that the only difference in the initialisation of an object of class topGOdata to the case in which we
start with a predefined list of interesting genes is the use of the geneSel argument. All further analysis
depends only on the GOdata object.

4.4 Filtering and missing GO annotations

Before going further with the enrichment analysis we analyse which of the probes available on the array can
be used in the analysis.

We want to see if the filtering performed in Section 3 removes important probes. There are a total of 12625
probes on the hgu95av2 chip. One assumes that only the noisy probes, probes with low expression values
or small variance across samples are filtered out from the analysis.
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Figure 3: Scatter plot of FDR adjusted p-values against variance of probes. Points below the horizontal line are
significant probes.

The number of probes have a direct effect on the multiple testing adjustment of p-values. Too many probes
will result in too conservative adjusted p-values which can bias the result of tests like Fisher’s exact test.
Thus it is important to carefully analyse this step.

> allProb <- featureNames (ALL)
> groupProb <- integer(length(allProb)) + 1
> groupProb[allProb }inj, genes(GOdata)] <- 0
> groupProb[!selProbes] <- 2
> groupProb <- factor(groupProb, labels = c("Used", "Not annotated", "Filtered"))
> tt <- table(groupProb)
> tt
groupProb
Used Not annotated Filtered
3599 502 8524

Out of the filtered probes only 88% have annotation to GO terms. The filtering procedure removes 8524
probes which is a very large percentage of probes (more than 50%), but we did this intentionally to reduce
the expression set for computational purposes.

We perform a differential expression analysis on all available probes and we check if differentially expressed
genes are leaved out from the enrichment analysis.

> pValue <- getPvalues(exprs(ALL), classlabel = y, alternative = '"greater")

> geneVar <- apply(exprs(ALL), 1, var)

> dd <- data.frame(x = geneVar[allProb], y = logl0(pValue[allProb]), groups = groupProb)
> xyplot(y ~ x | groups, data = dd, groups = groups)

Figure 3 shows for the three groups of probes the adjusted p-values and the gene-wise variance. Probes with
large changes between conditions have large variance and low p-value. In an ideal case, one would expect



to have a large density of probes in the lower right corner of Used panel and few probes in this region in
the other two panels. We can see that the filtering process throws out some significant probes and in a
real analysis a more conservative filtering needs to be applied. However, there are also many differentially
expressed probes without GO annotation which cannot be used in the analysis.

5 Working with the topGOdata object

Once the topGOdata object is created the user can use various methods defined for this class to access the
information encapsulated in the object.

The description slot contains information about the experiment. This information can be accessed or
replaced using the method with the same name.

> description(GOdata)

> description(GOdata) <- paste(description(GOdata), "Object modified omn:",
+ format (Sys.time(), "/d %b %Y"), sep = " ")

> description(GOdata)

Methods to obtain the list of genes that will be used in the further analysis or methods for obtaining all gene
scores are exemplified below.

> a <- genes(GOdata)
> head(a)

[1] "1000_at" "1005_at" "1007_s_at" "1008_f_at" "1009_at" "100_g_at"
> numGenes (GOdata)
[1] 3599

Next we describe how to retrieve the score of a specified set of genes, e.g. a set of randomly selected genes.
If the object was constructed using a list of interesting genes, then the factor vector that was provided at
the building of the object will be returned.

> selGenes <- sample(a, 10)
> gs <- geneScore(GOdata, whichGenes = selGenes)
> print(gs)

If the user wants an unnamed vector or the score of all genes:

> gs <- geneScore(GOdata, whichGenes = selGenes, use.names = FALSE)
> print(gs)

> gs <- geneScore(GOdata, use.names = FALSE)

> str(gs)

The list of significant genes can be accessed using the method sigGenes().

> sg <- sigGenes(GOdata)
> str(sg)
> numSigGenes (GOdata)

Another useful method is updateGenes which allows the user to update/change the list of genes (and their
scores) from a topGOdata object. If one wants to update the list of genes by including only the feasible ones,
one can type:



> .geneList <- geneScore(GOdata, use.names = TRUE)

> GOdata

> GOdata <- updateGenes(GOdata, .geneList, topDiffGenes)
> GOdata

There are also methods available for accessing information related to GO and its structure. First, we want
to know which GO terms are available for analysis and to obtain all the genes annotated to a subset of these
GO terms.

