
edgeR: differential expression analysis
of digital gene expression data

Mark Robinson
mrobinson@wehi.edu.au

Davis McCarthy
dmccarthy@wehi.edu.au

Gordon K. Smyth

12 October 2009

1 Introduction

This document gives a brief introduction and overview of the R Bioconductor package edgeR [Robin-
son and Smyth, 2007, 2008], which provides statistical routines for determining differential ex-
pression in digital gene expression data. The routines can be applied equally to SAGE, CAGE,
Illumina/Solexa, 454 or ABI SOLiD experiments. In fact, the methods may be useful in other
experiments where counts are observed.

The package can easily be loaded into an R session:

> library(edgeR)

R packages for the processing of raw data files for digital gene expression (DGE) datasets are
still in development stages (e.g. ShortRead) at time of writing. The methods presented here
require a DGEList object as a starting point.

2 Reading data

We assume that the data are stored in one of two formats. Either there is a single file containing
a table of counts with the first column containing the tag identifiers and the remaining columns
containing the tag counts for each library sequenced, or there is an individual file for each library,
each with first column for tag identifiers and second column for counts.

If the counts for all libraries are stored in a single file, then an appriopriate in-built R function
(such as read.delim or read.csv) can be used to read the table of counts into R. The library
sizes can be the column sums from the table of counts, and thus easily obtained, or the user can
specify the the library sizes throught lib.size argument of the DGEList() constructor. See the
help documentation (?DGEList or ?"DGEList-class") or the examples below for further details.

If the counts are stored in separate files, then, given a vector containing the filenames the edgeR
function readDGE will read in the data from the individual files, collate the counts into a table and

1

compute the library sizes and return a DGEList object. See the help documentation (?readDGE)
or the examples below for further details.

3 Moderated negative binomial dispersions

The basic model we use for DGE data is based on the negative binomial distribution. The model
is very flexible. For example, if Y is distributed as NB(µ, φ), then the expected value of Y is µ
and the variance is µ+µ2 ·φ, thus giving sufficient flexibility for many scenarios in observing count
data.

The observed data can be denoted as Ygij where g is the gene (tag, exon, etc.), i is the experi-
mental group and j is the index of the replicate. We can model the counts as

Ygij ∼ NB(Mj · pgi, φg)

where pgi represents the proportion of the sequenced sample for group i that is tag g and Mj

represents the library size.
It is of interest to find genes where, for example, pg1 is significantly different from pg2. The

parameter φg is the overdispersion (relative to the Poisson) and represents the biological, or sample-
to-sample variability. The methods we developed moderate the dispersion estimates towards a
common dispersion, much like how the limma package moderates the variances in the analysis of
microarray data. It is also possible to analyse DGE data using a common dispersion for each tag
using edgeR.

4 Case study: SAGE data

4.1 Introduction

This section provides a detailed analysis of data from a SAGE experiment to illustrate the data
analysis pipeline for edgeR. The data come from a very early study using SAGE technology to
analyse gene expression profiles in human cancer cells [Zhang et al., 1997].

4.2 Source of the data

At the time that Zhang et al. [1997] published their paper, no comprehensive study of gene ex-
pression in cancer cells had been reported. Zhang et al. [1997] designed a study to address the
following issues:

1. How many genes are expressed differentially in tumour versus normal cells?

2. Are the majority of those differences cell-autonomous rather than dependent on the tumour
micro-environment?

3. Are most differences cell type-specific or tumour-specific?

2

They used normal and neoplastic gastro-intestinal tissue as a prototype and analysed global profiles
of gene expression in human cancer cells. The researchers derived transcripts from human colorectal
(CR) epithelium, CR cancers or pancreatic cancers. The data that we analyse in this case study
are Zhang et al. [1997]’s SAGE results for the comparison of expression patterns between normal
colon epithelium and primary colon cancer.

They report that the expression profiles revealed that most transcripts were expressed at similar
levels, but that 289 transcripts were expressed at significantly different levels [P -value < 0.01] and
that 181 of these 289 were decreased in colon tumours as compared with normal colon tissue.
Zhang et al. [1997] used Monte Carlo simulation to determine statistical significance. In this case
study we will use the edgeR package, based around the negative binomial model, to identify genes
differentially expressed in the normal and cancer samples.

4.3 Reading in the data and creating a DGEList object

Our first task is to load the edgeR package, read the data into R and organise the data into a
DGEList object that the functions in the package can recognise. The library size is usually the
total sum of all of the counts for a library, and that is how library size is defined in this analysis.
The easiest way to construct an appropriate DGEList object for these data is described below.

In this case, the tag counts for the four individual libraries are stored in four separate plain
text files, GSM728.txt, GSM729.txt, GSM755.txt and GSM756.txt. In each file, the tag IDs and
counts for each tag are provided in a table. It is best to create a tab-delimited, plain-text ‘Targets’
file, which, under the headings ‘files’, ‘group’ and ‘description’, gives the filename, the group and
a brief description for each sample.

The targets object is produced when the ‘Targets.txt’ file is read into the R session. This
object makes a convenient argument to the function readDGE which reads the tables of counts into
our R session, calculates the sizes of the count libraries and produces a DGEList object for use by
subsequent functions.

> library(edgeR)

> setwd("/Users/davismcc/Documents/Honours/Data/ZhangData")

> targets <- read.delim(file = "Targets.txt", stringsAsFactors = FALSE)

> targets

files group description

1 GSM728.txt NC Normal colon

2 GSM729.txt NC Normal colon

3 GSM755.txt Tu Primary colonrectal tumour

4 GSM756.txt Tu Primary colonrectal tumour

> d <- readDGE(targets, skip = 5, comment.char = "#")

> d

3

An object of class "DGEList"

$samples

files group description lib.size

GSM728 GSM728.txt NC Normal colon 50179

GSM729 GSM729.txt NC Normal colon 49593

GSM755 GSM755.txt Tu Primary colonrectal tumour 57686

GSM756 GSM756.txt Tu Primary colonrectal tumour 49064

$counts

GSM728 GSM729 GSM755 GSM756

CCCATCGTCC 1288 1380 1236 0

CCTCCAGCTA 719 458 148 142

CTAAGACTTC 559 558 248 199

GCCCAGGTCA 520 448 22 62

CACCTAATTG 469 472 763 421

57443 more rows ...

This DGEList is now ready to be passed to the functions that do the calculations to determine
differential expression levels for the genes. Note that when we ‘see’ the DGEList object d, the
counts for just the first five genes in the table are shown, as well as the library sizes and groups
for the samples.

4.4 Analysis using common dispersion

4.4.1 Estimating the common dispersion

The first major step in the analysis of DGE data using the NB model is to estimate the dispersion
parameter for each tag. The most straight-forward analysis of DGE data uses the common disper-
sion estimate as the dispersion for all tags. For many applications this will be adequate and it may
not be necessary to estimate tagwise dispersions, i.e. estimate the dispersion parameter separately
for each tag. Using the common dispersion allows the user to obtain DE results very quickly and
in few steps, and so makes a good place to start with any analysis of DGE data.

Estimating the common dispersion is done using the function estimateCommonDisp. In order
to do this, the function first needs to generate the ‘pseudocounts’ under the alternative hypothesis
(that there really is a difference in expression level between the groups). The conditional maximum
likelihood method assumes that the library sizes are equal, which is certainly not true in general
for DGE data.

The pseudocounts are calculated using a quantile-to-quantile method for the negative binomial
distribution so that the library sizes for the pseudocounts are equal to the geometric mean of
the original library sizes. These pseudocounts are then used as the count data for the common
conditional negative binomial likelihood function, which is maximised over the dispersion parameter
to obtain our estimate of the common dispersion.

4

> d <- estimateCommonDisp(d)

> names(d)

[1] "samples" "common.dispersion" "counts"

[4] "pseudo.alt" "conc" "common.lib.size"

The output of estimateCommonDisp is a DGEList object with several new elements. The ele-
ment common.dispersion, as the name suggests, provides the estimate of the common dispersion,
and pseudo.alt gives the pseudocounts calculated under the alternative hypothesis. The element
conc gives the estimates of the overall concentration of each tag across all of the original sam-
ples (conc$conc.common) and the estimate of the concentration of each tag within each group
(conc$conc.group). The element common.lib.size gives the library size to which the original
libraries have been adjusted in the pseudocounts.

We see in the output below that the total number of counts in each library of the pseudocounts
agrees well with the common library size, as desired.

> d$samples$lib.size

[1] 50179 49593 57686 49064

> d$common.lib.size

[1] 51516

> colSums(d$pseudo.alt)

GSM728 GSM729 GSM755 GSM756

51512 51513 51674 51483

Under the negative binomial model, the square root of the common dispersion gives the coeffi-
cient of variation of biological variation. Here, as seen in the code below, the coefficient of variation
of biological variation is found to be 0.45. We also note that a common dispersion estimate of 0.2
means that there is a lot more variability in the data that can be accounted for by the Poisson
model—if a tag has just 200 counts, then the estimate of the tag’s variance under the NB model
is over 40 times greater than it would be under the Poisson model.

> d$common.dispersion

[1] 0.1988

> sqrt(d$common.dispersion)

[1] 0.4458

5

4.4.2 Testing

Once we have an estimate of the common dispersion, we can proceed with testing procedures for
determining differential expression. The edgeR package uses an exact test for the negative binomial
distribution, which has strong parallels with Fisher’s exact test, to compute exact p-values that
can be used to assess differential expression. The function exactTest allows the user to conduct
the NB exact test for pairwise comparisons of groups. Here there are only two groups, so the pair
need not be specified—the function by default compares the two groups present.

> de.com <- exactTest(d)

Comparison of groups: Tu - NC

> names(de.com)

[1] "table" "comparison"

> names(de.com$table)

[1] "logConc" "logFC" "p.value"

The object produced by exactTest contains two elements: table and comparison. The ele-
ment de.com$comparison contains a vector giving the names of the two groups compared. The
tablede.com$table contains the elements logConc, which gives the overall concentration for a tag
across the two groups being compared, logFC, which gives the log-fold change difference for the
counts between the groups and p.value gives the exact p-values computed.

The results of the NB exact test can be accessed conveniently using the topTags function
applied to the object produced by exactTest. The user can specify the number, n, of tags for
which they would like to see the differential expression information, ranked by p-value (default) or
fold change. As the same test is conducted for many thousands of tags, adjusting the p-values for
multiple testing is recommended. The desired adjustment method can be supplied by the user, with
the default method being Benjamini and Hochberg’s approach for controlling the false discovery
rate (FDR) [Benjamini and Hochberg, 1995]. The table below shows the top 10 DE genes ranked
by p-value.

The output below shows that the edgeR package identifies a good deal of differential expression
between the normal colon cell group and the primary CR cancer cell group. The top DE genes
are given very small p-values, even after adjusting for multiple testing. Furthermore, all of the
top genes have a large fold change, indicating that these genes are more likely to be biologically
meaningful. A Gene Ontology analysis could be carried out using the list of top genes and p-values
provided by topTags in order to obtain more systematic and functional information about the
differentially expressed genes.

