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1 Overview

The Bioconductor R package multtest implements widely applicable resampling-
based single-step and stepwise multiple testing procedures (MTP) for con-
trolling a broad class of Type I error rates, in testing problems involving
general data generating distributions (with arbitrary dependence structures
among variables), null hypotheses, and test statistics [Dudoit and van der
Laan| (2004); Dudoit et al. (2004); van der Laan et al.| (2004blfal); Pollard
and van der Laan| (2004). A key feature of these MTPs is the test statistics
null distribution (rather than data generating null distribution) used to de-
rive rejection regions (i.e., cut-offs) for the test statistics and the resulting
adjusted p-values. For general null hypotheses, defined in terms of submodels
for the data generating distribution, this null distribution is the asymptotic
distribution of the vector of null value shifted and scaled test statistics. The
current version of multtest provides MTPs for null hypotheses concerning
means, differences in means, and regression parameters in linear,and Cox
proportional hazards models. Both non-parametric bootstrap and permu-
tation estimators of the test statistics (¢- or F-statistics) null distribution
are available. Procedures are provided to control Type I error rates defined
as tail probabilities and expected values of arbitrary functions of the num-
bers of Type I errors, V,,, and rejected hypotheses, R,,. These error rates
include: the generalized family-wise error rate, gFWER(k) = Pr(V,, > k),
or chance of at least (k + 1) false positives (the special case k = 0 cor-
responds to the usual family-wise error rate, FWER); tail probabilities
TPPFP(q) = Pr(V,/R, > q) for the proportion of false positives among
the rejected hypotheses; the false discovery rate, FDR = E[V,,/R,]. Single-
step and step-down common-cut-off (maxT) and common-quantile (minP)
procedures, that take into account the joint distribution of the test statistics,
are implemented to control the FWER. In addition, augmentation proce-
dures are provided to control the gFWER and TPPFP, based on any initial
FWER-controlling procedure. The results of a multiple testing procedure
are summarized using rejection regions for the test statistics, confidence re-
gions for the parameters of interest, and adjusted p-values.

The modular design of the multtest package allows interested users to readily
extend the package functionality by inserting additional functions for test
statistics and testing procedures. A class/method object-oriented program-
ming approach was adopted to summarize the results of a MTP.

The multiple testing procedures are applied to the Acute Lymphoblastic
Leukemia (ALL) dataset of Chiaretti et al. |Chiaretti et al.| (2004), available
in the R package ALL, to identify genes whose expression measures are



associated with (possibly censored) biological and clinical outcomes such
as: cytogenetic test status (normal vs. abnormal), tumor molecular subtype
(BCR/ABL, NEG, ALL1/AF4, E2A/PBX1, p15/p16, NUP-98), and patient

survival.

2 Getting started

Installing the package. To install the multtest package, first down-
load the appropriate file for your platform from the Bioconductor web-
site http://www.bioconductor.org/. For Windows, start R and select the
Packages menu, then Install package from local zip file.... Find
and highlight the location of the zip file and click on open. For Linux/Unix,
use the usual command R CMD INSTALL or set the option CRAN to your near-
est mirror site and use the command install.packages from within an R
session.

Loading the package. To load the multtest package in your R session,
type library (multtest).

Help files. Detailed information on multtest package functions can be ob-
tained in the help files. For example, to view the help file for the function
MTP in a browser, use help.start followed by ? MTP.

Case study. We illustrate some of the functionality of the multtest pack-
age using the Acute Lymphoblastic Leukemia (ALL) microarray dataset
of Chiaretti et al. |Chiaretti et al. (2004). Available in the data package
ALL, this dataset includes 21 phenotypes and 12,625 Affymetrix gene ex-
pression measures (chip series hgu95av2), for each of 128 ALL patients. The
expression measures have been jointly normalized using RMA. To view a
description of the experiments and data, type 7 ALL.

Sweave. This document was generated using the Sweave function from the
R tools package. The source (.Rnw) file is in the /inst/doc directory of the
multtest package.


http://www.bioconductor.org/

3 Software Application: ALL microarray dataset

3.1

The main user-level function for resampling-based multiple testing is MTP. Its
input/output and usage are described in the accompanying vignette (MTP).
Here, we illustrate some of the functionality of the multtest package using
the Acute Lymphoblastic Leukemia (ALL) microarray dataset of Chiaretti
et al. |Chiaretti et al. (2004), available in the data package ALL. We begin
by loading the necessary packages.