> graph(GOdata)

A graphNEL graph with directed edges
Number of Nodes = 2191
Number of Edges = 4355

> ug <- usedGO(GOdata)
> head (ug)

[1] "GD:0000003" "GO:0000018" "GO:0000041" "GO:0000059" "GO:0000060" "GO:0000070"

Next, we select some random GO terms, count the number of annotated genes and obtain their annotation.

sel.terms <- sample(usedGO(GOdata), 10)
num.ann.genes <- countGenesInTerm(GOdata, sel.terms)
num.ann.genes

ann.genes <- genesInTerm(GOdata, sel.terms)
head(ann.genes)

vV V.V VvV

When the sel.terms argument is missing all GO terms are used. The scores for all genes, possibly annotated
with names of the genes, can be obtained using the method scoresInTerm().

> ann.score <- scoresInTerm(GOdata, sel.terms)

> head(ann.score)

> ann.score <- scoresInTerm(GOdata, sel.terms, use.names = TRUE)
> head(ann.score)

Finally, some statistics for a set of GO terms are returned by the method termStat. As mentioned previously,
if the sel.terms argument is missing then the statistics for all available GO terms are returned.

> termStat (GOdata, sel.terms)

Annotated Significant Expected

G0:0060191 19 3 1.68
G0:0048741 17 2 1.50
G0:0019059 14 1 1.24
G0:0043087 31 5 2.74
G0:0070227 10 1 0.88
G0:0055085 73 8 6.45
G0:0046888 6 0 0.53
G0:0045913 8 0 0.71
G0:0009261 5 0 0.44
G0:0048641 7 2 0.62
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Figure 4: The class structure....

6 Running the group test

We are now ready to start the GO analysis.

There are three algorithms implemented in the package: classic, elim and weight. Also there are two types
of test statistics which can be used, test statistics based on gene counts (like Fisher’s exact test) and test
statistics based on the genes scores (like Kolmogorov-Smirnov test).

There are two possibilities(interfaces) for applying a test statistic to an object of class topGOdata. The base
interface offers a lot of flexibility to the experienced R user allowing him to implement new test statistics or
new algorithms. This interface provides the hart of the testing procedure in topGO. The second interface is
more user friendly but also more restrictive in the choice of the tests and algorithms used. We will further
explain how these two interfaces work.

6.1 Defining and running the test

The main function is getSigGroups () which takes two arguments. The first argument is an instance of class
topGOdata and the second argument is an instance of class groupStats or ....

To distinguish between all the algorithms and to secure that all test statistics are only used with the appro-
priate algorithms, two classes are defined for each algorithm.

To better understand this principle consider the following example. Assume we decided to apply the classic
algorithm. The two classes defined for this algorithm are classicCount and classicScore. If an ob-
ject of this class is given as a argument to getSigGroups() than the classic algorithm will be used. The
getSigGroups () function can take a while, depending on the size of the graph (the ontology used), so be
patient.

According to this mechanism, one first defines a test statistic for the chosen algorithm, in this case classic and
then runs the algorithm (see the second line). The slot testStatistic contains the test statistic function.
In the above example GOFisherTest function which implements Fisher’s exact test and is available in the
topGO package was used. A user can define his own test statistic function and then apply it using the classic
algorithm. (For example a function which computes the Z score can be implemented using as an example
the GOFisherTest method.)



Next we show how an instance of the groupStats class can be used to perform the test statistic for a gene
set. We will to compute the enrichment of cellular lipid metabolic process(GO:0044255) term using Fisher’s
exact test.

First we need to define which is the gene universe, to obtain the genes annotated to GO:0044255 and define
the set of significant genes.

> goID <- "GO:0044255"

> gene.universe <- genes(GOdata)

> go.genes <- genesInTerm(GOdata, goID)[[1]]
> sig.genes <- sigGenes(GOdata)

Now we can instantiate an object of class classicCount. Once the object is constructed we can get the 2 x 2
contingency table or apply the test statistic.

> my.group <- new("classicCount", testStatistic = GOFisherTest, name = "fisher",
+ allMembers = gene.universe, groupMembers = go.genes, sigMembers = sig.genes)
> contTable (my.group)

sig notSig
anno 26 159
notAnno 292 3122

> runTest (my.group)
[1] 0.01053972

We can see that ....