> options(digits = 4)

> topTags(de.com)

6

Comparison of groups: Tu - NC

logConc logFC PValue FDR

AGCTGTTCCC -28.24 43.552 1.017e-19 5.841e-15

CTTGGGTTTT -29.88 40.271 2.967e-10 8.522e-06

TACAAAATCG -30.26 39.510 2.712e-08 4.926e-04

CCCAACGCGC -12.80 -5.849 3.430e-08 4.926e-04

GCCACCCCCT -30.33 39.380 6.341e-08 7.285e-04

CCAGTCCGCC -30.43 39.177 1.844e-07 1.513e-03

GTCATCACCA -30.42 -39.189 1.844e-07 1.513e-03

TCACCGGTCA -11.13 -4.229 4.428e-07 3.180e-03

TAAATTGCAA -11.39 -4.242 6.090e-07 3.887e-03

CGCGTCACTA -12.30 4.611 7.300e-07 4.194e-03

The table below shows the raw counts for the genes that edgeR has identified as the most
differentially expressed. For these genes there seems to be very large differences between the
groups, suggesting that the DE genes identified are truly differentially expressed, and not false
positives.

> detags.com <- rownames(topTags(de.com)$table)

> d$counts[detags.com,]

GSM728 GSM729 GSM755 GSM756

AGCTGTTCCC 0 0 119 1011

CTTGGGTTTT 0 0 21 97

TACAAAATCG 0 0 14 56

CCCAACGCGC 106 1 2 0

GCCACCCCCT 0 0 5 58

CCAGTCCGCC 0 0 6 49

GTCATCACCA 35 20 0 0

TCACCGGTCA 118 75 6 5

TAAATTGCAA 103 59 3 6

CGCGTCACTA 1 3 88 21

If we order the genes by fold change instead of p-value, as in the table below, we see that the
genes with the largest fold changes have very small concentrations. This ranking is dominated by
genes that have zero total counts in one group and is less informative than ranking by p-value.

> topTags(de.com, sort.by = "logFC")

Comparison of groups: Tu - NC

logConc logFC PValue FDR

AGCTGTTCCC -28.24 43.55 1.017e-19 5.841e-15

CTTGGGTTTT -29.88 40.27 2.967e-10 8.522e-06

7

TACAAAATCG -30.26 39.51 2.712e-08 4.926e-04

GCCACCCCCT -30.33 39.38 6.341e-08 7.285e-04

GTCATCACCA -30.42 -39.19 1.844e-07 1.513e-03

CCAGTCCGCC -30.43 39.18 1.844e-07 1.513e-03

GTGCGCTGAG -30.67 38.69 2.362e-06 9.048e-03

CTTGACATAC -30.69 -38.66 2.837e-06 9.588e-03

GTGTGTTTGT -30.72 38.59 4.135e-06 1.320e-02

GGGGGGGGGG -30.74 38.56 5.019e-06 1.518e-02

Zhang et al. [1997] identified 289 genes as significantly differentially expressed with p-values
less than 0.01. We can look at the genes that are given an exact p-value less than 0.01 by edgeR

before adjusting for multiple testing, and less than 0.05 after adjustment.
We see in the output below that 264 genes are significantly differentially expressed according

to edgeR when using the common dispersion estimate. Of those genes, 100 are up-regulated in
the cancer cells compared with the normal cells and 164 are down-regulated in the cancer cells
compared with normal cells. These proportions of up- and down-regulated tags are very similar to
those found by Zhang et al. [1997].

> sum(de.com$table$p.value < 0.01)

[1] 264

> top264 <- topTags(de.com, n = 264)

> sum(top264$table$logFC > 0)

[1] 100

> sum(top264$table$logFC < 0)

[1] 164

Furthermore, we see below that 33 tags (0.06% of the total number) have a p-value of less
than 0.05 after adjusting for multiple testing using the Benjamini and Hochberg [1995] method for
controlling the FDR, which is strong evidence for differential expression.

> sum(p.adjust(de.com$table$p.value, method = "BH") < 0.05)

[1] 33

> mean(p.adjust(de.com$table$p.value, method = "BH") < 0.05) *

+ 100

[1] 0.05744

8

4.4.3 Visualising DGE results

The function plotSmear can be used to generate a plot of the log-fold change against the log-
concentration for each tag (analogous to an MA-plot in the microarray context). We can easily
identify the top DE tags and highlight them on the plot. The code for producing the default
fold-change plot is shown below, and the result of this code is shown in Figure 5.

> detags264 <- rownames(topTags(de.com, n = 264)$table)

> plotSmear(d, de.tags = detags264, main = "FC plot using common dispersion")

> abline(h = c(-2, 2), col = "dodgerblue")

Figure 5 shows the default fold change-plot for these data—the ‘smear plot’. Plotting DGE
data poses some challenges, as when the total counts in one group are zero, the log-fold change
is technically infinite, and the log-concentration is negative infinity. With the algorithm used by
topTags, we see very high log-fold changes and very small values for log-concentration for such
tags, but plotting these values directly causes problems with the scale of the graph. To get around
this problem, edgeR produces a ‘smear’ of points at the left-most edge of the plot for tags which
have zero counts in one of the groups. Although this is still slightly artificial, it has the advantage
that the expression level of all tags can be visualised and interpreted simultaneously.

The ‘lines’ of points we see at smaller log-concentration values arise from the discrete nature
of the count data. When the sum all of the counts in one of the groups is one, we see the lines of
points furthest away from the main body of points, and other lines of points correspond to when
the total sum of counts in one of the groups is 2, 3, 4 and so on.

In Figure 5, the 264 tags identified as differentially expressed (i.e. those identified as significant
(p-value less than 0.01) by edgeR using the common dispersion) are outlined in red.

4.5 Analysing the data using moderated tagwise dispersions

4.5.1 Estimating the tagwise dispersion

An extension to simply using the common dispersion for each tag is to estimate the dispersion
separately for each tag, while ‘squeezing’ these estimates towards the common dispersion estimate
in order to improve inference by sharing information between tags. This type of analysis can also
be carried out in few steps using the edgeR package.

As noted earlier, the dispersion parameter is the overdispersion relative to the Poisson, and
represents the biological, or sample-to-sample variability. The methods we developed moderate the
dispersion estimates towards a common dispersion, much like how the limma package moderates
the variances in the analysis of microarray data.

To run the moderated analysis, we need to determine how much moderation is necessary. For
this, we can use an empirical Bayes rule that involves calculating a weight parameter prior.n.
However, for many applications (especially if the estimated smoothing parameter is large), using
the common dispersion for all tags will give excellent results.

9

Figure 1: Plot of the log-fold change against the log-concentration for each tag. The 264 most
differentially expressed tags as identified by edgeR using the common dispersion are outlined in
red.

In order to determine how much moderation is necessary, we require an estimate of the dis-
persion parameter, so we use the common dispersion estimate from estimateCommonDisp. The
smoothing parameter, prior.n can then be calculated. As we see below, for this dataset the
estimate of the smoothing parameter is very large, so if we were to use this large value for the
weight parameter we would moderate the tagwise dispersion estimates so strongly that it would
be equivalent to using the common dispersion estimate.

> prior.n <- estimateSmoothing(d)

> prior.n

[1] 29481

Alternatively, the value for the weight parameter prior.n can be selected a priori, instead
of being estimated. In an experiment such as that we consider here, in which we have just four

10

samples, two in each group, and thus two degrees of freedom for estimating the dispersion param-
eter, setting the prior.n to be relatively large should be appropriate, so that individual tagwise
dispersion estimates are ‘squeezed’ quite strongly towards the common dispersion. Here, we choose
prior.n to be 100. This means that the common likelihood receives the weight of 100 individual
tags, so there will be a reasonable degree of ‘squeezing’, but there is still scope to estimate an
individual dispersion for each gene.

The function estimateTagwiseDisp produces a DGEList object that contains all of the ele-
ments present in the object produced by estimateCommonDisp, as well as the value for prior.n

used (d$prior.n) and the tagwise dispersion estimates (d$tagwise.dispersion), as we see below.

> d <- estimateTagwiseDisp(d, prior.n = 100)

Using grid search to estimate tagwise dispersion.

> names(d)

[1] "samples" "common.dispersion" "prior.n"

[4] "tagwise.dispersion" "counts" "pseudo.alt"

[7] "conc" "common.lib.size"

> d$prior.n

[1] 100

> head(d$tagwise.dispersion)

[1] 0.99002 0.12528 0.08252 0.22934 0.11896 0.15795

It is interesting to consider the distribution of the tagwise dispersion estimates. As we can
see from the output below, the tagwise dispersion estimates range from a minimum of 0.08 to a
maximum of 0.99, but the tags in the middle two quartiles of the tagwise dispersion estimates have
dispersion estimates just slightly larger than the common dispersion estimate.

> summary(d$tagwise.dispersion)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0825 0.2000 0.2000 0.2000 0.2000 0.9900

> d$common.dispersion

[1] 0.1988

11

4.5.2 Testing

The testing procedures when using tagwise dispersion estimates are carried out exactly as for the
common dispersion, as described above, but we add the argument common.disp=FALSE to the call
to exactTest.

> de.tgw <- exactTest(d, common.disp = FALSE)

Comparison of groups: Tu - NC

The output below shows that when using tagwise dispersions, the edgeR package still identifies
a lot of differential expression between the normal colon cell group and the primary CR cancer cell
group. The top DE tags are given very small p-values, even after adjusting for multiple testing.
As with the analysis using the common dispersion, all of the top tags have a large fold change,
indicating that these changes in expression are likely to be biologically meaningful. We note that
the ranking is different, however, and not all of the top ten tags according to using the common
dispersion are found to be among the top ten tags using tagwise dispersions.

> topTags(de.tgw)

Comparison of groups: Tu - NC

logConc logFC PValue FDR

AGCTGTTCCC -28.240 43.553 1.541e-10 8.855e-06

TCACCGGTCA -11.130 -4.229 3.892e-09 1.118e-04

GTCATCACCA -30.421 -39.189 7.815e-08 1.497e-03

TAAATTGCAA -11.390 -4.244 1.846e-07 2.355e-03

CTTGGGTTTT -29.879 40.274 2.049e-07 2.355e-03

TAATTTTTGC -13.735 5.741 4.550e-07 4.356e-03

CTTGACATAC -30.687 -38.658 5.735e-07 4.378e-03

ATTTCAAGAT -13.747 -5.893 6.097e-07 4.378e-03

TGCTCCTACC -9.985 -2.722 7.139e-07 4.407e-03

GTGCGCTGAG -30.672 38.688 7.671e-07 4.407e-03

The table below shows the raw counts for the tags that edgeR has identified as the most
differentially expressed using tagwise dispersions. For these genes there seems to be very large
differences between the groups, suggesting that the DE genes identified are truly differentially
expressed, and not false positives.