> library(Biobase)
> library(multtest)

We use the install.packages command to get the necessary analysis and
data pacakges from the R and Bioconductor repositories, after first checking
if they are already installed.

> reposList <- c("http://www.bioconductor.org/packages/bioc/devel",

+ "http://www.bioconductor.org/packages/data/devel”,

+ "http://www.bioconductor.org/packages/omegahat/devel"”,

+ "http://cran.fhcrc.org")

> installed <- installed.packages() [, "Package"]

> if (!("genefilter" Jinj, installed)) try(install.packages("genefilter",
+ repos = reposlList, dependencies = c("Depends",

+ "Imports")))

> library(genefilter)

Loading required package: survival
Loading required package: splines

> if (! ("ALL" 7inj installed)) try(install.packages("ALL",

+ repos = reposList, dependencies = c("Depends",

+ "Imports")))

> library(ALL)

> if (! ("hgu9b5av2" Jinj, installed)) try(install.packages("hgu95av2",
+ repos = reposList, dependencies = c("Depends",

+ "Imports")))

> library(hgu95av2)



3.2 ALL data package and initial gene filtering

The Acute Lymphoblastic Leukemia (ALL) microarray dataset of Chiaretti
et al. |Chiaretti et al. (2004) consists of 21 phenotypes (i.e., patient level
responses and covariates) and 12,625 Affymetrix gene expression measures
(chip series HGU95Av2), for each of 128 ALL patients. For greater de-
tail, please consult the ALL package documentation. The main object in
this package is ALL, an instance of the class exprSet, which contains the
expression measures, phenotypes, and gene annotation information. The
genes-by-subjects matrix of expression measures is provided in the exprs
slot of ALL and the phenotype data are stored in the phenoData slot. Note
that the expression measures have been obtained using the three-step ro-
bust multichip average (RMA) pre-processing method, implemented in the
package affy. In particular, the expression measures have been subject to a
base 2 logarithmic transformation.

> data(ALL)
> class(ALL)

[1] "exprSet"
attr(,"package")
[1] "Biobase"

> slotNames (ALL)

[1] "exprs" "se.exprs" "phenoData"  "description"
[5] "annotation" ‘"notes"

> show(ALL)

Expression Set (exprSet) with
12625 genes
128 samples
phenoData object with 21 variables and 128 cases
varLabels
cod: Patient ID
diagnosis: Date of diagnosis
sex: Gender of the patient
age: Age of the patient at entry
BT: does the patient have B-cell or T-cell ALL
remission: Complete remission(CR), refractory(REF) or NA. Derived fr



CR: Original remisson data
date.cr: Date complete remission if achieved

t(4;11): did the patient have t(4;11) translocation. Derived from ci
t(9;22): did the patient have t(9;22) translocation. Derived from ci
cyto.normal: Was cytogenetic test normal? Derived from citog

citog: original citogenetics data, deletions or t(4;11), t(9;22) sta

mol.biol: molecular biology

fusion protein: which of p190, p210 or p190/210 for bcr/able

mdr: multi-drug resistant

kinet: ploidy: either diploid or hyperd.

ccr: Continuous complete remission? Derived from f.u
relapse: Relapse? Derived from f.u

transplant: did the patient receive a bone marrow transplant? Derive

f.u: follow up data available
date last seen: date patient was last seen

> names (varLabels (ALL))

[1] "coad" "diagnosis" "sex"

[4] "age" "BT" "remission"

[7] "CR" "date.cr" "t(4;11)"

[10] "t(9;22)" "cyto.normal" "citog"

[13] "mol.biol" "fusion protein" "mdr"

[16] "kinet" "ccr" "relapse"

[19] "transplant" "f.u" "date last seen"

> X <- exprs(ALL)
> pheno <- pData(ALL)

