Bioconductor RankProd Package Vignette

Fangxin Hong fhong@salk.edu
Ben Wittner wittner.ben@mgh.harvard.edu

October 28, 2009

Contents
1 Introduction 1
2 Required arguments 2
3 Identification of differentially expressed genes — Affymetrix array 5
3.1 Data with single origin 5
3.2 Data with multiple origins 9
4 Identification of differentially expressed genes — cDNA array 10
4.1 Common Reference Design 11
4.2 Direct two-color design e 12
5 Advanced usage of the package 13
5.1 Identify genes with consistent down- or up-regulation upon drug-treatment 13
5.2 Simultaneously identify genes up-regulated under one condition and down-regulated
under another conditiono 13

1 Introduction

The RankProd package contains functions for the analysis of gene expression microarray data, in
particular the identification of differentially expressed genes. RankProd utilizes the so called rank
product non-parametric method (Breitling et al., 2004, FEBS Letters 573:83) to identify up-regulated
or down-regulated genes under one condition against another condition, e.g. two different treatments,
two different tissue types, etc.

Rank Product is a non-parametric statistic that detects items that are consistently highly ranked in a
number of lists, for example genes that are consistently found among the most strongly upregulated
genes in a number of replicate experiments. It is based on the assumption that under the null
hypothesis that the order of all items is random the probability of finding a specific item among the

T

top 7 of n items in a list is p = £. Multiplying these probabilities leads to the definition of the rank

n

product RP = [], r%’ where r; is the rank of the item in the ¢-th list and n; is the total number

of items in the i-th list. The smaller the RP value, the smaller the probability that the observed
placement of the item at the top of the lists is due to chance. The rank product is equivalent to
calculating the geometric mean rank; replacing the product by the sum leads to a statistics (average
rank) that is slightly more sensitive to outlier data and puts a higher premium on consistency between
the ranks in various lists. This can be useful in some applications as detailed below.

A list of up- or down-regulated genes are selected based on the estimated percentage of false positive
predictions (pfp), which is also known as false discovery rate (FDR). The package is able to analyze
both Affymetrix Genechip data as well as spotted cDNA array data after normalization. Another
attraction of this method is its ability to combine data sets from different origins into one analysis
to increase the power of the identification. In practice, this makes it possible for data sets generated
at different laboratories or under different environments to be combined for study. Since the method
utilizes the rank of genes in each array instead of the actual expression value, it can be flexibly
applied to many different questions, such as identifying genes which are down-regulated under one
condition while being up-regulated under another condition.

This guide gives a tutorial-style introduction to the main features of RankProd and shows how these
functions can be used. The presentation focuses on the analysis of Affymetrix array data, but the
usage for cDNA array analysis will be illustrated briefly as well.

First, it is necessary to load the package.

> library(RankProd)

In the following, we use the Arabidopsis data set that is contained in this package to illustrate how
rank product method analyses can be performed.

> data(arab)

data(arab) consists of a 500 x 10 matrix arab containing the expression levels of 500 genes and
10 samples, a vector arab.cl containing the class labels of the 10 samples, a vector arab.origin
containing the origin labels of the 10 samples (data were produced at two different laboratories), and
a vector arab.gnames containing the names(AffyID) of 500 genes. The data set is normalized by
RMA, thus it is in log2 scale.

2 Required arguments

In order to run a rank product analysis, users need to call either the function RP or RPadvance. RP is
a simpler version which is specialized in handling data sets from a single origin, while RPadvance is
able to analyze data with single or multiple origins, and also perform some advanced analysis. There
are two required arguments for the function RP: data and cl, which are identical to those required
by the function SAM contained in the package siggenes. The first required argument, data, is the
matrix (or data frame) containing the gene expression data that should be analyzed. Each of its
rows corresponds to a gene, and each column corresponds to a sample, which would be obtained, for
example, by

> Dilution <- ReadAffy()

> data<-exprs(rma(Dilution))

The second required argument, cl, is the vector of length ncol(data) containing the class labels of
the samples. In a rank product analysis for data sets from different origin, there is one more required
argument in the function RPadvance, origin, which is a vector of length ncol(data) containing the
origin labels of the samples.

One class data. In the one class case, cl is expected to be a vector of length n containing only 1’s,
where n denotes the number of samples. A label value other than 1 would also be accepted. In the
latter case, this value is automatically set to 1. So for n=>5, the vector cl is given by

>n <-5

> ¢l <- rep(1, 5)
> cl

(11 11111

Note: for one class data, we usually refer it as the expression ratio of two channels. In the outputs
from the package, we call the channel used as the numerator as class 1 and the channel used as
denominator as class 2.