We note that in general, when using tagwise dispersions, the counts are more consistent within
groups, as using tagwise dispersions instead of the common dispersion penalises tags which are
highly variable within groups. The smaller the value selected for prior.n, the more highly variable
tags will be penalised, as there is less ‘squeezing’ of the tagwise dispersions towards the common
value.

> detags.tgw <- rownames(topTags(de.tgw)$table)

> d$counts[detags.tgw,]

12

GSM728 GSM729 GSM755 GSM756

AGCTGTTCCC 0 0 119 1011

TCACCGGTCA 118 75 6 5

GTCATCACCA 35 20 0 0

TAAATTGCAA 103 59 3 6

CTTGGGTTTT 0 0 21 97

TAATTTTTGC 0 1 37 21

CTTGACATAC 18 20 0 0

ATTTCAAGAT 35 21 0 1

TGCTCCTACC 140 113 22 19

GTGCGCTGAG 0 0 18 23

Of course, we can sort the top table differently, as we did earlier.
We see in the output below that 254 genes are significantly differentially expressed according

to edgeR when using the tagwise dispersion estimates (ten fewer than when using the common
dispersion). Of those tags, 87 are up-regulated in the cancer cells compared with the normal cells
and 167 are down-regulated in the cancer cells compared with normal cells. These proportions of
up- and down-regulated tags are similar to those found using the common dispersion, but there
is a slightly higher proportion of down-regulated tags in those identified as DE using tagwise
dispersions.

> sum(de.tgw$table$p.value < 0.01)

[1] 254

> top254 <- topTags(de.tgw, n = 254)

> sum(top254$table$logFC > 0)

[1] 87

> sum(top254$table$logFC < 0)

[1] 167

Furthermore, we see below that 28 tags (0.05% of the total number) have a p-value of less
than 0.05 after adjusting for multiple testing using the Benjamini and Hochberg [1995] method for
controlling the FDR, which is strong evidence for differential expression.

> sum(p.adjust(de.tgw$table$p.value, method = "BH") < 0.05)

[1] 28

> mean(p.adjust(de.tgw$table$p.value, method = "BH") < 0.05) *

+ 100

[1] 0.04874

13

4.5.3 Visualising DGE results

Shown below is the code for producing the default fold-change plot using plotSmear with the DE
tags as determined using tagwise dispersions highlighted, and the result of this code is shown in
Figure 6.

> detags254 <- rownames(topTags(de.tgw, n = 254)$table)

> plotSmear(d, de.tags = detags254, main = "FC plot using tagwise dispersions")

> abline(h = c(-2, 2), col = "dodgerblue")

In Figure 6, the 254 tags identified as differentially expressed (i.e. those identified as significant
(p-value less than 0.01) by edgeR using the tagwise dispersions) are highlighted in red. We see
that the pattern of differential expression using tagwise dispersions that we see in Figure 6 is very
similar to that obtained using the common dispersion that we saw in Figure 5.

Figure 2: Plot of the log-fold change against the log-concentration for each tag. The 264 most
differentially expressed tags as identified by edgeR are outlined in red.

14

4.6 Setup

This analysis of Zhang et al. [1997]’s SAGE data was conducted on:

> sessionInfo()

R version 2.9.1 (2009-06-26)

i386-apple-darwin8.11.1

locale:

en_AU.UTF-8/en_AU.UTF-8/C/C/en_AU.UTF-8/en_AU.UTF-8

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] edgeR_1.3.6

loaded via a namespace (and not attached):

[1] limma_2.18.2

and took 2–3 minutes to carry out on an Apple MacBook with a 2.4 Ghz Intel Core 2 Duo processor
and 4 Gb of 1067 MHz DDR3 memory.

5 Case Study: deep-sequenced short tags

5.1 Introduction

This section provides a detailed analysis of data from an experiment seeking to compare deep-
sequenced tag-based expression profiling to the microarray platforms that had been previously
used to conduct such studies [’t Hoen et al., 2008].

5.2 Source of the data

’t Hoen et al. [2008] address both biological and technical questions in their study. The biological
question addressed was the identification of transcripts differentially expressed in the hippocampus
between wild-type mice and transgenic mice overexpressing a splice variant of the δC-doublecortin-
like kinase-1 (Dclk1) gene. The splice variant, DCLK-short, makes the kinase constitutively active
and causes subtle behavioural phenotypes.

On the technical side, the researchers compare the robustness, resolution and inter-lab porta-
bility of Solexa/Illumina’s DGE tag profiling approach and five microarray platforms [’t Hoen
et al., 2008]. The tag-based gene expression technology in this experiment could be thought of as a
hybrid between SAGE and RNA-seq—like SAGE it uses short sequence tags (∼ 17bp) to identify

15

transcripts, but it uses the deep sequencing capabilities of Solexa/Illumina 1G Genome Analyzer
to greatly increase the number of tags that can be sequenced. For our purposes we will concentrate
solely on the DGE data generated in the experiment.

The RNA samples came from wild-type male C57/BL6j mice and transgenic mice overexpressing
DCLK-short with a C57/BL6j background. Tissue samples were collected from four individuals
in each of the two groups by dissecting out both hippocampi from each mouse. Total RNA was
isolated and extracted from the hippocampus cells and sequence tags were prepared using Illumina’s
Digital Gene Expression Tag Profiling Kit according to the manufacturer’s protocol.

Sequencing was done using Solexa/Illumina’s Whole Genome Sequencer. RNA from each bi-
ological sample was supplied to an individual lane in one Illumina 1G flowcell. The instrument
conducted 18 cycles of base incorporation, then image analysis and basecalling were performed
using the Illumina Pipeline. Sorting and counting the unique tags followed, and the raw data (tag
sequences and counts) are what we will analyze here. ’t Hoen et al. [2008] went on to annotate
the tags by mapping them back to the genome. In general, the mapping of tags is an important
and highly non-trivial part of a DGE experiment, but we shall not deal with this task in this case
study.

The researchers obtained ∼ 2.4 million sequence tags per sample, with tag abundance spanning
four orders of magnitude. They found the results to be highly reproducible, even across laborato-
ries. Using a dedicated Bayesian model, they found 3179 transcripts to be differentially expressed
with a FDR of 8.5%. This is a much higher figure than was found for the microarrays. ’t Hoen
et al. [2008] conclude that deep-sequencing offers a major advance in robustness, comparability
and richness of expression profiling data.

5.3 Reading in the data and creating a DGEList object

Our first task is to load the edgeR package, read the data into R and organise the data into an
object that the functions in the package can recognise. In this case, the tag counts for the eight
individual libraries are stored in eight separate plain text files, GSM272105.txt, GSM272106.txt,
GSM272318.txt, GSM272319.txt, GSM272320.txt, GSM272321.txt, GSM272322.txt and GSM272323.txt.

In each file, the tag IDs and counts for each tag are provided in a table. It is best to create a
tab-delimited, plain-text ‘Targets’ file, which, under the headings ‘files’, ‘group’ and ‘description’,
gives the filename, the group and a brief description for each sample.

The targets object is produced when the ‘Targets.txt’ file is read into the R session. This
object makes a convenient argument to the function readDGE which reads the tables of counts into
our R session, calculates the sizes of the count libraries and produces a DGEList object for use by
subsequent functions.

> setwd("/Users/davismcc/Documents/Honours/Data/Long_SAGE_Data")

> library(edgeR)

> targets <- read.delim(file = "targets.txt", stringsAsFactors = FALSE)

> targets

16

files group description

1 GSM272105.txt DCLK transgenic (Dclk1) mouse hippocampus

2 GSM272106.txt WT wild-type mouse hippocampus

3 GSM272318.txt DCLK transgenic (Dclk1) mouse hippocampus

4 GSM272319.txt WT wild-type mouse hippocampus

5 GSM272320.txt DCLK transgenic (Dclk1) mouse hippocampus

6 GSM272321.txt WT wild-type mouse hippocampus

7 GSM272322.txt DCLK transgenic (Dclk1) mouse hippocampus

8 GSM272323.txt WT wild-type mouse hippocampus

> d <- readDGE(targets, skip = 5, comment.char = "!")

> d

An object of class "DGEList"

$samples

files group description

GSM272105 GSM272105.txt DCLK transgenic (Dclk1) mouse hippocampus

GSM272106 GSM272106.txt WT wild-type mouse hippocampus

GSM272318 GSM272318.txt DCLK transgenic (Dclk1) mouse hippocampus

GSM272319 GSM272319.txt WT wild-type mouse hippocampus

GSM272320 GSM272320.txt DCLK transgenic (Dclk1) mouse hippocampus

GSM272321 GSM272321.txt WT wild-type mouse hippocampus

GSM272322 GSM272322.txt DCLK transgenic (Dclk1) mouse hippocampus

GSM272323 GSM272323.txt WT wild-type mouse hippocampus

lib.size

GSM272105 2685418

GSM272106 3517977

GSM272318 3202246

GSM272319 3558260

GSM272320 2460753

GSM272321 294909

GSM272322 651172

GSM272323 3142280

$counts

GSM272105 GSM272106 GSM272318 GSM272319 GSM272320

CATCGCCAGCGGGCACC 1 0 0 0 0

AAGGTCGACTCTGAAGT 1 1 0 0 0

CCTTCCTGGCTCTATGG 1 0 0 0 0

TCTGCTGAGCGTCTGTT 1 0 0 0 0

CCCCAGAGCGAATCAGG 1 1 2 1 1

GSM272321 GSM272322 GSM272323

CATCGCCAGCGGGCACC 0 0 0

17

AAGGTCGACTCTGAAGT 0 0 0

CCTTCCTGGCTCTATGG 0 0 0

TCTGCTGAGCGTCTGTT 0 0 0

CCCCAGAGCGAATCAGG 0 2 1

844311 more rows ...

This DGEList is now ready to be passed to the functions that do the calculations to determine
differential expression levels for the genes. Note that when we ‘see’ the DGEList object d, the
counts for just the first five genes in the table are shown, as well as the samples element, which is
a data frame constructed from the ‘Targets.txt’ file and provides the filenames, groups, descriptions
and library sizes for the samples.

However, for this dataset, there were over 800 000 unique tags sequenced, most of which have a
very small number of counts in total across all libraries. Since it is not possible to achieve statistical
significance with fewer than six counts in total for a tag, we filter out tags with five or fewer counts
in total—this also helps to speed up the calculations we need to perform. The subsetting capability
of DGEList objects makes such filtering very easy to carry out.

> d <- d[rowSums(d$counts) > 5,]

Now the dataset is ready to be analysed for differential expression.

5.4 Analysis using common dispersion

5.4.1 Estimating the common dispersion

As discussed for the SAGE data, the first major step in the analysis of DGE data using the NB
model is to estimate the dispersion parameter for each tag. Like in the earlier case study, we begin
by estimating the common dispersion using the function estimateCommonDisp.

> d <- estimateCommonDisp(d)

> names(d)

[1] "samples" "common.dispersion" "counts"

[4] "pseudo.alt" "conc" "common.lib.size"

We see in the output below that the total counts in each library of the pseudocounts agrees
well with the common library size, as desired.