Our goal is to identify genes whose expression measures are associated with
(possibly censored) biological and clinical outcomes such as: cytogenetic test
status (normal vs. abnormal), tumor molecular subtype (BCR/ABL, NEG,
ALL1/AF4, E2A/PBX1, pl15/pl16, NUP-98), and time to relapse. Before
applying the multiple testing procedures, we perform initial gene filtering
as in Chiaretti et al. |Chiaretti et al.| (2004) and retain only those genes
for which (i) at least 20% of the subjects have a measured intensity of at
least 100 and (ii) the coefficient of variation (i.e., the ratio of the standard
deviation to the mean) of the intensities across samples is between 0.7 and
10. These two filtering criteria can be readily applied using functions from
the genefilter package



> ffun <- filterfun(pOverA(p = 0.2, A = 100), cv(a = 0.7,
+ b = 10))

> filt <- genefilter(2°X, ffun)

> filtX <- X[filt, ]

> dim(filtX)

[1] 431 128

> filtALL <- ALL[filt, ]

3.3 Association of expression measures and cytogenetic test
status: two-sample t-statistics

Step-down minP FWER-controlling MTP with two-sample Welch
t-statistics and bootstrap null distribution The phenotype data in-
clude an indicator variable, cyto.normal, for cytogenetic test status (1 for
normal vs. 0 for abnormal). To identify genes with higher mean expression
measures in the abnormal compared to the normal cytogenetics subjects,
one-sided two-sample t-tests can be performed. We choose to use the Welch
t-statistic and to control the FWER using the bootstrap-based step-down
minP procedure with B = 100 bootstrap iterations (though many more are
recommended in practice).

> seed <- 99

> cyto.boot <- MTP(X = filtALL, Y = "cyto.normal",

+ alternative = "less'", B = 100, method = "sd.minP",
+ seed = seed)

running bootstrap...
iteration = 100

Let us examine the results of the MTP stored in the object cyto.boot.
> class(cyto.boot)

[1] "MTP"

attr(, "package")

[1] "multtest"

> slotNames(cyto.boot)



[1] "statistic" "estimate" "sampsize" "rawp"
[5] "adjp" "conf.reg" ‘"cutoff" "reject"
[9] "nulldist" "call" "seed"

> print(cyto.boot)

Multiple Testing Procedure

Object of class: MTP
sample size = 128
number of hypotheses = 431

test statistics = t.twosamp.unequalvar
type I error rate = fwer

nominal level alpha = 0.05

multiple testing procedure = sd.minP

Call: MTP(X = filtALL, Y = "cyto.normal", alternative = "less", B = 100,

method = "sd.minP", seed = seed)

Slots:

Class Mode Length Dimension
statistic numeric numeric 431
estimate numeric numeric 431
sampsize integer numeric 1
rawp numeric numeric 431
adjp numeric numeric 431
conf.reg array logical 0 0,0,0
cutoff matrix logical 0 0,0
reject matrix logical 431 431,1
nulldist matrix numeric 43100 431,100
call call call 7
seed integer numeric 1

> summary (cyto.boot)

MTP: sd.minP
Type I error rate: fwer

Level Rejections
1 0.05 7



Min. 1st Qu. Median Mean 3rd Qu. Max.
adjp 0.000 1.0000 1.000000 0.97820 1.0000 1.0000
rawp 0.000 0.2000 0.470000 0.47370 0.7350 1.0000
statistic -2.922 -0.7589 -0.038150 -0.11920 0.5946 2.5620
estimate -1.083 -0.2015 -0.008719 -0.03249 0.1467 0.6709

The following commands may be used to obtain a list of genes that are
differentially expressed in normal vs. abnormal cytogenetics patients at
nominal FWER level o = 0.05, i.e., genes with adjusted p-values less than
or equal to 0.05. Functions from the annotate and annaffy packages may
then be used to obtain annotation information on these genes (e.g., gene
names, PubMed abstracts, GO terms) and to generate HTML tables of the
results.

