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1 Introduction

This vignette is intended to give a rapid introduction to the commands used in
implementing two methods of evaluating differential expression in Solexa-type,
or count data by means of the baySeq R package. For fuller details on the
methods being used, consult Hardcastle & Kelly [1].

We assume that we have discrete data from a set of sequencing or other high-
throughput experiments, arranged in a matrix such that each column describes a
sample and each row describes some entity for which counts exist. For example,
the rows may correspond to the different sequences observed in a sequencing
experiment. The data then consists of the number of times each sequence is
observed in each sample. We wish to determine which, if any, rows of the data
correspond to some patterns of differential expression across the samples. This
problem has been addressed for pairwise differential expression by the edgeR [2]
package.

However, baySeq takes an alternative approach to analysis that allows more
complicated patterns of differential expression than simple pairwise comparison,
and thus is able to cope with more complex experimental designs. We also
observe that the methods implemented in baySeq perform at least as well, and
in some circumstances considerably better than those implemented in edgeR [1].

baySeq uses empirical Bayesian methods to estimate the posterior likelihoods
of each of a set of hypotheses that define patterns of differential expression for
each row. This approach begins by considering a distribution for the row defined
by a set of underlying parameters for which some prior distribution exists. By
estimating this prior distribution from the data, we are able to assess, for a
given hypothesis about the relatedness of our underlying parameters for multiple
libraries, the posterior likelihood of the hypothesis.

In forming a set of hypotheses upon the data, we consider which patterns
are biologically likely to occur in the data. For example, suppose we have count
data from some organism in condition A and condition B. Suppose further that
we have two biological replicates for each condition, and hence four libraries
Ay, Ag, By, By, where Ay, As and By, By are the replicates. It is reasonable to
suppose that at least some of the rows may be unaffected by our experimental
conditions A and B, and the count data for each sample in these rows will
be equivalent. These data need not in general be identical across each sample
due to random effects and different library sizes, but they will share the same
underlying parameters. However, some of the rows may be influenced by the
different experimental conditions A and B. The count data for the samples



Ay and A, will then be equivalent, as will the count data for the samples By
and By. However, the count data between samples A;, Ao, By, B will not be
equivalent. For such a row, the data from samples A; and A will then share
the same set of underlying parameters, the data from samples B; and By will
share the same set of underlying parameters, but, crucially, the two sets will not
be identical.

Our task is thus to determine the posterior likelihood of each hypothesis
for each row of the data. We can do this by considering either a Poisson or
negative-binomial distribution upon the sequencing count data. The Possion
method is considerably faster as a closed form conjugate prior exists for this
distribution. The negative-binomial solution is slower as it requires a numerical
solution for the prior, but is probably a better model for the data.

2 Preparation
We begin by loading the baySeq package.
> library(baySeq)

Note that because the experiments that baySeq is designed to analyse are
usually massive, we should use (if possible) parallel processing as implemented
by the snow package. We therefore need to load the snow package (if it exists),
define a cluster and load the baySeq library onto each member of the cluster. If
snow is not present, we can proceed anyway with a NULL cluster. Results may
be slightly different depending on whether or not a cluster is used owing to the
non-deterministic elements of the method.

> if ("snow" Jinj, installed.packages()[, 1]) {

+ library (snow)
+ cl <- makeCluster (4, "SOCK")
+ clusterEval@(cl, library(baySeq))

+ } else cl1 <- NULL

Here we have (if the snow package is installed) defined a cluster of four
processors on sockets; that is to say, on the local machine. If the local machine
has multiple processors this may be a valid method of accelerating baySeq, but if
very large data sets are being analysed we may wish to consider some other form
of parallelisation (e.g. LAM/MPI) that allows processors on multiple nodes to
be used. See the snow documentation for details on how to achieve this.

We load a simulated data set consisting of count data on one thousand counts
and library sizes for ten libraries.