Two class data. In this class, the function expect a vector cl consisting only of 0’s and 1’s, where
all the samples with class label ‘0" belong to the first group (e.g., the control group), and the samples
with class label ‘1’ belong to the second group (e.g., the treatment group). For example, the first
n1=5 columns belong to the first group, and the next n2=4 columns belong to the second group, the
cl is given by

> nl <- 5

> n2 <- 4

> cl <- rep(c(0, 1), c(nl, n2))
> cl

[1Jo0O0OO0OO0O1111

Identically to the behavior of the SAM analysis, the function also accepts others values than 0 and 1. In
that case, the smaller value is set to 0 to be the first class and the larger value to 1 as the second class.

Single origin: If the data were generated under identical or very similar conditions except the
factor of interest (e.g., control and treatment), it is considered to be data with a single origin. This
is the most common case of array analysis done. In this case, the function RPadvance expects a
vector origin of length n with only 1’s. For example, for 9 samples generated at one time in one
laboratories, the first 5 columns in the data are class 1, and the next 4 are class 2, the c1 and origin
are given by

> nl <- 5

> n2 <-4
> cl <- rep(c(0, 1), c(nl, n2))
> cl

[1J o0O0OO0OO0O1111

> origin <- rep(1, nl + n2)

> origin
(17111111111
If 9 samples are from one class, the c1 and origin are given by

>n <-9
> ¢l <- rep(1, n)
> cl

1] 111111111

> origin <- rep(1, n)

> origin

] 111111111

Multiple origins: It sometimes happens that different laboratories conducted similar/same exper-
iments to study the effect of the same treatment (e.g., application of a certain drug). Data sets
generated at different laboratories are considered as data with different origins, as it is known that
the resulting data are not directly comparable. Rank products can combine these data sets together
to perform an overall analysis. In this case, the vector origin should consist numbers 1 to L, where
L is the number of different origins. For example, if there are 3 labs that did the same study, and
used 6 samples, 4 samples and 8 samples, respectively, the origin vector is given by

> origin <- c(rep(1, 6), rep(2, 4), rep(3, 8))
> origin
[1] 111111222233333333

The function also accepts others values in the origin labels. In that case, samples with the same
origin label will be treated as having the same origin.

Example: For the data set arab which is included in the package, 6 samples are from lab 1, and
another 4 are from lab 2. Both labs compare wild type Arabidopsis plants with and without treatment
(brassinosteroid).

> colnames (arab)

[1] "Chory_mock_1" "Chory_mock_2" "Chory_mock_3" "Chory_BL_1" "Chory_BL_2"
(6] "Chory_BL_3" "Goda_mock_1" "Goda_mock_2" "Goda_BL_1" "Goda_BL_2"
> arab.cl

(1] 0001110011
> arab.origin

1] 1111112222

3 Identification of differentially expressed genes — Affymetrix array

In this section, we show how the rank product method can be applied to the sample data set arab.
One should notice that rank products identify differentially expressed genes in two separate lists, up-
and down-regulated genes separately. For each identification, one pfp (percentage of false prediction)
is computed and used to select genes.

3.1 Data with single origin

First, we perform the analysis for data from a single origin. A subset data matrix is extracted by
selecting columns whose origin label is 1.

> arab.sub <- arab[, which(arab.origin == 1)]
> arab.cl.sub <- arab.cl[which(arab.origin == 1)]

> arab.origin.sub <- arab.origin[which(arab.origin == 1)]

The rank product analysis for single-origin data can be performed by either RP or RPadvance. We
first use function RP to look for differentially expressed genes between class 2 (class lable=1)and class
1 (class lable=0).

> RP.out <- RP(arab.sub, arab.cl.sub, num.perm = 100, logged = TRUE,
+ na.rm = FALSE, plot = FALSE, rand = 123)

Rank Product analysis for two-class case

Starting 100 permutations...
Computing pfp ..
Outputing the results ..

In this case, the data in arab are already log-transformed, otherwise one should set logged=FALSE.
The default number of permutations is 100, this can be set to higher values by the user to obtain
more precise estimates of the pfp. The argument plot=FALSE will prevent the graphical display of
the estimated pfp vs. number of identified genes. The argument rand sets the random number seed
to 123 to make the results of RP reproducible. Since we chose some default values in function RP ,
we would simply type

> RP.out <- RP(arab.sub,arab.cl.sub,gene.names=arab.gnames,rand=123)

The same analysis could also be done by

> RP.out <- RPadvance(arab.sub, arab.cl.sub, arab.origin.sub, num.perm = 100,
+ logged = TRUE, na.rm = FALSE, gene.names = arab.gnames, plot = FALSE,
+ rand = 123)

The data is from 1 different origins
Rank Product analysis for two-class case

Starting 100 permutations...