> cyto.diff <- cyto.boot@adjp <= 0.05
> sum(cyto.diff)

(11 7

> cyto.AffyID <- geneNames (filtALL) [cyto.diff]
> mget(cyto.AffyID, env = hgu95av2GENENAME)

$"32562_at"
[1] "endoglin (Osler-Rendu-Weber syndrome 1)"

$"33232_at"
[1] "cysteine-rich protein 1 (intestinal)"

$"37539_at"
[1] "ral guanine nucleotide dissociation stimulator-like 1"

$"37600_at"
[1] "extracellular matrix protein 1"

$"38119_at"
[1] "glycophorin C (Gerbich blood group)"

$"38487_at"
[1] "stabilin 1"
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Figure 1: Cytogenetic test status — Step-down minP FWER-controlling
MTP. By default, four graphical summaries are produced by the plot
method for instances of the class MTP.

$"40888_f_at"
[1] "eukaryotic translation elongation factor 1 alpha 1"

Various graphical summaries of the results may be obtained using the plot
method, by selecting appropriate values of the argument which (Figure [1]).

> par(mfrow = c(2, 2))
> plot(cyto.boot)

Marginal FWER-controlling MTPs with two-sample Welch ¢-statistics
and bootstrap null distribution Given a vector of unadjusted p-values,
the mt.rawp2adjp function computes adjusted p-values for the marginal
FWER-controlling MTPs of Bonferroni, Holm |Holm| (1979)), Hochberg Hochberg
(1988), and Sidak Sidak! (1967), discussed in detail in Dudoit et al. Dudoit,

et al. (2003)). The mt.plot function may then be used to compare the dif-
ferent procedures in terms of their adjusted p-values.

10



> marg <- c("Bonferroni", "Holm", "Hochberg", "SidakSS",

+ "SidakSD")

> cyto.marg <- mt.rawp2adjp(rawp = cyto.boot@rawp,

+ proc = marg)

> comp.marg <- cbind(cyto.boot@adjp, cyto.marg$adjplorder(cyto.marg$index),
+ -11)

> par(mfrow = c(1, 1))

> mt.plot(adjp = comp.marg, teststat = cyto.boot@statistic,

+ proc = c("SD minP", marg), leg = c(0.1, 400),

+ col = 1:6, 1ty = 1:6, lwd = 3)

> title("Comparison of marginal and step-down minP FWER-controlling MIPs")

In this dataset, most of the FWER-controlling MTPs perform similarly,
making very few rejections at nominal Type I error rates near zero. As
expected, the bootstrap-based step-down minP procedure, which takes into
account the joint distribution of the test statistics, leads to slightly more
rejections than the marginal methods (Figure . The results also illustrate
that stepwise MTPs are less conservative than their single-step analogues
(e.g., Holm and Hochberg vs. Bonferroni; step-down Sidék vs. single-step

Sidak).

Step-down minP FWER-controlling MTP with two-sample Welch
t-statistics and permutation null distribution Because the sample
sizes are not equal for the two cytogenetic groups and the expression mea-
sures may have different covariance structures in the two populations, we
expect the bootstrap and permutation null distributions to yield different
sets of rejected hypotheses (Pollard & van der Laan |Pollard and van der Laan
(2004)). To compare the two approaches, we apply the permutation-based
step-down minP procedure, first using the old mt.minP function and then
using the new MTP function (which calls mt .minP). Please note that while the
MTP and mt.minP functions produce the same results, these are presented in
a different manner. In particular, for the new function MTP, the results (e.g.,
test statistics, parameter estimates, unadjusted p-values, adjusted p-values,
cut-offs) are given in the original order of the null hypotheses, while in the
mt .minP function, the hypotheses are sorted first according to their adjusted
p-values, next their unadjusted p-values, and finally their test statistics. In
addition, the new function MTP implements a broader range of MTPs and
has adopted the S4 class/method design for representing and summarizing
the results of a MTP.