> data(simCount)
> data(libsizes)
> simCount[1:10, ]

(,11 [,2] [,3]1 [,4] [,5] C,6]1 [,7]1 [,8] [,9]1 [,10]

[1,] 4 1 5 2 3 0 1 1 1 0
[2,] 1 0 9 6 5 0 1 0 0 1
[3,] 9 2 5 5 14 2 3 1 0 4
[4,] 7 3 8 2 2 0 1 0 1 0



[5,] 2 2 4 7 0 0 0 0 0 1
(6,1 2 1 0 1 0 4 3 5 5 3
(7,1 9 8 8 8 9 1 2 1 0 0
[8,] 9 5 7 8 7 1 2 0 1 2
[9,] 6 2 2 3 0 0 0 0 0 0
[10,] 1 0 2 0 1 3 17 2 2 10

> libsizes
[1] 75373 40153 75403 34285 55975 53287 80477 37655 41171 77510

The data are simulated such that the first hundred counts show differential
expression between the first five libraries and the second five libraries. We can
therefore establish two groups.

> groups <- list(NDE = c¢(1, 1, 1, 1, 1, 1, 1, 1, 1, 1), DE = c(1,
+ 1, 1, 1, 1, 2, 2, 2, 2, 2))

Each member (vector) contained within the ’groups’ list corresponds to one hy-
pothesis upon the data. In this setting, a hypothesis describes the patterns of
data we expect to see at least some of the tags correspond to. In this sim-
ple example, we expect that some of the tags will be equivalently expressed
between all ten libraries. This corresponds to the 'NDE’ hypothesis, or vector
c(1,1,1,1,1,1,1,1,1,1) - all libraries belong to the same group for these tags.

We also expect that some tags will show differential expression between the
first five libraries and the second five libraries. For these tags, the two sets
of libraries belong to different groups, and so we have the hypothesis DE, or
vector c(1,1,1,1,1,2,2,2,2,2) - the first five libraries belong to group 1 and
the second five libraries to group 2.

In a more complex experimental design (Section 1) we might have several
additional hypotheses. The key to constructing vectors corresponding to a hy-
pothesis is to see for which groups of libraries we expect equivalent expression
of tags.

The ultimate aim of the baySeq package is to evaluate posterior likelihoods
of each hypothesis for each row of the data.

We begin by combining the count data, library sizes and user-defined groups
into a countData object.

> CD <- new("countData", data = simCount, libsizes = libsizes,
+ groups = groups)

We can also optionally add annotation details into the @annotation slot of
the countData object.

> CD@annotation <- data.frame(name = paste("count", 1:1000, sep =

3 Poisson-Gamma Approach

We first try to identify the posterior likelihoods of each hypothesis for each
tag assuming a Poisson distribution on each tag with a rate that is Gamma
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distributed. That is, if Y;; is an element of the data where ¢ is the row of the
data, and j is the sample, then

Y;" ~ POZ(gjl])

where the [; is the library size of sample j (or some other suitable scaling factor)
and

0; ~ T(aj,B)

The relationships between the «;, 3; for each j are determined by the hy-
pothesis being investigated such that, if and only if samples X and Y belong to
the same group, then ax = ay and Bx = By.

We begin by trying to establish the parameters of the Gamma distribution
by bootstrapping from the data and applying maximum likelihood methods.
We are able to adjust the parameters of the bootstrapping; here we take twenty
sets of count data, establish the maximum likelihood Gamma parameters, and
iterate over 1000 cases. In general more than 5000 iterations is recommended
but is used here for speed of calculation.

We then take the mean of the maximum likelihood estimates to acquire a
prior on the rate distribution.

> CDP.Poi <- getPriors.Pois(CD, samplesize = 20, iterations = 1000,
+ takemean = TRUE)

The calculated priors are stored in the @priors slot of the countData object
produced.