Please note that the groupStats class or any ... does not depend on GO, and an object of this class can be
constructed using any gene universe/gene set.

> test.stat <- new("classicCount", testStatistic = GOFisherTest, name = "Fisher test")
> resultFis <- getSigGroups(GOdata, test.stat)

A short summary on the used test and the results is printed at the R console.
> resultFisher

Description: Simple session
Ontology: BP
'classic' algorithm with the 'fisher' test
470 GO terms scored: 44 terms with p < 0.01
Annotation data:
Annotated genes: 315
Significant genes: 50
Min. no. of genes annotated to a GO: 10
Nontrivial nodes: 435

To use the Kolmogorov-Smirnov (KS) test we need to define a test based on a class which contains the gene
score information

> test.stat <- new("classicScore", testStatistic = GOKSTest, name = "KS tests')
> resultKS <- getSigGroups(GOdata, test.stat)



This time we used the class classicScore. This is done since the KS test needs scores of all genes and in
this case the representation of a group of genes (GO term) is different.

The mechanism presented above for classic also hold for elim and weight with the only remark that for the
weight algorithm no test based on gene scores is implemented. To run the elim algorithm with Fisher’s exact
test one needs to write:

> test.stat <- new("elimCount", testStatistic = GOFisherTest, name = "Fisher test',
+ cut0ff = 0.01)
> resultElim <- getSigGroups(GOdata, test.stat)

Similarly, for the weight algorithm one types:

> test.stat <- new("weightCount", testStatistic = GOFisherTest, name = "Fisher test",
+ sigRatio = "ratio")
> resultWeight <- getSigGroups(GOdata, test.stat)

6.2 The adjustment of p-values

The p-values return by the getSigGroups function are row p-values. There is no multiple testing correction
applied to them, unless the test statistic directly incorporate such a correction. Of course, the researcher
can perform an adjustment of the p-values if he considers it is important for the analysis. The reason for
not automatically correcting for multiple testing are:

e In many cases the row p-values return by an enrichment analysis are not that extreme. A FDR/FWER
adjustment procedure can in this case produce very conservative p-values and declare no, or very few,
terms as significant. This is not necessary a bad thing, but it can happen that there are interesting
GO terms which didn’t make it over the cutoff but they are omitted and thus valuable information
lost. In this case the researcher might be interested in the ranking of the GO terms even though no
top term is significant at a specify FDR level.

e One should keep in mind that an enrichment analysis consist of many steps and there are many
assumptions done before applying, for example, Fisher’s exact test on a set of GO terms. Performing
a multiple testing procedure accounting only on the number of GO terms is far from being enough to
control the error rate.

e For the methods that account for the GO topology like elim and weight, the problem of multiple
testing is even more complicated. Here one computes the p-value of a GO term conditioned on the
neighbouring terms. The tests are therefore not independent and the multiple testing theory does not
directly apply. We like to interpret the p-values returned by these methods as corrected or not affected
by multiple testing.

6.3 Adding a new test

Example for the Category test ....

6.4 runTest: a high-level interface for testing

Over the basic interface we implemented an abstract layer to provide the users with a higher level interface
for running the enrichment tests. The interface is composed by a function, namely the runTest function
and it can be used only with a predefined set of test statistics and algorithms. In fact runTest is a warping
function for the set of commands used for defining and running a test presented in Section 6.1.

There are three main arguments that this function takes. The first argument is an object of class topGOdata.
The second argument, named algorithm, is of type character and specifies which method for dealing with
the GO graph structure will be used. The third argument, named statistic, specifies which group test
statistic will be used.



To perform a classical enrichment analysis by using the classic method and Fisher’s exact test, the user needs
to type:

> resultFis <- runTest(GOdata, algorithm = "classic", statistic = "fisher")

Various algorithms can be easily combine with various test statistics. However not all the combinations
will work, as seen in Table 1. In the case of a mismatch the function will throw an error. The algorithm
argument is optional and if not specified the weight01 method will be used. Bellow we can see more examples
using the runTest function.

weight01.fisher <- runTest(GOdata, statistic = "fisher")

weight01.t <- runTest(GOdata, algorithm = "weightO1", statistic = "t")

elim.ks <- runTest(GOdata, algorithm = "elim", statistic = "ks")

weight.ks <- runTest(GOdata, algorithm = "weight", statistic = "ks") #will not work!!!