> d$samples$lib.size

[1] 2685418 3517977 3202246 3558260 2460753 294909 651172 3142280

> d$common.lib.size

18

[1] 1885653

> colSums(d$pseudo.alt)

GSM272105 GSM272106 GSM272318 GSM272319 GSM272320 GSM272321 GSM272322

1781297 1783960 1778180 1774107 1789066 1777588 1795899

GSM272323

1783746

Here the coefficient of variation of biological variation (square root of the common dispersion)
is found to be 0.44. We also note that a common dispersion estimate of 0.2 means that there is a
lot more variability in the data that can be accounted for by the Poisson model—if a tag has just
200 counts, then the estimate of the tag’s variance under the NB model is over 40 times greater
than it would be under the Poisson model.

> d$common.dispersion

[1] 0.1977094

> sqrt(d$common.dispersion)

[1] 0.4446452

5.4.2 Testing

Once we have an estimate of the common dispersion, we can proceed with testing procedures for
determining differential expression. As for the SAGE data, there are only two groups here, so the
pair need not be specified in the call to exactTest.

> de.common <- exactTest(d)

Comparison of groups: WT - DCLK

The results of the NB exact test can be accessed conveniently using the topTags function
applied to the object produced by exactTest. The table below shows the top 10 DE genes ranked
by p-value.

The table in the output from topTags shows that the edgeR package identifies a good deal of
differential expression between the wild-type and the DCLK-transgenic groups. The top DE tags
are given very small p-values, even after adjusting for multiple testing. Furthermore, all of the top
tags have a large fold change, indicating that these tags are likely to be biologically meaningful.
As suggested in the SAGE case study, a Gene Ontology analysis could be carried out using the list
of top tags and p-values provided by topTags in order to obtain more systematic and functional
information about the differentially expressed genes.

19

> topTags(de.common)

Comparison of groups: WT - DCLK

logConc logFC PValue FDR

AATTTCTTCCTCTTCCT -17.29988 11.605093 1.028275e-36 1.149704e-31

CCGTCTTCTGCTTGTCG -10.57698 5.571165 1.076926e-23 6.020501e-19

TCTGTACGCAGTCAGGC -18.46570 -9.731983 7.100854e-23 2.646464e-18

CCGTCTTCTGCTTGTAA -14.44395 5.448158 1.083062e-21 3.027402e-17

CCGTCTTCTGCTTGTCA -15.45499 5.496920 2.759755e-20 6.171309e-16

AAGACTCAGGACTCATC -32.27026 35.491588 7.516087e-20 1.400610e-15

CCGTCTTCTGCTTGTAG -15.57138 4.803709 3.572708e-17 5.453064e-13

AGTGTGACGTGACCGGG -19.06213 8.067070 3.901700e-17 5.453064e-13

AAATTCTTCCTCTTCCT -19.14713 7.910596 2.838381e-16 3.526184e-12

TGTGTATCCCACAAGGG -18.68579 6.864501 5.262632e-16 5.884096e-12

The table below shows the raw counts for the tags that edgeR has identified as the most
differentially expressed. For these tags there seem to be very large differences between the groups,
suggesting that the DE genes identified are truly differentially expressed, and not false positives.

> detags.com <- rownames(topTags(de.common)$table)

> d$counts[detags.com,]

GSM272105 GSM272106 GSM272318 GSM272319 GSM272320

AATTTCTTCCTCTTCCT 1 44 0 1 0

CCGTCTTCTGCTTGTCG 106 1485 268 420 601

TCTGTACGCAGTCAGGC 160 0 101 1 440

CCGTCTTCTGCTTGTAA 12 87 21 28 31

CCGTCTTCTGCTTGTCA 2 42 8 17 19

AAGACTCAGGACTCATC 0 6 0 2 0

CCGTCTTCTGCTTGTAG 9 61 11 20 17

AGTGTGACGTGACCGGG 0 249 0 2 1

AAATTCTTCCTCTTCCT 1 6 0 0 0

TGTGTATCCCACAAGGG 1 1 1 0 0

GSM272321 GSM272322 GSM272323

AATTTCTTCCTCTTCCT 76 0 3487

CCGTCTTCTGCTTGTCG 5156 5 242

TCTGTACGCAGTCAGGC 0 33 0

CCGTCTTCTGCTTGTAA 352 1 14

CCGTCTTCTGCTTGTCA 183 1 17

AAGACTCAGGACTCATC 4 0 461

CCGTCTTCTGCTTGTAG 133 0 9

AGTGTGACGTGACCGGG 5 0 85

AAATTCTTCCTCTTCCT 2 0 288

TGTGTATCCCACAAGGG 6 0 252

20

If we order the tags by fold change instead of p-value, as in the table below, we see that the
genes with the largest fold changes have very small concentrations, and in general the p-values are
not as small as when ranked by p-value (not surprisingly). This ranking is dominated by genes
that have zero total counts in one group and is less informative than ranking by p-value.

> topTags(de.common, sort.by = "logFC")

Comparison of groups: WT - DCLK

logConc logFC PValue FDR

AAGACTCAGGACTCATC -32.27026 35.49159 7.516087e-20 1.400610e-15

CCTGATGCTACAGAAAA -32.72599 34.58013 5.104779e-15 5.188729e-11

CATAAGTCACAGAGTCG -32.76506 -34.50198 6.541738e-14 5.626348e-10

ACTCTGTGTATTACTCC -32.89435 34.24342 3.132417e-14 2.918603e-10

GATTTTTGTCGTGTTGG -32.95947 34.11317 2.185773e-13 1.745636e-09

AAAAGAAATCACAGTTG -32.96984 -34.09243 7.296827e-12 3.399379e-08

CACATAAGACTTTGGAC -33.09656 33.83899 2.181792e-12 1.434965e-08

AAAATGTTGTTTATGGA -33.10525 33.82162 4.049564e-12 2.156084e-08

GAAATTCTCCATTGATT -33.13607 33.75996 4.049564e-12 2.156084e-08

AAATTATTCCTCTTCCT -33.17108 33.68995 9.017868e-12 4.033115e-08

Using their dedicated Bayesian model, ’t Hoen et al. [2008] found 3179 transcripts to be dif-
ferentially expressed with a FDR of 8.5%. We can compare ’t Hoen et al. [2008]’s results with the
results from edgeR by applying the topTags function to help look at the tags that have a FDR of
less than 0.085 after adjusting for multiple testing using Benjamini and Hochberg [1995]’s method
for controlling the FDR.

We see in the output below that 1710 tags (1.5% of the total number analysed) are significantly
differentially expressed according to edgeR using the common dispersion estimate. Of those tags,
943 (55% of the DE tags) are up-regulated in the wild-type compared with the transgenic samples
and 767 (45%) are down-regulated in the wild-type compared with transgenic mice.

> sum(p.adjust(de.common$table$p.value, method = "BH") < 0.085)

[1] 1710

> mean(p.adjust(de.common$table$p.value, method = "BH") <

+ 0.085) * 100

[1] 1.529394

> top.com <- topTags(de.common, n = 1710)

> sum(top.com$table$logFC > 0)

[1] 943

> sum(top.com$table$logFC < 0)

[1] 767

21

5.4.3 Visualising DGE results

The code for producing the default fold-change plot, with the top 500 most DE tags highlighted
in red, is shown below, and the result of this code is shown in Figure 5. In Figure 5, we see
that the 500 tags identified as most differentially expressed have large fold changes—almost all of
the 500 tags in red fall outside the blue lines at log FC = −2 and log FC = 2. This means that
most of these tags show at least a 4-fold change in expression level between the samples. This plot
suggests strongly that the tags identified by edgeR as differentially expressed are truly differentially
expressed, and, given the large changes in expression level, are likely to be biologically meaningful.

> detags500.com <- rownames(topTags(de.common, n = 500)$table)

> plotSmear(d, de.tags = detags500.com, main = "FC plot using common dispersion")

> abline(h = c(-2, 2), col = "dodgerblue", lwd = 2)

Figure 3: Plot of the log-fold change against the log-concentration for each tag. The 500 most
differentially expressed tags as identified by edgeR using the common dispersion are outlined in
red.

22

5.5 Analysis using moderated tagwise dispersions

5.5.1 Estimating the tagwise dispersion

An extension to simply using the common dispersion for each tag is to estimate the dispersion
separately for each tag, while ‘squeezing’ these estimates towards the common dispersion estimate
in order to improve inference by sharing information between tags. This type of analysis can also
be carried out in few steps using the edgeR package.

To run the moderated analysis, we need to determine how much moderation is necessary. As
discussed in the SAGE case study, we can use an empirical Bayes rule that involves calculating a
weight parameter prior.n. However, for many applications (especially if the estimated smoothing
parameter is large), using the common dispersion for all tags will give excellent results.

The smoothing parameter, prior.n can then be calculated using the function estimateS-

moothing, which takes the DGEList object produced by estimateCommonDisp as its argument.
As we see below, for this dataset the estimate of the smoothing parameter is very large, so if we
were to use this large value for the weight parameter we would moderate the tagwise dispersion
estimates so strongly that it would be equivalent to using the common dispersion estimate.

> prior.n <- estimateSmoothing(d)

> prior.n

[1] 15399.17

Alternatively, the value for the weight parameter prior.n can be selected a priori, instead of
being estimated. In an experiment such as that we consider here, in which we have eight samples
and thus six degrees of freedom for estimating the dispersion parameter, setting the prior.n to
be ten should be appropriate. This means that the common likelihood receives the weight of ten
individual tags, so there will be a reasonable degree of ‘squeezing’ towards the common dispersion
estimate, but there is still enough scope to estimate an individual dispersion for each gene.

The function estimateTagwiseDisp produces a DGEList object that contains all of the ele-
ments present in the object produced by estimateCommonDisp, as well as the value for prior.n

used (d$prior.n) and the tagwise dispersion estimates (d$tagwise.dispersion), as we see below.

> d <- estimateTagwiseDisp(d, prior.n = 10)

Using grid search to estimate tagwise dispersion.

> names(d)

[1] "samples" "common.dispersion" "prior.n"

[4] "tagwise.dispersion" "counts" "pseudo.alt"

[7] "conc" "common.lib.size"

> d$prior.n

23

[1] 10

> head(d$tagwise.dispersion)

[1] 0.1997564 0.1854905 0.1925808 0.1579529 0.2070189 0.1854905

It is interesting to consider the distribution of the tagwise dispersion estimates. As we can
see from the output below, the tagwise dispersion estimates range from a minimum of 0.09 to
a maximum of 0.97, and the common dispersion estimate lies in between the median and mean
values for the tagwise dispersion estimates.

> summary(d$tagwise.dispersion)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.08842 0.18550 0.19260 0.19930 0.20700 0.99000

> d$common.dispersion

[1] 0.1977094

5.5.2 Testing

Once we have an estimate of the common dispersion and/or estimates of the tagwise dispersions,
we can proceed with testing procedures for determining differential expression using exactTest.

By default, exactTest uses the common dispersion, but by adding the argument common.disp=FALSE,
tagwise dispersion estimates will be used instead.