> CDP.Poi@priors

$type
[1] "poi"
$priors
$priors$NDE

[,1] [,2]
[1,] 1.206407 25190.92
$priors$DE

[,1] [,2]

[1,] 1.029182 21161.97
[2,] 1.013052 21434.31

For each hypothesis, we get a set of priors. In the Poisson-Gamma model,
we get, for each group in the hypothesis, a pair of parameters which define the
Gamma distribution that we shall use as a prior distribution for the rates of the
Poisson distributions that model how many counts we see in each row of the
data. Thus, in the hypothesis of differential expression, there are two groups in
the data and we find two sets of parameters.



Having acquired a set of prior distributions on the rate parameter of the
Poisson distribution, we can calculate the posterior likelihoods of each hypoth-
esis for each tag. We need to pass an initial prior likelihood on each hypothesis;
the prs parameter. If estimatePriors = TRUE then the prior likelihood on
each hypothesis will be iteratively updated.

>

+

>
NDE

0

>
[1,1 -2
2,1 -7
[3,] -5
(4,1 -7
(5,1 -5
(6,1 -3
(7,1 -16.
8,1 -9
9,1 -6
(10,1 -10.

NDE

.T17427
.204147
.463705
.789025
.299484
.607388

188893

.959837
.085022

648984

DE

.6423602 0.3576398

CDPost.Poi <- getLikelihoods.Pois(CDP.Poi, prs
estimatePriors
CDPost.Poi@estProps

TRUE, cl

CDPost.Poi@posteriors[1:10, ]

DE

.832647e-02
.437726e-04
.246830e-03
.143422e-04
.006681e-03
.749721e-02
.316505e-08
.726156e-05
.279310e-03
.372522e-05

c(0.5, 0.5),

cl)

> CDPost.Poi@posteriors[101:110, ]

NDE
[1,] -0.2654691450
[2,] 0.0000000000
[3,] -0.1811294853
[4,] -0.1394140979
[5,]1 -0.0004020790
[6,] -0.2093248234
[7,] -0.4325892455
[8,]1 -6.0744635473
[9,] -0.1964945482

[10,] -0.0836090919

-1

DE
.456056544
.988199601
.797741236
.039203988
.819063118
.666705429
.046476145
.002303531
. 723759629
.523116302

The estimated posterior likelihoods for each hypothesis are stored in the
natural logarithmic scale in the @posteriors slot of the countDataPosterior.
The nth column of the posterior likelihoods matrix corresponds to the nth hy-
pothesis as listed in the group slot of CDPost.Poi.

Here the assumption of a Poisson distribution gives an estimate of

DE
0.3576398

as the proportion of differential expressed counts in the simulated data, where
in fact the proportion is known to be 0.1.



4 Negative-Binomial Approach

We next try the same analysis assuming a negative binomial distribution on
the data. We first estimate an empirical distribution on the parameters of the
negative binomial distribution by bootstrapping from the data, taking individual
counts and finding the maximum likelihood parameters for a negative binomial
distribution. By taking a sufficiently large sample, an empirical distribution
on the parameters is estimated. A sample size of around 10000 iterations is
suggested, depending on the data being used), but 1000 is used here to rapidly
generate the plots and tables.

> CDP.NBML <- getPriors.NB(CD, samplesize = 1000, estimation = "ML",
+ cl = cl)

The calculated priors are stored in the @priors slot of the countData object
produced as before. For the negative-binomial method, we are unable to form
a conjugate prior distribution. Instead, we build an empirical prior distribution
which we record in the list object $priors of the slot @priors. Each member
of this list object corresponds to one of the hypotheses defined by the group
slot of the countData object and contains the estimated parameters for each
of the individual counts selected under the hypotheses. The vector $sampled
contained in the slot @priors describes which rows were sampled to create these
sets of parameters.

We then acquire posterior likelihoods as before, estimating the proportions
of differentially expressed counts. We can repeatedly bootstrap the prior esti-
matation to improve accuracy; here two bootstraps are used.