11
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Figure 2: Cytogenetic test status — Marginal vs. joint FWER-controlling
MTPs. Plot of number of rejected hypotheses vs. nominal Type I error
rate for comparing bootstrap-based marginal and step-down minP FWER-
controlling MTPs.
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> set.seed(99)

> NAs <- is.na(pheno$cyto.normal)

> cyto.perm.old <- mt.minP(X = filtX[, !NAs], classlabel = pheno$cyto.normal[!NAs],

+ side = "lower", B = 100)
B=100

b=1 b=2 b=3

b=11 b=12 b=13
b=21 b=22 b=23
b=31 b=32 b=33
b=41 b=42 b=43
b=51 b=52 b=53
b=61 b=62 b=63
b=71 b=72 b=73
b=81 b=82 b=83
b=91 b=92 b=93
r=4 r=8 r=12

r=44 r=48 r=52
r=84 r=88 r=92
r=124 r=128 r=132
r=164 r=168 r=172
r=204 r=208 r=212
r=244 r=248 r=252
r=284 r=288 r=292
r=324 r=328 r=332
r=364 r=368 r=372
r=404 r=408 r=412

> names (cyto.perm.old)

[1] "index"

> sum(cyto.perm.old$adjp <= 0.05)

(11 0

"teststat" "rawp"

> set.seed(99)
> cyto.perm.new <- MTP(X = filtX, Y = pheno$cyto.normal,
+ alternative = "less", nulldist = "perm", B = 100,
+ method = "sd.minP")

13
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b=24
b=34
b=44
b=54
b=64
b=74
b=84
b=94
r=16
r=56
r=96
r=136
r=176
r=216
r=256
r=296
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B=100

b=1 b=2 b=3
b=4 b=5 b=6
b=14 b=15 b=
b=24 b=25 b=
b=34 b=35 b=
b=44 b=45 b=
b=54 b=55 b=
b=64 b=65 b=
b=74 b=75 b=
b=84 b=85 b=
b=94 b=95 b=
r=16 r=20 r=
r=56 r=60 r=
r=96 r=100

r=136 r=140

r=176 r=180

r=216 r=220

r=256 r=260

r=296 r=300

r=336 r=340

r=376 r=380

r=416 r=420

> summary(cyto.perm.new)

MTP: sd.minP
Type I error rate: fwer

Level Rejections
1 0.05 0

Min. 1st Qu.
adjp 0.900 1.0000

estimate NA NA

16
26
36
46
56
66
76
86
96
24
64

r=104

r=144
r=184
r=224
r=264
r=304
r=344
r=384
r=424

Median

1.00000 0.9984
rawp 0.010 0.2200 0.50000 0.4855

statistic -2.922 -0.7589 -0.03815 -0.1192

NA

> sum(cyto.perm.new@adjp <= 0.05)

(1] o
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b=17
b=27
b=37
b=47
b=57
b=67
b=77
b=87
b=97
r=28
r=68
r=108
r=148
r=188
r=228
r=268
r=308
r=348
r=388
r=428

b

8

b=18
b=28
b=38
b=48
b=58
b=68
b=78
b=88
b=98
r=32
r=72

r

Mean 3rd Qu. M

NaN

NA

b=

=112

r=152
r=192
r=232
r=272
r=312
r=352
r=392

ax.

1.0000 1.000
0.7450 1.000
0.5946 2.562

NA

9

b=19
b=29
b=39
b=49
b=59
b=69
b=79
b=89
b=99
r=36
r=76

r=116
r=156
r=196
r=236
r=276
r=316
r=356
r=396

b=20
b=30
b=40
b=50
b=60
b=70
b=80
b=90
b=100
r=40
r=80

b=11

r=120

r=160
r=200
r=240
r=280
r=320
r=360
r=400
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> sum(cyto.perm.new@adjp <= 0.05 & cyto.boot@adjp <=
+ 0.05)

(11 o

At nominal FWER level a = 0.05, the permutation step-down minP pro-
cedure identifies 0 genes as differentially expressed between patients with
normal and abnormal cytogenetic test status. In contrast, the bootstrap
version of the step-down minP procedure identifies 7 differentially expressed
genes.

Step-down minP FWER-controlling MTP with robust two-sample
t-statistics and bootstrap null distribution The Wilcoxon rank sum
statistic (also known as the Mann-Whitney statistic) is a robust alternative
to the usual two-sample t-statistic.

> cyto.wilcox <- MTP(X = filtALL, Y = "cyto.normal",
+ robust = TRUE, alternative = "less", B = 100,
+ method = "sd.minP", seed = seed)

running bootstrap...
iteration = 100

> sum(cyto.wilcox@adjp <= 0.05)
[1] 12

> sum(cyto.wilcox@adjp <= 0.05 & cyto.boot@adjp <=
+ 0.05)

[1] 4

At nominal FWER level a = 0.05, the bootstrap step-down minP MTP
based on the robust Wilcoxon test statistic identifies 12 genes as differentially
expressed, compared to 7 genes for the same MTP based on the Welch t-
statistic. 4 genes are identified by both procedures.