> de.tagwise <- exactTest(d, common.disp = FALSE)

Comparison of groups: WT - DCLK

Just as we saw earlier, the object produced by exactTest contains two elements. The first is
a data frame (table) that contains the elements logConc, logFC and p.value and the second is
a vector (comparison) that lists the names of the groups being compared.

The output below shows that when using tagwise dispersions, the edgeR package still identifies
a lot of differential expression between the wild-type group and the DCLK-transgenic group. The
top DE tags are given very small p-values, even after adjusting for multiple testing. However, We
see immediately that the p-values for the top tags are many orders of magnitude greater than those
for the top tags identified using the common dispersion.

As with the analysis using the common dispersion, all of the top tags have a large fold change,
indicating that these changes in expression are likely to be biologically meaningful, although inter-
estingly we see more tags (7 out of 10) that are down-regulated in the wild-type group compared
with the DCLK group, which contrasts with using the common dispersion. We note that the rank-
ing of the tags is different, too, and only three of the top ten tags according to using the common
dispersion are found to be among the top ten tags using tagwise dispersions.

24

> topTags(de.tagwise)

Comparison of groups: WT - DCLK

logConc logFC PValue FDR

TCTGTACGCAGTCAGGC -18.46778 -9.732317 2.271105e-18 2.539300e-13

CATAAGTCACAGAGTCG -32.76303 -34.506051 4.507171e-15 2.519711e-10

CCAAGAATCTGGTCGTA -17.46762 -3.929366 1.966857e-12 7.330412e-08

AATTTCTTCCTCTTCCT -17.30380 11.607564 3.139447e-12 8.775460e-08

ATACTGACATTTCGTAT -16.77800 4.144907 6.097301e-12 1.363466e-07

GCTAATAAATGGCAGAT -14.91149 -3.295240 9.212532e-12 1.716740e-07

CTGCTAAGCAGAAGCAA -16.99434 -3.427292 1.803488e-11 2.880660e-07

TTCCTGAAAATGTGAAG -17.08403 -3.639794 2.653336e-11 3.708335e-07

AAAAGAAATCACAGTTG -32.97330 -34.085504 6.032072e-11 7.493777e-07

AGTGTGACGTGACCGGG -19.07157 8.035868 1.581782e-10 1.768575e-06

Of course, we can also rank the top tags using the fold change instead of the p-value. The
results of doing this are shown in the table below, but this ranking is dominated by genes that
have zero total counts in one group and is less informative than ranking by p-value.

> topTags(de.tagwise, n = 10, sort.by = "logFC")

Comparison of groups: WT - DCLK

logConc logFC PValue FDR

AAGACTCAGGACTCATC -32.29053 35.45105 1.216554e-08 5.667572e-05

CCTGATGCTACAGAAAA -32.75498 34.52215 4.898918e-07 1.165411e-03

CATAAGTCACAGAGTCG -32.76303 -34.50605 4.507171e-15 2.519711e-10

ACTCTGTGTATTACTCC -32.92486 34.18238 2.898915e-08 1.200463e-04

AAAAGAAATCACAGTTG -32.97330 -34.08550 6.032072e-11 7.493777e-07

GATTTTTGTCGTGTTGG -33.00084 34.03043 1.747407e-07 4.765265e-04

CACATAAGACTTTGGAC -33.13007 33.77197 2.927280e-06 3.596662e-03

GAAATTCTCCATTGATT -33.15363 33.72485 7.690677e-07 1.500202e-03

AAAATGTTGTTTATGGA -33.15760 33.71690 5.539764e-06 5.567035e-03

AAATTATTCCTCTTCCT -33.18808 33.65595 1.494026e-06 2.456552e-03

The tables below shows the raw counts for the genes that edgeR has identified as the most
differentially expressed, using the common dispersion and tagwise dispersions. For these tags,
using both methods, there seem to be very large differences between the groups, suggesting that
the DE genes identified are truly differentially expressed, and not false positives.

Particularly noteworthy, however, is how much more consistent the counts within groups are for
the top tags identified using tagwise dispersions compared with those identified using the common
dispersion. This is to be expected, as allowing tagwise dispersions penalises highly variable tags,
so those that have greater variability within groups (especially one or two libraries with extremely
high counts) will appear far lower in the ranking using tagwise dispersions than they would using
the common dispersion. This difference in the rankings provided by the two approaches to the
dispersion parameter could yield valuable information.

25

> detags.tgw <- rownames(topTags(de.tagwise)$table)

> detags.com <- rownames(topTags(de.common)$table)

> d$counts[detags.tgw,]

GSM272105 GSM272106 GSM272318 GSM272319 GSM272320

TCTGTACGCAGTCAGGC 160 0 101 1 440

CATAAGTCACAGAGTCG 67 0 77 0 58

CCAAGAATCTGGTCGTA 70 3 66 5 47

AATTTCTTCCTCTTCCT 1 44 0 1 0

ATACTGACATTTCGTAT 5 113 5 228 8

GCTAATAAATGGCAGAT 387 45 321 32 132

CTGCTAAGCAGAAGCAA 76 7 88 7 52

TTCCTGAAAATGTGAAG 74 6 70 9 86

AAAAGAAATCACAGTTG 31 0 90 0 42

AGTGTGACGTGACCGGG 0 249 0 2 1

GSM272321 GSM272322 GSM272323

TCTGTACGCAGTCAGGC 0 33 0

CATAAGTCACAGAGTCG 0 7 0

CCAAGAATCTGGTCGTA 0 13 7

AATTTCTTCCTCTTCCT 76 0 3487

ATACTGACATTTCGTAT 4 1 104

GCTAATAAATGGCAGAT 1 71 38

CTGCTAAGCAGAAGCAA 0 15 11

TTCCTGAAAATGTGAAG 0 10 7

AAAAGAAATCACAGTTG 0 3 0

AGTGTGACGTGACCGGG 5 0 85

> d$counts[detags.com,]

GSM272105 GSM272106 GSM272318 GSM272319 GSM272320

AATTTCTTCCTCTTCCT 1 44 0 1 0

CCGTCTTCTGCTTGTCG 106 1485 268 420 601

TCTGTACGCAGTCAGGC 160 0 101 1 440

CCGTCTTCTGCTTGTAA 12 87 21 28 31

CCGTCTTCTGCTTGTCA 2 42 8 17 19

AAGACTCAGGACTCATC 0 6 0 2 0

CCGTCTTCTGCTTGTAG 9 61 11 20 17

AGTGTGACGTGACCGGG 0 249 0 2 1

AAATTCTTCCTCTTCCT 1 6 0 0 0

TGTGTATCCCACAAGGG 1 1 1 0 0

GSM272321 GSM272322 GSM272323

AATTTCTTCCTCTTCCT 76 0 3487

CCGTCTTCTGCTTGTCG 5156 5 242

26

TCTGTACGCAGTCAGGC 0 33 0

CCGTCTTCTGCTTGTAA 352 1 14

CCGTCTTCTGCTTGTCA 183 1 17

AAGACTCAGGACTCATC 4 0 461

CCGTCTTCTGCTTGTAG 133 0 9

AGTGTGACGTGACCGGG 5 0 85

AAATTCTTCCTCTTCCT 2 0 288

TGTGTATCCCACAAGGG 6 0 252

We might also be interested in comparing the top-ranking genes as identified by edgeR using
the common dispersion and tagwise dispersions. The output below shows, firstly, that there are
three tags that appear in the top ten most DE tags using both common and tagwise dispersions.
Secondly, we see that of the top 1000 most DE tags as identified using tagwise dispersions, 77% of
these tags are also in the list of the 1000 most DE tags as identified using the common dispersion.
This shows that although we do get quite different results depending on which method we use,
there is still a great deal of agreement as to which tags are DE.

> sum(rownames(topTags(de.tagwise)$table) %in% rownames(topTags(de.common)$table))

[1] 3

> sum(rownames(topTags(de.tagwise, n = 1000)$table) %in% rownames(topTags(de.common,

+ n = 1000)$table))/1000 * 100

[1] 76.7

Using their dedicated Bayesian model, ’t Hoen et al. [2008] found 3179 transcripts to be dif-
ferentially expressed with a FDR of 8.5%. The output below shows that using Benjamini and
Hochberg [1995]’s approach for controlling the FDR at 8.5%, edgeR identifies 1717 tags as DE
using common dispersion and 1441 tags as DE using tagwise dispersions. This means that we
determine 1.54% and 1.29% of tags to be DE using common and tagwise dispersions, respectively.

> sum(p.adjust(de.common$table$p.value, method = "BH") < 0.085)

[1] 1710

> mean(p.adjust(de.common$table$p.value, method = "BH") <

+ 0.085) * 100

[1] 1.529394

> sum(p.adjust(de.tagwise$table$p.value, method = "BH") <

+ 0.085)

27

[1] 1441

> mean(p.adjust(de.tagwise$table$p.value, method = "BH") <

+ 0.085) * 100

[1] 1.288805

Of the 1441 tags identified as DE using tagwise dispersions, 729 (51%) are up-regulated in
wild-type and 712 (49%) are up-regulated in the transgenic mice. The proportions of up- and
down-regulated genes identified using the two approaches to modeling the dispersion are similar,
but using the common dispersion identifies slightly more tags up-regulated in wild-type mice as
DE.

> top.tgw <- topTags(de.tagwise, n = 1441)

> sum(top.tgw$table$logFC > 0)

[1] 729

> sum(top.tgw$table$logFC < 0)

[1] 712

5.5.3 Visualising DGE results

As discussed earlier, the function plotSmear can be used to generate a plot of the log-fold change
against the log-concentration for each tag (analogous to an MA-plot in the microarray context).
We identify the top 500 most DE tags using both common dispersion and tagwise dispersions so we
can highlight them on the plots and compare what we see. The code for producing the fold-change
plots is shown below, and the result of this code is shown in Figure 6.

> detags500.com <- rownames(topTags(de.common, n = 500)$table)

> detags500.tgw <- rownames(topTags(de.tagwise, n = 500)$table)

> par(mfcol = c(2, 1))

> plotSmear(d, de.tags = detags500.com, main = "Using common dispersion")

> abline(h = c(-2, 2), col = "dodgerblue", lwd = 2)

> plotSmear(d, de.tags = detags500.tgw, main = "Using tagwise dispersions")

> abline(h = c(-2, 2), col = "dodgerblue", lwd = 2)

In Figure 6, the top 500 most differentially expressed tags (those identified as significant by
edgeR using the common dispersion (top) and tagwise dispersions (bottom)) are highlighted in red.
Looking at Figure 6, we see that, generally speaking, the pattern of differential expression looks
similar using the two different methods, and the tags identified as DE have convincingly large fold
changes.

28

5.6 Setup

This analysis of ’t Hoen et al. [2008]’s tag-based DGE data was conducted on:

> sessionInfo()

R version 2.9.1 (2009-06-26)

i386-apple-darwin8.11.1

locale:

en_AU.UTF-8/en_AU.UTF-8/C/C/en_AU.UTF-8/en_AU.UTF-8

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] edgeR_1.3.6

loaded via a namespace (and not attached):

[1] limma_2.18.2

and took 5–10 minutes to carry out on an Apple MacBook with a 2.4 Ghz Intel Core 2 Duo
processor and 4 Gb of 1067 MHz DDR3 memory.