vV VvV VvV

The last line will return an error because we cannot use the weight method with the Kolmogorov-Smirnov
test. The methods and the statistical tests which are accessible via the runTest function are available via
the following two functions:

> whichTests ()

[1] "fisher" "ks" " "globaltest"

> whichAlgorithms ()

[1] "classic" "elim" "weight" "weightO1" "parentchild"

There is no advantage of using the runTest() over getSigGroups() except that it is more user friendly and it
gives cleaner code. However, if the user wants to define his own test statistic or implement a new algorithm
based on the available groupStats classes, then it would be not possible to use the runTest function.

Finally, the function can pass extra arguments to the initialisation method for an groupStats object. Thus,
one can specify different cutoffs for the elim method, or arguments for the weight method.

7 Viewing and interpreting the analysis results

This section present the available tools for analysing and interpreting the results of the performed tests.
Both getSigGroups and runTest functions return an object of type topGOresult, and most of the following
functions work with this object.

7.1 The topGOresult object

The structure of the topGOresult object is quite simple. It contains the p-values or the statistics returned by
the test and basic informations on the used test statistic/algorithm. The information stored in the topGOdata
object is not carried over this object, and both of these objects will be needed by the diagnostic tools.

Since the test statistic can return either a p-value or a statistic of the data, we will refer both as scores!

To access the stored p-values, the user should use the function score. It returns a named numeric vector,
were the names are GO identifiers. For example, we can look at the histogram of the results of the Fisher’s
exact test and the classic algorithm.

By default, the score function does not warranty the order in which the p-values are returned, as we can
see if we compare the resultFis object with the resultWeight object:

> head(score(resultWeight))



> pvalFis <- score(resultFis)
> head(pvalFis)

G0:0000003 G0O:0000018 GO:0000041 GO:0000060 GO:0000075 GO:0000077
0.4564572 0.6039805 0.7002201 0.8116163 0.5683847 0.4812522

> hist(pvalFis, 50, xlab = "p-values")

Histogram of pvalFis

Frequency

0.0 0.2 0.4 0.6 0.8 1.0

p-values

G0:0006605 G0O:0043627 GO:0006606 GO:0030029 GO:0009190 GO:0051493
0.9967073 0.6021982 1.0000000 0.9802640 1.0000000 1.0000000

However, the score method has a parameter, whichGO, which takes a list of GO identifiers and returns the
scores for these terms in the specified order. Only the scores for the terms found in the intersection between
the specified GOs and the GOs stored in the topGOresult object are returned. To see how this work lets
compute the correlation between the p-values of the classic and weight methods:

> pvalWeight <- score(resultWeight, whichGO = names(pvalFis))
> head(pvalWeight)

G0:0000003 G0O:0000018 GO:0000041 GO:0000060 GO:0000075 GO:0000077
0.9213617 0.6039805 1.0000000 1.0000000 0.8109163 0.4812522

> cor(pvalFis, pvalWeight)

[1] 0.5053703

Basic information on input data can be accessed using the geneData function. The number of annotated
genes, the number of significant genes (if it is the case), the minimal size of a GO category as well as the
number of GO categories which have at least one significant gene annotated are listed:

> geneData(resultWeight)

Annotated Significant NodeSize SigTerms
3599 318 5 1499

7.2 Summarising the results

We can use the GenTable function to generate a summary table with the results from one or more tests
applied to the same topGOdata object. The function can take a variable number of topGOresult objects
and it returns a data.frame containing the top topNodes GO terms identified by the method specified with
the orderBy argument. This argument allows the user decide which p-values should be used for ordering the
GO terms.



