Using pdmclass

James W. MacDonald

October 28, 2009

1 Overview

Classification is a statistical technique that uses measurements on a defined
set of samples (a training set) to build a rule that can be used to infer
the group membership of future samples. An example would be using gene
expression data to classify cancer patients according to the expected response
to a certain course of therapy.

There are many ways to build classification rules, but the general
idea is the same; find patterns in the training set that are unique to each
sample type and use this information to determine the class of new samples.

Microarrays hold great promise for building classifiers because of the
amount of information that can be generated from each array. However,
this is a two edged sword — much of the information cannot be distinguished
from noise (low expressing genes), and having many more observations than
samples can make the analysis computationally and statistically difficult.
Therefore, it is usually desirable to pre-filter the genes down to a much
smaller (100 - 200) set of genes before building the classifier. This itself is
not a simple proposition — ideally this list should contain genes that are as
uncorrelated as possible, because data from correlated genes is in some sense
redundant information.

An alternative to manually subsetting the data is to use regularized
regression models (partial least squares, ridge regression, principal compo-
nents regression), which are designed to work with large numbers of corre-
lated predictor variables. Since these methods are generally used in situ-
ations where the response is continuous (and in classification the response
is categorical), we can use the optimal scoring algorithm of |[Hastie et al.
(1994)), which extends these methods to classification problems. For a more
detailed description of these methods, please refer to |Ghosh (2003).

2 A Simple Example

In this example we will use the fibroEset package, which contains expression
data from Affymetrix HG-U95Av2 chips that were used to analyze early
passage primary fibroblast cell lines from 18 human, 10 bonobo, and 11
gorilla samples. Although the utility of a classifier based on this data set is
questionable at best, it does provide a workable example.

We first load the package

> library("pdmclass")
> data("fibroEset")
> fibroEset

ExpressionSet (storageMode: lockedEnvironment)
assayData: 12625 features, 46 samples
element names: exprs
phenoData
sampleNames: 1, 2, ..., 46 (46 total)
varLabels and varMetadata description:
samp: sample code
species: h: human, b: bonobo, g: gorilla
featureData
featureNames: 100_g_at, 1000_at, ..., AFFX-YELO24w/RIP1_at (12625 total)
fvarlLabels and fvarMetadata description: none
experimentData: use 'experimentData(object)'
pubMedIds: 12840040
Annotation: hgu95av2

> pData(fibroEset)

samp species
1

© 0 NO O WN -
© 0 N O O WN
oo o o o oo o oo

=
(@]
=
o

11 11 b
12 12 g
13 13 g
14 14 g
15 15 g
16 16 g
17 17 g
18 18 g
19 19 g
20 20 g
21 21 g
22 22 g
23 23 g
24 24 h
25 25 h
26 26 h
27 27 h
28 28 h
29 29 h
30 30 h
31 31 h
32 32 h
33 33 h
34 34 h
35 35 h
36 36 h
37 37 h
38 38 h
39 39 h
40 40 h
41 41 h
42 42 h
43 43 h
44 44 h
45 45 h
46 46 h

First we fit a classifier to this data, using the expression values and
the second column of the phenoData slot. Note here that in classical statis-
tical applications the convention is for rows to contain subjects and columns

Discriminant Plot for predict classes

O — b
o ¥
b P
b
b
v —
N
I
>
£ N o
©
£
E
=
(8]
R
g
o o -
g
g9
9
¢ X h
@ ”‘hhh
g [y i
N] g 9 @h
| 9 hi
! h hoh
hh
h

I I I I I
-1.5e+08 -1.0e+08 -5.0e+07 0.0e+00 5.0e+07

Discriminant Var 1

Figure 1: Plot of Fitted PLS Classifier

to contain observations — we therefore have to transpose the expression data
to meet this convention. In addition, we use the usual R formula interface
— for more information, see the formula help page.

> y <- as.factor(pData(fibroEset) [, 2])
> x <- t(exprs(fibroEset))

> gn.class <- pdmClass(y ~ x, method = "pls")

Once we have fit the classifier we can make a plot that shows how
well the samples are grouping.

> plot(gn.class, pch = levels(y))

Figure [I| shows the fitted pls classifier. As would be expected, the
different species are quite well separated and very tightly grouped. Samples
with more subtle differences would not be expected to group this nicely.

Having built the classifier, we will most likely want to use it to pre-
dict the class of new samples for which we don’t know the classes a priori.
However, before we do this, it is prudent to test the classifier to see how
accurate it is. We could simply take the data we used to build the classifier
as if it were new data and predict the class of each sample.

> predict(gn.class)

[l bbbbbbbbbbbgggeggeggeggeggghhhhhhhhhhhhhhh
(39 hhhhhhhh
Levels: b gh

Since we are predicting the class of the data that was used to build
the classifier, we expect that these results will be much better than what
could be expected with a set of new data. To get an unbiased estimate of
the accuracy, we need a ’test set’.

The canonical method of creating and testing a classifier is to split
a set of data into a training and testing set. The training set is used to
make the classifier and then the testing set is used to estimate the accuracy
of the classifier by comparing the predicted class for each sample to the
actual class. Unfortunately, it is often difficult to get sufficient numbers of
samples to build an accurate classifier, so it may not be possible to split into
a training and testing set. An alternative is to perform a ’leave one out’
cross-validation where we remove a single sample and then build a classifier
with the remaining samples. We then predict the class of the sample that
was removed, repeating the process for each sample in turn. We will then
have a vector of class assignments for each sample that we can compare to
the true class membership to create a ’confusion matrix’.

> tst <- pdmClass.cv(y, x, method = "pls")
> confusion(tst, y)

true
object b g h
b11 0 5
g 012 O
h 0 O 18

attr(,"error")
[1] 0.1086957

Here we can see that we expect an error rate of approximately 0.109
when we apply this classifier to new samples.

After building a classifier, we may be interested in the genes that
have the most influence in differentiating between sample types. For this we
can use the pdmGenes function.

> gns <- featureNames (fibroEset)

> len <- 10

> tmp <- pdmGenes(y ~ x, genelist = gns, list.length = len, B = 10)
> tmp

$°g vs b°

X[[1L]1]
33117_r_at 1.0
33659_at 1.0
31956_f_at 1.0
31505_at 1.0
32315_at 0.8
37307_at 1.0
36790_at 0.8
31509_at 0.7
36589_at 0.5
1698_g_at 0.3
$h vs b°

X[[2L]]
36666_at 1.0
34160_at 1.0
1385_at 1.0
39758_f_at 1.0
35905_s_at 0.9
31720_s_at 0.9
36790_at 0.9
41745_at 0.6
37185_at 0.5
38356_at 0.6

The pdmGenes function selects the top n genes (set by the argument
list.length) from the original classifier, and then determines the importance
of these genes by repeatedly taking bootstrap samples from the data and
seeing what proportion of the time these genes are actually found to be
influential in fitting a classifier using the bootstrap samples. The basic

idea being that a truly influential gene will repeatedly show up as being
influential as we make slight perturbations to the data. Note that we are
using contr.treatment contrasts for these model fits, so one set of samples will
always be set as the baseline, and the output will list the genes influential
in the comparison of the other samples to the baseline sample.

References

Debashis Ghosh. Penalized discriminant methods for the classification of
tumors from gene expression data. Biometrics, 59:992-1000, 2003.

T. Hastie, R. Tibshirani, and A. Buja. Flexible discriminant analysis by
optimal scoring. Journal of the American Statistical Association, 89:1255—
1270, 1994.

	Overview
	A Simple Example