> CDPost.NBML <- getLikelihoods.NBboot (CDP.NBML, prs = c(0.5, 0.5),
+ estimatePriors = TRUE, bootStraps = 2, cl = cl)

[1] 0.8178803 0.1821197
> CDPost.NBML@estProps

NDE DE
0.8178803 0.1821197

> CDPost.NBML@posteriors[1:10, ]

NDE DE
[1,] -1.3390060 -0.303955183
[2,] -1.1987882 -0.358905184
[3,] -1.4800102 -0.258298505
[4,] -3.5398487 -0.029447058
[5,] -0.8093841 -0.589025260
[6,] -1.5809847 -0.230385164
[7,] -6.1829954 -0.002066369
[8,] -5.2022032 -0.005519629
[9,] -1.6634897 -0.210075079

[10,] -2.3348771 -0.101836049

> CDPost.NBML@posteriors[101:110, ]



NDE DE
[1,] -0.1216578759 -2.166755
[2,] -0.0003962438 -7.833679
[3,] -0.0780614305 -2.589036
[4,] -0.0502453948 -3.015854
[5,1 -0.0090864870 -4.705507
[6,] -0.1060212856 -2.296658
[7,] -0.1254268417 -2.138091
[8,]1 -0.0632335548 -2.792370
[9,] -0.1269297712 -2.126915

[10,] -0.0210204438 -3.872752

Here the assumption of a negative binomial distribution with priors esti-
mated by maximum likelihood gives an estimate of

DE
0.1821197

as the proportion of differential expressed counts in the simulated data, where
in fact the proportion is known to be 0.1.

5 Results

We can ask for the top differentially expressed tags using the topCounts func-
tion.

> topCounts (CDPost.NBML, group = 2)

name X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 logP
1 count. 80 1 1 0 1 11321 8 6 20 -0.0004456254
2 count_.78 1 1 0 1 1 813 7 9 10 -0.0008054183
3 count_26 13 411 5 7 1 1 1 0 0 -0.0012617713
4 count_.66 0 O O O O 1510 4 4 10 -0.0016237465
5 count_21 2 0 1 1 01515 6 5 11 -0.0017893779
6 count.7 9 8 8 8 9 1 2 1 0 0 -0.0020663689
7 count_.72 0 0 1 O O 7 6 4 3 8 -0.0030075749
8 count_ 8314 6 9 2 9 1 0 0 1 1 -0.0032450746
9 count_.64 6 6 811 9 1 1 0 O 1 -0.0042637985
10 count 27 5 3 6 4 7 0 0 0 1 0 -0.0050292472

We can compare the accuracy of the methods by considering the false positive
rates.
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False positive rates for the bootstrapped negative binomial approach with
maximum likelihood priors (red) are much lower than for the Poisson-Gamma
conjugacy approach (blue). This approach is therefore significantly more accu-
rate, although potentially computationally more intensive and thus slower than
the Poisson-Gamma conjugacy.

Finally, we shut down the cluster (assuming it was started to begin with).

> if (!is.null(cl)) stopCluster(cl)

6 More Complex Experimental Designs

To illustrate the way in which a model is specified for more complex experimen-
tal designs, we consider a factorial design containing eight libraries. Table 1
describes the experimental design in more detail. Samples 1, 2, 3 & 4 are from
condition A while samples 5, 6, 7 & 8 are from condition B. However, samples
1, 2, 5 & 6 have also been subjected to some condition C, while samples 3, 4, 7
& 8 have been subjected to some condition D.

‘ Condition A Condition B
Condition C | Samples 1, 2 Samples 5, 6
Condition D | Samples 3, 4 Samples 7, 8

Table 1: An example factorial design experiment in which samples 1 and 2 are
subjected to experimental conditions A and C, samples 3 and 4 are subjected
to conditions B and C, samples 5 and 6 are subjected to conditions A and C
and samples 7 and 8 are subjected to conditions B and D.



We prepare the baySeq library and cluster as before.

> library(baySeq)
> if ("snow" Jinj, installed.packages()[, 1]) {

+ library (snow)
+ cl <- makeCluster (4, "SOCK")
+ clusterEvalQ(cl, library(baySeq))

+ } else cl1 <- NULL

We load a simulated data set corresponding to the factorial design described.
The first hundred cases show differential expression caused by differences be-
tween condition A and condition B, while the second hundred cases show dif-
ferential expression caused by differences between condition C and condition
D.