Computing pfp...
or
> RP.out=RPadvance(arab.sub,arab.cl.sub,arab.origin.sub,gene.names=arab.gnames,rand=123)

The function plotRP can be used to plot a graphical display of the estimated pfp vs. number of
identified genes using the output from RP or RPadvance If cutoff (the maximum accepted pfp) is
specified, identified genes are marked in red (see figure 1). Note that the estimated pfp is not nec-
essarily smaller than 1, but will converge to 1 in the tail. Two plots will be generated on current
graphic display, for identification of up- and down-regulated genes under class 2, respectively.

> plotRP(RP.out, cutoff = 0.05)

Identification of Up—-regulated genes under class 2

i S N—-—_—
LL —
D_ —
© — f
L 9o |
@©
£ °4 |f
?_; Q _#Pg

SHE T T T T T

0 100 200 300 400 500
number of identified genes
Identification of down-regulated genes under class 2

o
LL
o
©
()
T
=
3 o

o

I I I I I
0 100 200 300 400 500

number of identified genes

The function topGene is used to output a table of the identified genes based on user-specified selection
criteria. The required argument is the output object from function RP or RPadvance. The user also
needs to specify either the cutoff (the desired significance of the identification) or num.gene (the
number of top genes identified), otherwise a error message will be printed and the function will be
stopped. If cutoff is specified, the function also requests user to select either pfp (percentage of
false prediciton) or pval (pvalue) which is used to select genes. pfp is the default setting, which is
selected when no selection is made by user.

> topGene (RP.out,gene.names=arab.gnames)
Error in topGene(RP.out, gene.names = arab.gnames)

No selection criteria is input, please input either cutoff or num.gene

> topGene (RP.out, cutoff = 0.05, method = "pfp", logged = TRUE,

+ logbase = 2, gene.names = arab.gnames)

Tablel: Genes called significant under classl < class2

Table2: Genes called significant under classl > class2

$Tablel

gene.index RP/Rsum FC:(classl/class2) pfp P.value
245244 _at 344 1.4891 0.4327 0.0000 0e+00
245336_at 436 2.4231 0.4773 0.0000 0e+00
245119_at 219 3.0932 0.4783 0.0000 0e+00
245176_at 276 3.3955 0.5038 0.0000 0e+00
245304_at 404 3.7745 0.5011 0.0000 0e+00
245196_at 296 7.9884 0.6035 0.0100 le-04
245254 _at 354 9.4769 0.6469 0.0143 2e-04
245262_at 362 11.0043 0.6667 0.0188 3e-04
245334_at 434 14.9425 0.6994 0.0389 7e-04
245141 _at 241 15.2589 0.6971 0.0380 8e-04
245265_at 365 15.7394 0.6888 0.0391 9e-04
245112_at 212 15.7589 0.7112 0.0358 9e-04
$Table2

gene.index RP/Rsum FC:(classl/class2) pfp P.value
245362_at 462 1.0000 2.5935 0.0000 0e+00
245136_at 236 2.8470 1.7180 0.0000 0e+00
245277 _at 377 4.9437 1.5636 0.0000 0e+00
245296_at 396 5.6434 1.5505 0.0000 0e+00
245276_at 376 8.5368 1.4795 0.0060 le-04
245229_at 329 9.1905 1.4577 0.0083 le-04
245075_at 175 11.7001 1.3937 0.0229 3e-04

Here the user chose to output the identified genes by controlling pfp < 0.05. gene.names are provided
and thus are output with the table of selected genes. Since data set arab is in log based 2 scale, we
specified logged=TRUE, logbase=2, which are the default values.

Two tables are output, listing identified up- (Tablel: class 1 < class 2) and down- (Table2: class
1 > class 2) regulated genes. There are 5 columns in the table, the first one gene.index is the gene
index in the original data set; the second RP/Rsum is the computed rank product (or rank sum in
section 5) for each gene; the third column FC: (class1/class?2) is the computed fold change of the
average expression levels under two conditions, which would be converted to the original scale using
input logbase (default value is 2) if logged=TRUE is specified; the 4th column pfp is the estimated
pfp value for each gene in the list if that gene serves as the cutoff point; the last column P.value is

the associated P-values for each gene. If user want to use less stringent criterion (without adjust for
multiple comparison), pvalue < 0.05 can be specified as

> topGene (RP.out,cutoff=0.05,method="pval",logged=TRUE, loghase=2,gene.names=arab.gnames)

If the user is interested in the top, say, 50 genes, one can type

> topGene (RP.out ,num.gene=50,gene.names=arab.gnames)

3.2 Data with multiple origins

In this section, we will illustrate how the rank product analysis can be applied to data sets from
multiple origins using the built-in data set arab. As introduced above, arab consists of array data
sets measured at two different laboratories. Both labs measured gene expression under two classes
with similar condition.

The lack of experimental standards for microarray experiments leads to heterogeneous data sets for
which direct comparison is not possible. Instead of using actual expression data, the present approach
combines the gene rank from different origins together to select genes (for details refer to Breitling
et al. (2004)).