6 Case Study: RNA-seq data

6.1 Introduction

This section provides a detailed analysis of data from a study by Li et al. [2008] designed to address
a range of practical issues in RNA-seq experiments:

1. How many annotated genes are detected in a single cell type?

2. What is the number of tags that is necessary for the analysis of differentially regulated genes
under different experimental conditions?

3. To what extent can different mRNA isoforms be detected?

4. How can one quantify alternative splicing by using a single or combination of existing tech-
nologies?

Li et al. [2008] attempt to address all of these issues on an androgen-sensitive prostate cancer
cell model. We are interested primarily in the second question, and the challenge of identifying
differentially regulated genes under different experimental conditions. We will demonstrate the use
of the edgeR package for analyzing RNA-seq data for differential gene expression.

29

6.2 Source of the data

Li et al. [2008] sequenced poly(A)+ RNA from mock-treated or androgen sensitive LNCaP cells
(a cell line of human cells commonly used in the field of oncology) on the Illumina 1G Genome
Analyzer. The researchers used a double-random priming approach that was capable of generating
strand-specific information, although this is not of relevance to our analysis here. The raw RNA-
seq data provided by Li et al. consists of 7 ‘lanes’ of 35bp reads. 1 Approximately 10 million
sequence tags were generated from both control and hormone-treated cells (treated with DHT),
and Li et al. [2008]’s analysis suggests that this tag density is sufficient for quantitative analysis of
gene expression.

The 10 million sequenced tags arise from four libraries from control cells and three libraries
for hormone-treated cells, giving a total of seven libraries to analyse. From Li et al. [2008] and
its companion paper [Li et al., 2006] it is unclear as to whether the treatments are independent
or not. The following analysis shows how a quantitative analysis of gene expression, focusing on
identifying differentially expressed genes, can be conducted for these seven libraries using edgeR.

6.3 Reading in the data and creating a DGEList object

Our first task is to load the edgeR package and read the data into R. In this case, the tag counts
for the libraries are stored in a single table in a plain text file pnas_expression.txt, in which the
rows of the table represent tags and the columns represent the different libraries.

To turn the raw RNA-seq data into a table of counts, reads were mapped to the NCBI36
build of the human genome using bowtie, allowing up to two mismatches. Reads which did not
map uniquely were discarded. The number of mapped reads that overlapped ENSEMBL gene
annotations (version 53) was then counted. In counting reads associated with genes, reads which
mapped to non-coding gene regions, such as introns, were included in the count.

Unlike in the other datasets we have look at, counts here are aggregated at the gene, not at
the tag, level.

The files object provides the name of the data file, and makes a convenient argument to the
function read.delim which reads the table of counts into our R session.

> setwd("/Users/davismcc/Documents/Honours/Data/LiData")

> library(edgeR)

> raw.data <- read.delim("pnas_expression.txt")

> names(raw.data)

[1] "ensembl_ID" "lane1" "lane2" "lane3" "lane4"

[6] "lane5" "lane6" "lane8" "len"

The raw data is stored in a table with columns representing the gene names, the counts for the
seven libraries and a column giving the length of each gene. The gene length is not currently used

1The Illumina instrument requires samples to be placed in a ‘flow cell’ which contains eight ‘lanes’—each lane
has a sample of cDNA and generates a library of sequence counts for that sample.

30

by edgeR, but this information could be used in future versions of the package. In the code below,
we assign the counts matrix to an object d with the appropriate rownames, define the groups to
which the samples belong, and then pass these arguments to DGEList, which calculates the library
sizes and constructs a DGEList containing all of the data we require for the analysis.

> d <- raw.data[, 2:8]

> rownames(d) <- raw.data[, 1]

> group <- c(rep("Control", 4), rep("DHT", 3))

> d <- DGEList(counts = d, group = group)

> d

An object of class "DGEList"

$samples

group lib.size

lane1 Control 978576

lane2 Control 1156844

lane3 Control 1442169

lane4 Control 1485604

lane5 DHT 1823460

lane6 DHT 1834335

lane8 DHT 681743

$counts

lane1 lane2 lane3 lane4 lane5 lane6 lane8

ENSG00000124208 478 619 628 744 483 716 240

ENSG00000182463 27 20 27 26 48 55 24

ENSG00000124201 180 218 293 275 373 301 88

ENSG00000124205 0 0 5 5 0 0 0

ENSG00000124207 76 80 85 97 80 81 37

21872 more rows ...

This DGEList is now ready to be passed to the functions that do the calculations to determine
differential expression levels for the genes.

6.4 Analysis using common dispersion

6.4.1 Estimating the common dispersion

As discussed for the SAGE data, the first major step in the analysis of DGE data using the NB
model is to estimate the dispersion parameter for each tag. Like in the earlier case study, we begin
by estimating the common dispersion using the function estimateCommonDisp, and analysing the
data using the common dispersion.

31

> d <- estimateCommonDisp(d)

> names(d)

[1] "samples" "common.dispersion" "counts"

[4] "pseudo.alt" "conc" "common.lib.size"

> d

An object of class "DGEList"

$samples

group lib.size

lane1 Control 978576

lane2 Control 1156844

lane3 Control 1442169

lane4 Control 1485604

lane5 DHT 1823460

lane6 DHT 1834335

lane8 DHT 681743

$common.dispersion

[1] 0.02021596

$counts

lane1 lane2 lane3 lane4 lane5 lane6 lane8

ENSG00000124208 478 619 628 744 483 716 240

ENSG00000182463 27 20 27 26 48 55 24

ENSG00000124201 180 218 293 275 373 301 88

ENSG00000124205 0 0 5 5 0 0 0

ENSG00000124207 76 80 85 97 80 81 37

21872 more rows ...

$pseudo.alt

lane1 lane2 lane3 lane4 lane5

ENSG00000124208 623.7011345 682.94207324 555.660542 639.479771 336.71526

ENSG00000182463 34.3356362 22.18976707 23.832567 22.180621 33.16394

ENSG00000124201 235.0851553 240.62900197 259.559061 236.246548 262.61397

ENSG00000124205 0.1502441 0.05777303 4.539068 4.427231 0.00000

ENSG00000124207 98.4667235 88.25763482 75.005547 83.279817 55.73657

lane6 lane8

ENSG00000124208 499.57554 4.485689e+02

ENSG00000182463 38.29654 4.367427e+01

ENSG00000124201 209.30644 1.685512e+02

ENSG00000124205 0.00000 1.509887e-10

32

ENSG00000124207 56.12481 6.774033e+01

21872 more rows ...

$conc

$conc.common

ENSG00000124208 ENSG00000182463 ENSG00000124201 ENSG00000124205

4.236152e-04 2.419602e-05 1.809021e-04 1.063407e-06

ENSG00000124207

5.831078e-05

21872 more elements ...

$conc.group

Control DHT

ENSG00000124208 4.897757e-04 3.350953e-04

ENSG00000182463 1.990269e-05 2.966863e-05

ENSG00000124201 1.902894e-04 1.684999e-04

ENSG00000124205 1.963536e-06 8.783496e-16

ENSG00000124207 6.735245e-05 4.640575e-05

21872 more rows ...

$common.lib.size

[1] 1276768

The output of estimateCommonDisp is a DGEList object with several new elements. The ele-
ment common.dispersion, as the name suggests, provides the estimate of the common dispersion.
The pseudocounts calculated under the alternative hypothesis are given by pseudo.alt. The el-
ement conc gives the estimates of the overall concentration of each tag across all of the original
samples (conc$conc.common) and the estimate of the concentration of each tag within each group
(conc$conc.group). The element common.lib.size gives the library size to which the original
libraries have been adjusted in the pseudocounts.

We see in the output below that the total counts in each library of the pseudocounts agrees
well with the common library size, as desired.

> d$samples$lib.size

[1] 978576 1156844 1442169 1485604 1823460 1834335 681743

> d$common.lib.size

[1] 1276768

> colSums(d$pseudo.alt)

33

lane1 lane2 lane3 lane4 lane5 lane6 lane8

1277021 1276791 1276935 1277035 1277209 1277069 1277919

Here the coefficient of variation of biological variation (square root of the common dispersion)
is found to be 0.142. We also note that although a common dispersion estimate of 0.02 may seem
‘small’, if a tag has just 200 counts, then the estimate of the tag’s variance is 5 times greater than
it would be under the Poisson model.

> d$common.dispersion

[1] 0.02021596

> sqrt(d$common.dispersion)

[1] 0.1421828

6.4.2 Testing

Once we have an estimate of the common dispersion, we can proceed with testing procedures for
determining differential expression. As for the SAGE data, there are only two groups here, so the
pair need not be specified in the call to exactTest.

> de.com <- exactTest(d)

Comparison of groups: DHT - Control

> names(de.com)

[1] "table" "comparison"

The results of the NB exact test can be accessed conveniently using the topTags function
applied to the object produced by exactTest. The table below shows the top 10 DE genes ranked
by p-value.

The table in the output from topTags shows that the edgeR package identifies a great deal of
differential expression, and gives the top genes extremely small p-values, even after adjusting for
multiple testing. Furthermore, all of the top genes have a very large fold change (indicating that
these tags are likely to be biologically meaningful), and all are up-regulated in the DHT-treatment
group compared to the control group.

Of course, for many applications the ranking for differential expression is more important than
the p-value, and topTags provides such a ranking. As suggested in the SAGE case study, a Gene
Ontology analysis could be carried out using the list of top gene and p-values provided by topTags

in order to obtain more systematic and functional information about the differentially expressed
genes.

34

> topTags(de.com)

Comparison of groups: DHT - Control

logConc logFC PValue FDR

ENSG00000151503 -11.94799 5.705233 7.744047e-185 1.694165e-180

ENSG00000096060 -11.33288 4.893134 5.349073e-155 5.851083e-151

ENSG00000127954 -15.63280 8.118692 7.331162e-148 5.346128e-144

ENSG00000166451 -12.28742 4.570439 7.122773e-128 3.895623e-124

ENSG00000131016 -14.42856 5.190737 1.701099e-104 7.442990e-101

ENSG00000113594 -12.83343 4.000650 2.579172e-96 9.404091e-93

ENSG00000116285 -13.56732 4.087861 8.108902e-88 2.534264e-84

ENSG00000123983 -12.09539 3.544802 1.444749e-86 3.950846e-83

ENSG00000166086 -15.24551 5.390848 6.219612e-86 1.511849e-82

ENSG00000162772 -10.81704 3.201950 7.560702e-80 1.654055e-76

The table below shows the raw counts for the genes that edgeR has identified as the most
differentially expressed. For these genes there seems to be very large differences between the
groups, suggesting that the DE genes identified are truly differentially expressed.