3.4 Augmentation procedures for gFWER, TPPFP, and FDR
control
In the context of microarray gene expression data analysis or other high-

dimensional inference problems, one is often willing to accept some false

15



positives, provided their number is small in comparison to the number of
rejected hypotheses. In this case, the FWER is not a suitable choice of
Type I error rate and one should consider other rates that lead to larger
sets of rejected hypotheses. The augmentation procedures implemented in
the function MTP, allow one to reject additional hypotheses, while controlling
an error rate such as the generalized family-wise error rate (gFWER), the
tail probability of the proportion of false positives (TPPFP), or the false
discovery rate (FDR). We illustrate the use of the fwer2gfwer, fwer2tppfp,
and fwer2fdr functions, but note that the gFWER, TPPFP, and FDR can
also be controlled directly using the MTP function with appropriate choices
of arguments typeone, k, q, and fdr.method.

gFWER control

> k <- ¢(5, 10, 50, 100)

> cyto.gfwer <- fwer2gfwer(adjp = cyto.boot@adjp,

+ k =k)

> comp.gfwer <- cbind(cyto.boot@adjp, cyto.gfwer)

> mtps <- paste("gFWER(", c(0, k), ")", sep = "")

> mt.plot(adjp = comp.gfwer, teststat = cyto.boot@statistic,

+ proc = mtps, leg = c(0.1, 400), col = 1:5,

+ 1ty = 1:5, 1wd = 3)

> title("Comparison of gFWER(k)-controlling AMTPs based on SD minP MTP")

For gFWER-controlling AMTPs, Figure [3] illustrates that the number of
rejected hypotheses increases linearly with the number k of allowed false
positives, for nominal levels « such that the initial FWER-controlling MTP
does not reject more than M — k hypotheses. That is, the curve for the
gFW ER(k)—controlling AMTP is obtained from that of the initial FWER-
controlling procedure by a simple vertical shift of k.

TPPFP control

> q <- ¢(0.05, 0.1, 0.5)

> cyto.tppfp <- fwer2tppfp(adjp = cyto.boot@adjp,

+ q =9

> comp.tppfp <- cbind(cyto.boot@adjp, cyto.tppfp)

> mtps <- c("FWER", paste("TPPFP(", q, ")", sep = ""))

> mt.plot(adjp = comp.tppfp, teststat = cyto.boot@statistic,
+ proc = mtps, leg = c(0.1, 400), col = 1:4,

16



+ 1ty = 1:4, 1wd = 3)
> title("Comparison of TPPFP(q)-controlling AMTPs based on SD minP MTP")

For TPPFP control, Figure [4] shows that, as expected, the number of re-
jections, while controlling TPPF P(q) at a given level «, increases with the
allowed proportion ¢ of false positives, though not linearly. Furthermore,
for the ALL dataset, the increases in the number of rejections are not very
large.

FDR control Given any TPPFP-controlling MTP, van der Laan et al.
van der Laan et al.| (2004a)) derive two simple (conservative) FDR-controlling
MTPs. Here, we compare these two FDR-controlling approaches, based on a
TPPFP-controlling augmentation of the step-down minP procedure, to the
marginal Benjamini & Hochberg Benjamini and Hochberg| (1995) and Ben-
jamini & Yekutieli Benjamini and Yekutieli (2001) procedures, implemented
in the function mt.rawp2adjp.