GO.ID Term Annotated  Significant Expected Rank in classic classic KS elim weight

1 GO:0050857 positive regulation of antigen receptor-... 6 5 0.53 10 2.9e-05  5e-05 2.9¢-05  2.9e-05
2 GO:0045582 positive regulation of T cell differenti... 16 7 1.41 19 0.00022  0.00481 0.0499  0.00022
3 GO:0033077 T cell differentiation in the thymus 21 8 1.86 21 0.00025 0.00056 0.2471  0.00025
4 GO:0016125  sterol metabolic process 26 8 2.30 30 0.00129  0.00383 1.0000  0.00129
5 GO:0042110 T cell activation 80 23 7.07 1 1.7e-07  0.00058 0.1683  0.00225
6 GO:0050871 positive regulation of B cell activation 17 6 1.50 34 0.00242 0.01286 0.0024  0.00242
7 GO:0050853 B cell receptor signaling pathway 9 4 0.80 44 0.00527  0.04900 0.0053  0.00527
8 GO:0051209 release of sequestered calcium ion into ... 9 4 0.80 45 0.00527  0.06359 0.0053  0.00527
9  GO:0050852 T cell receptor signaling pathway 14 5 1.24 53 0.00535 0.03092 0.1832  0.00535
10 GO:0006098 pentose-phosphate shunt 5 3 0.44 56 0.00597  0.02605 0.0060  0.00597
11 GO:0009113 purine base biosynthetic process 5 3 0.44 57 0.00597  0.00666 0.0060  0.00597
12 GO:0030101 natural killer cell activation 5 3 0.44 58 0.00597  0.06312 0.0060  0.00597
13 GO:0030851 granulocyte differentiation 5 3 0.44 59 0.00597  0.04250 0.0060  0.00597
14 GO:0009156 ribonucleoside monophosphate biosyntheti... 10 4 0.88 65 0.00817 0.00571 0.0082  0.00817
15 GO:0032313 regulation of Rab GTPase activity 10 4 0.88 66 0.00817 0.13963 0.0082  0.00817
16 GO:0006631 fatty acid metabolic process 60 12 5.30 52 0.00528 0.01925 0.0053  0.01254
17 GO:0050671 positive regulation of lymphocyte prolif... 23 6 2.03 76 0.01257 0.01504 0.0126  0.01257
18 GO:0070668 positive regulation of mast cell prolife... 23 6 2.03 7 0.01257 0.01504 0.0126  0.01257
19  GO:0051668 localization within membrane 7 3 0.62 84 0.01827 0.06047 0.0183  0.01827
20  GO:0008585 female gonad development 13 4 1.15 90 0.02250  0.00318 0.0225  0.02250

Table 3: Significance of GO terms according to different tests.

> allRes <- GenTable(GOdata, classic = resultFis, KS = resultKS, elim = resultElim,
+ weight = resultWeight, orderBy = "weight", ranksOf = "classic", topNodes = 20)

Please note that we need to type the full names (the exact name) of the function arguments: topNodes,
rank0f, etc. This is the price paid for flexibility of specifying different number of topGOresults objects. The
table includes statistics on the GO terms plus the p-values returned by the other algorithms/test statistics.
Table 3 shows the informations included in the data.frame.

7.3 Analysing individual GOs

Next we want to analyse the distribution of the genes annotated to a GO term of interest. In an enrichment
analysis one expects that the genes annotated to a significantly enriched GO term have higher scores than
the average gene’ score of the gene universe.

One way to check this hypothesis is the compare the distribution of the gene scores annotated to the specified
GO term with the distribution of the scores of the complementary gene set (all the genes in the gene universe
which are not annotated to the GO term). This can be easily achieved using the showGroupDensity function.
For example, lets look at the distribution of the genes annotated to the most significant GO term w.r.t. the
weight algorithm.

We can see in Figure 5 that the genes annotated to GO:0050857 have low ranks (genes with low p-value of
the t-test). The distribution of the ranks is skewed on the left side compared with the reference distribution
given by the complementary gene set. This is a nice example in which there is a significant difference in the
distribution of scores between the gene set and the complementary set, and we see from Table 3 that this
GO is found as significantly enriched by all methods used.

In the above example, the genes with a p-value equal to 1 were omitted. They can be included using the
value FALSE for the rm.one argument in the showGroupDensity function.

Another useful function for analysing terms of interest is printGenes. The function will generate a table
with all the genes/probes annotated to the specified GO term. Various type of identifiers, the gene name
and the p-values/statistics are provided in the table.

> goID <- allRes[10, "GO.ID"]
> gt <- printGenes(GOdata, whichTerms = goID, chip = affyLib, numChar = 40)

The data.frame containing the genes annotated to GO:0006098 is shown in Table 4. One or more GO
identifiers can be given to the function using the whichTerms argument. When more than one GO is specified,
the function returns a list of data.frames, otherwise only one data.frame is returned. The function has a
argument file which, when specified, will save the results into a file using the CSV format.