> detags.com <- rownames(topTags(de.com)$table)

> d$counts[detags.com,]

lane1 lane2 lane3 lane4 lane5 lane6 lane8

ENSG00000151503 35 35 49 59 3307 3439 1224

ENSG00000096060 65 79 105 113 3975 3727 1451

ENSG00000127954 0 0 3 3 607 602 220

ENSG00000166451 41 52 57 57 1750 1654 728

ENSG00000131016 9 5 18 6 564 377 213

ENSG00000113594 37 36 57 43 936 959 418

ENSG00000116285 18 28 23 32 645 630 218

ENSG00000123983 62 76 94 108 1354 1258 628

ENSG00000166086 9 2 3 6 296 298 121

ENSG00000162772 172 204 250 304 2972 3269 1112

If we order the genes by fold change instead of p-value, we see that the genes with the largest
fold changes have very small concentrations. This ranking is dominated by genes that have zero
total counts in one group and is less informative than ranking by p-value.

> topTags(de.com, n = 10, sort.by = "logFC")

Comparison of groups: DHT - Control

logConc logFC PValue FDR

ENSG00000091972 -31.75811 -36.51589 8.689939e-56 6.789635e-53

35

ENSG00000164120 -32.27738 35.47735 4.636882e-44 2.205241e-41

ENSG00000100373 -32.93100 -34.17010 2.739292e-17 2.147939e-15

ENSG00000118513 -33.00607 -34.01998 8.893707e-16 5.895989e-14

ENSG00000081237 -33.15786 -33.71640 5.634630e-13 2.691459e-11

ENSG00000196660 -33.22302 -33.58606 3.870150e-12 1.647223e-10

ENSG00000117245 -33.23863 -33.55484 1.051358e-11 4.151725e-10

ENSG00000019549 -33.39510 33.24191 2.420329e-13 1.225684e-11

ENSG00000137404 -33.41447 -33.20316 1.041329e-08 2.556807e-07

ENSG00000059804 -33.43964 33.15284 2.174556e-12 9.630115e-11

We can see how many genes are identified as differentially expressed between the control group
(untreated LNCaP cells) and the DHT-treated LNCaP cells, for a given threshold for the exact
p-value or for the adjusted p-value.

As the output below shows, edgeR detects a huge number of differentially expressed genes in
this dataset. Almost 5000 genes are given a p-value less than 0.01.

> sum(de.com$table$p.value < 0.01)

[1] 4760

The output below shows that over 4835 genes are given an adjusted p-value of less than 0.05.
This means that if we set our control the FDR for differential expression at 5%, then edgeR

identifies 22% of all the genes in the dataset as differentially expressed.

> sum(p.adjust(de.com$table$p.value, method = "BH") < 0.05)

[1] 4835

> mean(p.adjust(de.com$table$p.value, method = "BH") < 0.05) *

+ 100

[1] 22.10084

Of the genes identified as DE above, 1911 (40% of the DE genes) are up-regulated in DHT-
treated compared with control cells, and 2924 (60%) are up-regulated in the control cells compared
with DHT-treated cells. It is interesting to note that although we detect far more genes as DE that
are up-regulated in the control group, all of the top ten genes were up-regulated in the DHT-treated
group.

> top.com <- topTags(de.com, n = 4835)

> sum(top.com$table$logFC > 0)

[1] 1911

> sum(top.com$table$logFC < 0)

[1] 2924

36

6.4.3 Visualising DGE results

The code for producing the default fold-change plot, with the top 500 most DE tags highlighted
in red, is shown below, and the result of this code is shown in Figure 5. In Figure 5, we see
that the 500 tags identified as most differentially expressed have large fold changes—almost all of
the 500 tags in red fall outside the blue lines at log FC = −2 and log FC = 2. This means that
most of these tags show at least a 4-fold change in expression level between the samples. This plot
suggests strongly that the tags identified by edgeR as differentially expressed are truly differentially
expressed, and, given the large changes in expression level, are likely to be biologically meaningful.

> detags500.com <- rownames(topTags(de.com, n = 500)$table)

> plotSmear(d, de.tags = detags500.com, main = "FC plot using common dispersion")

> abline(h = c(-2, 2), col = "dodgerblue", lwd = 2)

6.5 Analysis using moderated tagwise dispersions

6.5.1 Estimating the tagwise dispersion

As discussed in the previous case studies, an extension to simply using the common dispersion for
each tag is to estimate the dispersion separately for each tag, while ‘squeezing’ these estimates
towards the common dispersion estimate. The goal of this moderation of the dispersion estimates
is to improve inference by sharing information between tags. This type of analysis can be carried
out in few steps using the edgeR package.

To run the moderated analysis, we need to determine how much moderation is necessary. As
discussed in the SAGE case study, we can use an empirical Bayes rule that involves calculating a
weight parameter prior.n. However, for many applications (especially if the estimated smoothing
parameter is large), using the common dispersion for all tags will give excellent results.

The smoothing parameter, prior.n can then be calculated using the function estimateS-

moothing, which takes the DGEList object produced by estimateCommonDisp as its argument.
As we see below, for this dataset the estimate of the smoothing parameter is very small, so if we
were to use this tiny value for the weight parameter we would moderate the tagwise dispersion
estimates so little that it would be equivalent to using just using the tagwise dispersion for each
gene without any ‘squeezing’ at all towards the common dispersion.

> prior.n <- estimateSmoothing(d)

> prior.n

[1] 0.0008377133

As we only have seven libraries, a small sample size, we should not be too confident about
the accuracy of the tagwise dispersions. Therefore it is recommended to use a larger value for
prior.n, which can be selected a priori, instead of being estimated. In an experiment such as that

37

we consider here, in which we have seven samples and thus five degrees of freedom for estimating
the dispersion parameter, setting the prior.n to be ten should be appropriate. This means that
the common likelihood receives the weight of ten individual tags, so there will be a reasonable
degree of ‘squeezing’ towards the common dispersion estimate, but there is still enough scope to
allow flexibility with the individual dispersion for each gene.

The function estimateTagwiseDisp produces a DGEList object that contains all of the ele-
ments present in the object produced by estimateCommonDisp, as well as the value for prior.n

used (d$prior.n) and the tagwise dispersion estimates (d$tagwise.dispersion), as we see below.
Here we set grid.length=500 for greater precision in the tagwise dispersion estimates.

> d <- estimateTagwiseDisp(d, prior.n = 10, grid.length = 500)

Using grid search to estimate tagwise dispersion.

> names(d)

[1] "samples" "common.dispersion" "prior.n"

[4] "tagwise.dispersion" "counts" "pseudo.alt"

[7] "conc" "common.lib.size"

> d$prior.n

[1] 10

> head(d$tagwise.dispersion)

[1] 0.01936799 0.01729400 0.01936799 0.02145046 0.01522843 0.02774923

It is interesting to consider the distribution of the tagwise dispersion estimates. As we can
see from the output below, the tagwise dispersion estimates range from a minimum of 0.005 to
a maximum of 0.236, and the common dispersion estimate lies in between the median and mean
values for the tagwise dispersion estimates.

> summary(d$tagwise.dispersion)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.005025 0.019370 0.019370 0.020640 0.021450 0.236100

> d$common.dispersion

[1] 0.02021596

38

6.5.2 Testing

Once we have an estimate of the common dispersion and/or estimates of the tagwise dispersions,
we can proceed with testing procedures for determining differential expression using exactTest.

By default, exactTest uses the common dispersion, but by adding the argument common.disp=FALSE,
tagwise dispersion estimates will be used instead.

> de.tgw <- exactTest(d, common.disp = FALSE)

Comparison of groups: DHT - Control

The output below shows that when using tagwise dispersions, the edgeR package still identifies
a huge amount of differential expression between the control group and the DHT-treated group.
The top DE tags are given even smaller p-values than using the common dispersion—many, many
orders of magnitude smaller.

As with the analysis using the common dispersion, all of the top genes have large fold change,
indicating that these changes in expression are likely to be biologically meaningful. Again, all of
the top genes are up-regulated in the DHT-treated group compared with the control group. We
note that the ranking of the tags is similar, with seven of the top ten genes using the common
dispersion to be found among the top ten genes using tagwise dispersions.

> topTags(de.tgw)

Comparison of groups: DHT - Control

logConc logFC PValue FDR

ENSG00000151503 -11.947221 5.704024 2.214558e-301 4.844788e-297

ENSG00000096060 -11.332026 4.891305 1.545034e-259 1.690035e-255

ENSG00000166451 -12.288475 4.570589 8.545084e-180 6.231360e-176

ENSG00000127954 -15.632016 8.117608 5.274185e-171 2.884584e-167

ENSG00000162772 -10.816415 3.201287 6.821241e-136 2.984566e-132

ENSG00000113594 -12.834292 3.999954 8.573960e-119 3.126209e-115

ENSG00000116133 -11.741194 3.128433 2.367018e-118 7.397607e-115

ENSG00000116285 -13.566933 4.089714 4.303139e-116 1.176747e-112

ENSG00000115648 -8.831597 2.481756 1.967977e-114 4.783715e-111

ENSG00000130066 -10.322217 2.494893 6.742514e-108 1.475060e-104

Of course, we can also rank the top tags using the fold change instead of the p-value, as
described above, this ranking is dominated by genes that have zero total counts in one group and
is less informative than ranking by p-value.

> topTags(de.tgw, n = 10, sort.by = "logFC")

39

Comparison of groups: DHT - Control

logConc logFC PValue FDR

ENSG00000091972 -31.75810 -36.51592 2.059993e-63 1.502216e-60

ENSG00000164120 -32.27722 35.47767 1.732888e-44 5.123027e-42

ENSG00000100373 -32.93097 -34.17017 1.170463e-17 7.759461e-16

ENSG00000118513 -33.00748 -34.01715 6.961165e-15 3.696345e-13

ENSG00000081237 -33.15838 -33.71535 1.283161e-12 5.113246e-11

ENSG00000196660 -33.22317 -33.58577 3.427356e-12 1.288321e-10

ENSG00000117245 -33.23845 -33.55521 1.635293e-11 5.651708e-10

ENSG00000019549 -33.39438 33.24334 2.743940e-13 1.175645e-11

ENSG00000059804 -33.43993 33.15225 2.018339e-12 7.801273e-11

ENSG00000137404 -33.44594 -33.14022 5.612659e-07 9.183854e-06

The tables below shows the quantile-adjusted counts (i.e. counts for equalised library sizes)
for the genes that edgeR has identified as the most differentially expressed, using the common
dispersion and tagwise dispersions. For these tags, using both methods, there seem to be very
large differences between the groups, suggesting that the DE genes identified are truly differentially
expressed, and not false positives.

We saw for ’t Hoen et al. [2008]’s data how much more consistent the counts within groups
are for the top tags identified using tagwise dispersions compared with those identified using the
common dispersion. This effect is not nearly as pronounced here.