> cyto.fdr <- fwer2fdr(adjp = cyto.boot@adjp, method = "both")$adjp

> cyto.marg.fdr <- mt.rawp2adjp(rawp = cyto.boot@rawp,

+ proc = c("BY", "BH"))

> comp.fdr <- cbind(cyto.fdr, cyto.marg.fdr$adjplorder(cyto.marg.fdr$index),
+ -11)

> mtps <- c("AMTP Cons", "AMTP Rest", "BY", "BH")

> mt.plot(adjp = comp.fdr, teststat = cyto.boot@statistic,

+ proc = mtps, leg = c(0.1, 400), col = c(2,

+ 2, 3, 3), 1ty = rep(1:2, 2), 1lwd = 3)

> title("Comparison of FDR-controlling MTPs")

Figure [5] shows that for most values of the nominal FDR level «, the usual
Benjamini & Hochberg ("BH”) MTP leads by far to the largest number of
rejected hypotheses. The Benjamini & Yekutieli ("BY”) MTP, a conservative
version of the Benjamini & Hochberg MTP (with ~ log M penalty on the p-
values), leads to much fewer rejections. The AMTPs based on conservative
bounds for the FDR ("AMTP Cons” and "AMTP Rest”) are much more
conservative than the Benjamini & Hochberg MTP and only lead to an
increased number of rejections for very high nominal FDR levels.

3.5 Association of expression measures and tumor molecular
subtype: multi-sample F-statistics

To identify genes with differences in mean expression measures between dif-
ferent tumor molecular subtypes (BCR/ABL, NEG, ALL1/AF4, E2A /PBX1,
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Comparison of gFWER(k)—controlling AMTPs based on SD minP MTF
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Figure 3: Clytogenetic test status — gFWER-controlling AMTPs. Plot of
number of rejected hypotheses vs. nominal Type I error rate for compar-
ing gFWER-controlling AMTPs, based on the bootstrap step-down minP
FWER-controlling procedure, with different allowed numbers k of false pos-
itives.
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Comparison of TPPFP(qg)-controlling AMTPs based on SD minP MTF
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Figure 4: Cytogenetic test status — TPPFEFP-controlling AMTPs. Plot of
number of rejected hypotheses vs. nominal Type I error rate for compar-
ing TPPFP-controlling AMTPs, based on the bootstrap step-down minP
FWER-controlling procedure, with different allowed proportions ¢ of false
positives.
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Comparison of FDR~-controlling MTPs
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Figure 5: Cytogenetic test status — FDR-controlling MTPs. Plot of number
of rejected hypotheses vs. nominal Type I error rate for comparing four
FDR-controlling MTPs.
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pl5/pl6, NUP-98), one can perform a family of F-tests. Tumor subtypes
with fewer than 10 subjects are merged into one group. Adjusted p-values
and test statistic cut-offs (for nominal levels « of 0.01 and 0.1) are computed
as follows for the bootstrap-based single-step maxT FWER-controlling pro-
cedure.

> mb <- as.character(pheno$mol.biol)
> table(mb)

mb
ALL1/AF4 BCR/ABL E2A/PBX1 NEG NUP-98 pl15/p16
10 37 5 74 1 1

> other <- c("E2A/PBX1", "NUP-98", ”p15/p16")
> mb[mb JinJ, other] <- "other"
> table(mb)

mb
ALL1/AF4 BCR/ABL NEG other
10 37 74 7

> mb.boot <- MTP(X = filtX, Y = mb, test = "f",
+ alpha = c(0.01, 0.1), B 100, get.cutoff = TRUE,
+ seed = seed)

running bootstrap...
iteration = 100

Let us examine the results of the MTP.
> summary (mb.boot)
MTP: ss.maxT

Type I error rate: fwer

Level Rejections
1 0.01 187
2 0.10 195

Min. 1st Qu. Median Mean 3rd Qu. Max.

adjp 0.00000 0.000 0.170 0.41980 1.000 1.00
rawp 0.00000 0.000 0.000 0.08381 0.070 1.00
statistic 0.06911 1.816 4.375 5.92200 8.283 36.13
estimate NA NA NA NaN NA NA
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> mb.diff <- mb.boot@adjp <= 0.01
> sum(mb.diff)

[1] 187

> sum(mb.boot@statistic >= mb.boot@cutoff[, "alpha=0.01"] &
+ mb.diff)

[1] 187

For control of the FWER at nominal level @ = 0.01, the bootstrap-based
single-step maxT procedure with F-statistics identifies 187 genes (out of
the 431 filtered genes) as having significant differences in mean expression
measures between tumor molecular subtypes. This set can be identified
through either adjusted p-values or cut-offs for the test statistics. The plot
of test statistics and corresponding cut-offs in Figure [0] illustrates that the
F-statistics for the 10 genes with the smallest adjusted p-values are much
larger than expected by chance under the null distribution.