For the moment the function will work only when the chip used has an annotation package available in
Bioconductor. It will not work with other type of custom annotations.



> goID <- allRes[1, "GO.ID"]
> print (showGroupDensity(GOdata, goID, ranks = TRUE))

1 1 1
G0:0050857 (6)
- — 0.0030
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Figure 5: Distribution of the gene’ rank from GO:0050857, compared with the null distribution.

Chip ID LL.id Symbol.id Gene name raw p-value
36963_at  36963_at 5226 PGD phosphogluconate dehydrogenase 6.18e-06
34003_at 34003_at 7167 TPI1 triosephosphate isomerase 1 0.00184
41221_at  41221_at 5223 PGAMI1 phosphoglycerate mutase 1 (brain) 0.00222
37311_at 37311_at 6888 TALDO1 transaldolase 1 0.70146
34066_at  34066_at 9563 H6PD hexose-6-phosphate dehydrogenase (glucos... 1.00000

Table 4: Genes annotated to GO:0006098.

7.4 Visualising the GO structure

An insightful way of looking at the results of the analysis is to investigate how the significant GO terms are
distributed over the GO graph. We plot the subgraphs induced by the most significant GO terms reported
by classic and weight methods. There are two functions available. The showSigOfNodes will plot the induced
subgraph to the current graphic device. The printGraph is a warping function of showSigOfNodes and will
save the resulting graph into a PDF or PS file.

> showSigOfNodes (GOdata, score(resultFis), firstSigNodes = 5, uselInfo = "all")
> showSigOfNodes (GOdata, score(resultWeight), firstSigNodes = 5, useInfo = "def")

> printGraph(GOdata, resultFis, firstSigNodes = 5, fn.prefix = "tGO", useInfo = "all",

+ pdfSW = TRUE)

> printGraph(GOdata, resultWeight, firstSigNodes = 5, fn.prefix = "tGO", uselInfo = "def",
+ pdfSW = TRUE)

In the plots, the significant nodes are represented as rectangles. The plotted graph is the upper induced
graph generated by these significant nodes. These graph plots are used to see how the significant GO terms
are distributed in the hierarchy. It is a very useful tool to realize behaviour of various enrichment methods
and to better understand which of the significant GO terms are really of interest.

We can emphasise differences between two methods using the printGraph function:

> printGraph(GOdata, resultWeight, firstSigNodes = 10, resultFis, fn.prefix = "tGO",
+ useInfo = "def")
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Figure 6: The subgraph induced by the top 5 GO terms identified by the classic algorithm for scoring GO terms
for enrichment. Boxes indicate the 5 most significant terms. Box color represents the relative significance, ranging
from dark red (most significant) to light yellow (least significant). Black arrows indicate is-a relationships and
red arrows part-of relationships.

> printGraph(GOdata, resultElim, firstSigNodes = 15, resultFis, fn.prefix = "tG0",
+ useInfo = "all")



Figure 7: The subgraph induced by the top 5 GO terms identified by the weight algorithm for scoring GO terms
for enrichment. Boxes indicate the 5 most significant terms. Box color represents the relative significance, ranging

from dark red (most significant) to light yellow (least significant). Black arrows indicate is-a relationships and
red arrows part-of relationships.



8 Session Information

The version number of R and packages loaded for generating the vignette were:

e R version 2.10.0 (2009-10-26), x86_64-unknown-linux-gnu

e Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=en_US.UTF-8,
LC_MONETARY=C, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C,
LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

e Base packages: base, datasets, graphics, grDevices, grid, methods, stats, tools, utils

e Other packages: ALL 1.4.7, AnnotationDbi 1.8.0, Biobase 2.6.0, DBI 0.2-4, genefilter 1.28.0,
GO.db 2.3.5, graph 1.24.0, hgu95av2.db 2.3.5, lattice 0.17-26, multtest 2.2.0, org.Hs.eg.db 2.3.6,
Rgraphviz 1.24.0, RSQLite 0.7-3, SparseM 0.80, topGO 1.14.0, xtable 1.5-5

e Loaded via a namespace (and not attached): annotate 1.24.0, MASS 7.3-3, splines 2.10.0,
survival 2.35-7
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