> detags.tgw <- rownames(topTags(de.tgw)$table)

> detags.com <- rownames(topTags(de.com)$table)

> round(d$pseudo.alt[detags.tgw,])

lane1 lane2 lane3 lane4 lane5 lane6 lane8

ENSG00000151503 46 39 43 51 2315 2394 2293

ENSG00000096060 85 87 93 97 2783 2594 2717

ENSG00000166451 53 57 50 49 1225 1151 1361

ENSG00000127954 0 0 3 3 425 419 412

ENSG00000162772 225 225 221 262 2081 2276 2083

ENSG00000113594 48 40 51 37 655 667 780

ENSG00000116133 127 118 137 123 1143 1121 1041

ENSG00000116285 24 31 20 28 452 439 409

ENSG00000115648 1226 1196 1166 1156 6813 6920 6130

ENSG00000130066 403 426 440 410 2239 2301 2571

> round(d$pseudo.alt[detags.com,])

lane1 lane2 lane3 lane4 lane5 lane6 lane8

ENSG00000151503 46 39 43 51 2315 2394 2293

ENSG00000096060 85 87 93 97 2783 2594 2717

40

ENSG00000127954 0 0 3 3 425 419 412

ENSG00000166451 53 57 50 49 1225 1151 1361

ENSG00000131016 12 6 16 5 396 261 396

ENSG00000113594 48 40 51 37 655 667 780

ENSG00000116285 24 31 20 28 452 439 409

ENSG00000123983 81 84 83 93 948 875 1172

ENSG00000166086 11 2 3 5 207 207 226

ENSG00000162772 225 225 221 262 2081 2276 2083

We might also be interested in comparing the top-ranking genes as identified by edgeR using
the common dispersion and tagwise dispersions. We see in the output below that of the top 1000
most DE tags as identified using tagwise dispersions, 87% of these tags are also in the list of the
1000 most DE tags as identified using the common dispersion. This shows that for this dataset
there is a great deal of agreement between the common and tagwise dispersion approaches as to
which tags are DE.

> sum(rownames(topTags(de.tgw, n = 1000)$table) %in% rownames(topTags(de.com,

+ n = 1000)$table))/1000 * 100

[1] 87.3

Using the common dispersion we found that 4835 genes (22% of the total number) are given
an adjusted p-value of less than 0.05. In the output below, we see that using tagwise dispersions
we obtain slightly more DE genes, namely 4933, or 23% of all of the genes in the dataset.

> sum(p.adjust(de.tgw$table$p.value, method = "BH") < 0.05)

[1] 4933

> mean(p.adjust(de.tgw$table$p.value, method = "BH") < 0.05) *

+ 100

[1] 22.54880

Of the 4933 tags identified as DE using tagwise dispersions, 1981 (40%) are up-regulated in
DHT-treated cells and 2952 (60%) are up-regulated in the control cells. The proportions of up- and
down-regulated genes identified using the two approaches to modeling the dispersion are equal.

> top.tgw <- topTags(de.tgw, n = 4933)

> sum(top.tgw$table$logFC > 0)

[1] 1981

> sum(top.tgw$table$logFC < 0)

[1] 2952

41

6.5.3 Visualising DGE results

As discussed earlier, the function plotSmear can be used to generate a plot of the log-fold change
against the log-concentration for each tag. We identify the top 500 most DE tags using both
common dispersion and tagwise dispersions so we can highlight them on the plots and compare
what we see. The code for producing the fold-change plots (in the one frame for purposes of
comparison) is shown below, and the result of this code is shown in Figure 6.

> detags500.com <- rownames(topTags(de.com, n = 500)$table)

> detags500.tgw <- rownames(topTags(de.tgw, n = 500)$table)

> par(mfcol = c(2, 1))

> plotSmear(d, de.tags = detags500.com, main = "Using common dispersion")

> abline(h = c(-2, 2), col = "dodgerblue", lwd = 2)

> plotSmear(d, de.tags = detags500.tgw, main = "Using tagwise dispersions")

> abline(h = c(-2, 2), col = "dodgerblue", lwd = 2)

In Figure 6, the top 500 most differentially expressed genes (those identified as significant by
edgeR using the common dispersion (top) and tagwise dispersions (bottom)) are highlighted in
red. Looking at Figure 6, we see that, generally speaking, the pattern of differential expression
looks similar using the two different methods, and the genes identified as DE have convincingly
large fold changes.

6.6 Setup

This analysis of Li et al. [2008]’s RNA-seq data was conducted on:

> sessionInfo()

R version 2.9.1 (2009-06-26)

i386-apple-darwin8.11.1

locale:

en_AU.UTF-8/en_AU.UTF-8/C/C/en_AU.UTF-8/en_AU.UTF-8

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] edgeR_1.3.6

loaded via a namespace (and not attached):

[1] limma_2.18.2

and took 2–4 minutes to carry out on an Apple MacBook with a 2.4 Ghz Intel Core 2 Duo processor
and 4 Gb of 1067 MHz DDR3 memory.

42

7 Poisson example

It has been noted that, in some deep sequencing approaches, not a great deal of overdispersion is
observed. Specifically, the means and variances appear to be very close to each other, suggesting
the Poisson distribution is a good fit. Methods within the edgeR package may still be useful,
including the quantile adjustment (effectively a normalization) and the exact testing routines.

To illustrate this, we sample Poisson data and run de4DGE with the doPoisson argument set to
TRUE. The data is quantile-adjusted and before the exact test is invoked, the dispersion parameter
is set to 0. Currently, elements from the output of de4DGE must be manually added to the DGEList
object, as exactTest operates only on DGEList objects, as illustrated in the case studies above.

Nevertheless, an analysis using the Poisson distribution can be carried out as follows:

> set.seed(101)

> n <- 10000

> lib.sizes <- c(40000, 50000, 38000, 40000)

> p <- runif(n, min = 1e-04, 0.001)

> mu <- outer(p, lib.sizes)

> mu[1:5, 3:4] <- mu[1:5, 3:4] * 8

> y <- matrix(rpois(4 * n, lambda = mu), nrow = n)

> dP <- DGEList(counts = y, group = rep(1:2, each = 2), lib.size = lib.sizes)

> msP <- de4DGE(dP, doPoisson = TRUE)

Quantile adjusting as Poisson.

> dP$pseudo.alt <- msP$pseudo

> dP$common.dispersion <- 1e-06

> dP$conc <- msP$conc

> dP$common.lib.size <- msP$M

And you can proceed as before:

> de.P <- exactTest(dP)

Comparison of groups: 2 - 1

> topTags(de.P)

Comparison of groups: 2 - 1

logConc logFC PValue FDR

3 -8.939897 2.946691 3.076540e-81 3.076540e-77

4 -8.958118 2.910250 1.425021e-77 7.125106e-74

1 -9.703306 2.937857 1.635095e-47 5.450317e-44

5 -9.882605 2.579261 2.030845e-33 5.077113e-30

2 -11.480315 3.310787 6.058052e-18 1.211610e-14

43

9796 -11.366488 1.686444 3.397842e-06 5.663070e-03

2893 -10.984522 1.132451 3.740766e-04 4.471809e-01

142 -11.590674 1.394078 3.940818e-04 4.471809e-01

3541 -13.561931 2.621489 4.024628e-04 4.471809e-01

9783 -12.225718 -1.711087 6.061462e-04 6.061462e-01

> plotSmear(dP, col = c(rep("blue", 5), rep("black", n - 5)))

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
● ●

●

●

●●

●
●

●

●

● ●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−15 −14 −13 −12 −11 −10 −9

−
2

−
1

0
1

2
3

logConc

lo
gF

C
 :

2−
1

8 Future improvements and extension

Here, we list some improvements/extensions that are planned for the edgeR package:

1. As the packages for the processing of raw high-throughput sequencing data become more
mature, edgeR may need to adapt and operate on different objects. As shown above, edgeR
operates on a simple object containing simple data summaries which will presumably be
readily available from pre-processing steps.

2. Significant speed improvements have been made since the earlier versions of edgeR, but as
the datasets become larger, some further optimizations may be necessary. We are exploring
various ways to do this.

44

3. The current quantile-based normalization assumes the library sizes are fixed. Depending on
the circumstances of the samples in question, it may be necessary to explore something like
an effective library size.

4. We are exploring more general testing procedures.

9 Setup

This vignette was built on:

> sessionInfo()

R version 2.10.1 (2009-12-14)

x86_64-unknown-linux-gnu

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8

[5] LC_MONETARY=C LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] tools stats graphics grDevices utils datasets methods

[8] base

other attached packages:

[1] edgeR_1.4.7

loaded via a namespace (and not attached):

[1] limma_3.2.1

References

Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a practical and powerful
approach to multiple testing. Journal of the Royal Statistical Society: Series B, 57:289–300,
1995.

H. R Li, J. Wang-Rodriguez, T. M Nair, J. M Yeakley, Y. S Kwon, M. Bibikova, C. Zheng, L. Zhou,
K. Zhang, and T. Downs. Two-dimensional transcriptome profiling: identification of messenger
rna isoform signatures in prostate cancer from archived paraffin-embedded cancer specimens.
Cancer Research, 66(8):4079–4088, 2006.

45

H. R Li, M. T Lovci, Y-S. Kwon, M. G Rosenfeld, X-D. Fua, and G. W Yeo. Determination
of tag density required for digital transcriptome analysis: Application to an androgen-sensitive
prostate cancer model. Proceedings of the National Academy of Sciences of the USA, 105(51):
20179–20184, 2008.

M. D Robinson and G. K Smyth. Moderated statistical tests for assessing differences in tag
abundance. Bioinformatics, 23(21):2881–2887, 2007.

M. D Robinson and G. K Smyth. Small-sample estimation of negative binomial dispersion, with
applications to sage data. Biostatistics, 9(2):321–332, 2008.

P. A. C ’t Hoen, Y. Ariyurek, H. H Thygesen, E. Vreugdenhil, R. H. A. M Vossen, R. X De
Menezes, J. M Boer, G-J. B Van Ommen, and J. T Den Dunnen. Deep sequencing-based
expression analysis shows major advances in robustness, resolution and inter-lab portability
over five microarray platforms. Nucleic Acids Research, 36(21):e141, 2008.

L. Zhang, W. Zhou, V. E Velculescu, S. E Kern, R. H Hruban, S. R Hamilton, B. Vogelstein,
and K. W Kinzler. Gene expression profiles in normal and cancer cells. Science, 276(5316):
1268–1272, May 1997.

46

Figure 4: Plots of the log-fold change against the log-concentration for each tag, using the common
dispersion (upper), and tagwise dispersions (lower). Tags with positive fold-change here are up-
regulated in wild-type compared with transgenic mice. The 500 most differentially expressed tags
according to each method are highlighted in red on both plots.

47

Figure 5: Plot of the log-fold change against the log-concentration for each tag. The 500 most
differentially expressed tags as identified by edgeR using the common dispersion are outlined in
red.

48

Figure 6: Plots of the log-fold change against the log-concentration for each tag, using the common
dispersion (top), and tagwise dispersions (bottom). Tags with positive fold-change here are up-
regulated in DHT-treated cells compared with control cells. The 500 most differentially expressed
tags according to each method are highlighted in red on both plots.

49