> plot(mb.boot, which = 6)

3.6 Association of expression measures and time to relapse:
Cox t-statistics

The bootstrap-based MTPs implemented in the main MTP function (nulldist="boot")
allow the test of hypotheses concerning regression parameters in models for
which the subset pivotality condition may not hold (e.g., logistic and Cox
proportional hazards models). The phenotype information in the ALL pack-
age includes the original remission status of the ALL patients (remission
variable in the data.frame pData(ALL)). There are 88 subjects who experi-
enced original complete remission (remission="CR") and who were followed
up for remission status at a later date. We apply the single-step maxT pro-
cedure to test for a significant association between expression measures and
time to relapse amongst these 88 subjects, adjusting for sex. Note that most
of the code below is concerned with extracting the (censored) time to relapse
outcome and covariates from slots of the exprSet instance ALL.

> cr.ind <- pheno$remission == "CR"

> cr.pheno <- phenofcr.ind, ]
> times <- strptime(cr.pheno$'"date last seen", "Jm/%d/%Y") -
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Top 10 Hypotheses
Test Statistics & Cut-offs
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Figure 6: Tumor molecular subtype — Single-step maxT FWER-controlling
MTP. Plot of F-statistics and corresponding cut-offs for the 10 genes with
the smallest adjusted p-values, based on the bootstrap single-step maxT
FWER-controlling procedure (plot method, which=6).
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+ strptime(cr.pheno$date.cr, "Jm/%d/%Y")

> time.ind <- !is.na(times)

> times <- times[time.ind]

> cens <- ((1:length(times)) 7inj, grep("CR", cr.pheno[time.ind,
+ "f.u"l))

> rel.times <- Surv(times, !cens)

> patients <- (1:ncol(filtX))[cr.ind][time.ind]

> relX <- filtX[, patients]

> relZ <- pheno[patients, ]

> cox.boot <- MTP(X = relX, Y = rel.times, Z = relZ,

+ Z.incl = "sex", Z.test = NULL, test = "coxph.YvsXZ",
+ B = 100, get.cr = TRUE, seed = seed)

running bootstrap...
iteration = 100

> summary (cox.boot)

MTP: ss.maxT
Type I error rate: fwer

Level Rejections
1 0.05 1

Min. 1st Qu. Median Mean 3rd Qu. Max.
adjp 0.0000 1.0000 1.00000 0.96290 1.0000 1.0000
rawp 0.0000 0.0800 0.16000 0.17740 0.2600 0.4800
statistic -2.2780 -0.2521 0.37040 0.41410 1.1010 4.0490
estimate -0.5374 -0.0279 0.04581 0.04583 0.1231 0.3972

> cox.diff <- cox.boot@adjp <= 0.05
> sum(cox.diff)

[1] 1

> cox.AffyID <- geneNames(filtALL) [cox.diff]
> mget (cox.AffyID, env = hgu95av2GENENAME)

$"33232_at"
[1] "cysteine-rich protein 1 (intestinal)"
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Top 10 Hypotheses
Estimates & Confidence Regions
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MTP(X = relX, Y = rel.imes, Z = relZ, Zincl = "sex, Ztest = NULL, test = “coxph.YvsXZ", B = 100, get.cr = TRUE, seed = seed)

Figure 7:  Time to relapse — Single-step maxT FWER-controlling MTP.
Plot of Cox regression coefficient estimates and corresponding confidence
intervals for the 10 genes with the smallest adjusted p-values, based on
the bootstrap single-step maxT FWER-controlling procedure (plot method,
which=5).

> plot(cox.boot, which = 5)
> abline(h = 0, col = 2, 1lwd = 2)

For control of the FWER at nominal level @ = 0.05, the bootstrap-based
single-step maxT procedure identifies 1 genes whose expression measures
are significantly associated with time to relapse. Equivalently, Figure [7]
illustrates that the level « = 0.05 confidence regions corresponding to these 1
genes do not include the null value ¢y = 0 for the Cox regression parameters
(indicated by red horizontal line).
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