> data(factData)
> data(factlibsizes)

We establish three group structures on the data.

> factgroups <- 1list(NDE = c(1, 1, 1, 1, 1, 1, 1, 1), DE.A.B = c(1,
+ 1, 1, 1, 2, 2, 2, 2), DE.C.D = c(1, 1, 2, 2, 1, 1, 2, 2))

The first group assumes no differential expression between samples. The
second group assumes differential expression between samples experiencing con-
dition A and samples experiencing condition B. The third group assumes differ-
ential expression between samples experiencing condition C and samples expe-
riencing condition D.

We could also consider the possibility of interactions between effects, by
considering a group c(1,1,2,2,3,3,4,4). However, in this simulated data set,
no such data exists and so we need not consider this group. It should be noted,
however, that such a group would only find that an interaction effect takes place
in some elements of the data. Like an ANOVA test, it is necessary to examine
the data to determine what form the effect takes.

Having established a group structure, we proceed as before.

CDfactPost.NBML <- getLikelihoods.NBboot (CDfactP.NBML, prs = c(0.2,
0.3, 0.5), estimatePriors = TRUE, bootStraps = 2, cl = cl)

> CDfact <- new("countData", data = factCount, libsizes = factlibsizes,
+ groups = factgroups)

> CDfact@annotation <- data.frame(name = paste("count", 1:1000,

+ sep = "_ n))

> CDfactP.NBML <- getPriors.NB(CDfact, samplesize = 1000, estimation =
+ cl = cl)

>

+

[1] 0.6312575 0.1877423 0.1810002
> CDfactPost.NBMLQ@estProps

NDE DE.A.B DE.C.D
0.6312575 0.1877423 0.1810002

HML n ,



We can then ask for the tags showing most differential expression caused by
the difference between conditions A and B

> topCounts (CDfactPost.NBML, group = 2)

name X1 X2 X3 X4 X5 X6 X7 X8 logP
count_94 19 41 19 22 3 2 3 4 -0.0006165511
count_41 2 5 4 1 29 11 29 23 -0.0045514750
count_81 6 12 510 0 0 O 0 -0.0049621226
count_ 8 0 0 O O 10 8 6 8 -0.0059169326
count_13 2 6 6 6 32 32 59 37 -0.0060594547
count_22 31 50 34 26 446 113 275 194 -0.0070713930
count_ 60 514 6 6 0 O 1 0 -0.0073585387
count_49 5 19 14 12 2 1 2 1 -0.0099316842
count_.7 0 1 1 O 19 16 9 8 -0.0153614010
count_.75 1 4 1 0 30 7 33 14 -0.0177234017
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And for those tags showing most differential expression caused by the differ-
ence between conditions C and D

> topCounts (CDfactPost.NBML, group = 3)

name X1 X2 X3 X4 X5 X6 X7 X8 logP
count_138 3 1 21 23 2 1 29 26 -0.0002084306
count_126 53 78 10 3 47 39 7 6 -0.0018854110
count_161 156 27 1 1 10 15 1 0 -0.0024901288
count_200 18 16 0 1 11 10 1 2 -0.0045706901
count_180 1 2 6 11 0 1 14 15 -0.00563242908
count_125 111 8 2 019 8 -0.0085263061
count_155 10 14 40 5 12 81 73 -0.0109477317
count_105 3 0 9 8 -0.0191101292
count_166 18 156 0 3 -0.0268582083
10 count_186 58 156 3 4 -0.0277058862

N

© 00 N O WN -
(&)
o o,

o o O
= = 00 O
w o Ul
NN
BN

References

[1] Thomas J. Hardcastle and Krystyna A. Kelly. Empirical Bayesian methods
for differential expression in count data. In submission. 2009.

[2] Mark Robinson edgeR:’ Methods for differential expression in digital gene
expression datasets. Bioconductor.

10