> RP.adv.out <- RPadvance(arab, arab.cl, arab.origin, num.perm = 100,

+ logged = TRUE, gene.names = arab.gnames, rand = 123)

The data is from 2 different origins

Rank Product analysis for two-class case

Starting 100 permutations...
Computing pfp...

> plotRP(RP.adv.out, cutoff = 0.05)

Identification of Up—-regulated genes under class 2

o N
o - M
o |
o _ ju-ﬁ
() (o]
T o 4
g]| e
3 9o |

© T T T T T T

0 100 200 300 400 500
number of identified genes
Identification of down-regulated genes under class 2

o N
L W—-—M
% B °
2 o | | ¢
@© o
= 1 |
8 o _

S) T T T T T

0 100 200 300 400 500

number of identified genes

##Table of identified genes by controlling pfp (FDR)=0.05,
> topGene(RP.adv.out,cutoff=0.05,method="pfp",logged=TRUE,logbase=2,gene.names=arab.gnames)

Note: By combining data sets from different origins together, the test gets increased power, which
leads to more identified genes.

4 Identification of differentially expressed genes — cDNA array

For ¢cDNA array data, the usage of the rank product method is different from that for Affymetrix
arrays, since gene expressions of two conditions are measured from one spot. The usage is different
depending on the experimental design. Two types of design are regularly encountered: Common
reference designs in which two type RNA samples are compared via a common reference, or direct

two-color designs in which two types of RNA samples are directly compared without a common
reference.

10

4.1 Common Reference Design

In this case, different RNA samples are compared with a common reference for each array. This type
of analysis is very similar to the analysis of Affymetrix Genechips. As an example, we will have a
look at the data lymphoma copied from the package vsn.

> data(lymphoma)

A\

pData(lymphoma)
name sample
1 1c7b047 reference
2 1c7b047 CLL-13
3 1c7b048 reference
4 1c7b048 CLL-13
5 1c7b069 reference
6 1c7b069 CLL-52
7 1c7b070 reference
8 1c7b070 CLL-39
9 1c7b019 reference
10 1c7b019 DLCL-0032
11 1c7b056 reference
12 1c7b056 DLCL-0024
13 1c7b057 reference
14 1c7b057 DLCL-0029
15 1c7b058 reference
16 1c7b058 DLCL-0023

The 16 columns of the lymphoma object contain the red and green intensities, respectively, from
the 8 slides, as shown in the table. Thus, the Chl intensities are in column 1,3,...,15, the Ch2
intensities in column 2/4,...,16. We can call vsn to normalize all of them at once.

> library(vsn)
> lym.vsn <- vsn(lymphoma)
> lym.exp <- exprs(lym.vsn)
We can then obtain the log-ratios for each slide, by subtracting the common reference intensities

from those for the 8 samples. A class label vector is created for these 8 samples, and function RP is
called to perform a two-class analysis.

> refrs <- (1:8) * 2 - 1
> samps <- (1:8) * 2
> M <- lym.exp[, samps] - lym.exp[, refrs]

> colnames (M)

11

[1] "CLL-13" "CLL-13" "CLL-52" "CLL-39" "DLCL-0032" "DLCL-0024"
[7] "DLCL-0029" "DLCL-0023"

> cl <~ c(rep(0, 4), rep(1, 4))
> cl

[1J] 00001111
> RP.out <- RP(M, cl, logged = TRUE, rand = 123)

Rank Product analysis for two-class case

Starting 100 permutations...
Computing pfp ..
Outputing the results ..

> topGene (RP.out, cutoff = 0.05, logged = TRUE, logbase = exp(1))

Note that vsn normalized data is in log base e.

4.2 Direct two-color design

In order to use the rank product method, the gene expression ratio for the two dyes (classes) is
calculated for each spot, ratio=expression of class 1/expression of class 2. Suppose there is an
experiment in which two wild type (class 1) and two mutant mice (class 2) are compared using two
arrays. The targets might be

File name Cy3 Cy5 Ratio=wt/mu

File 1 wt mu Cy3/Cyb
File 2 mu wt Cy5/Cy3
File 3 wt mu Cy3/Cyb
File 4 mu wt Cy5/Cy3

The first required argument, data, is the matrix (or data frame) containing the gene expression ratio
that one intends to analyze. Each of its rows corresponds to a gene, and each column corresponds to
the ratio of one chip. Since the input data is already log-ratios, the second required argument, c1,
should be set to the vector of length ncol(data) with all 1’s, and a one-class rank product analysis
performed to identify up- or down-regulated genes .

> cl=rep(1,4)
> RP(data,cl, logged=TRUE, rand=123)

One should notice, for the direct two-color design rank products will not distinguish the details of
different designs in the way limma does (for example see the special designs discussed in section 9 of
the limma vignette including simple comparison and dye swaps). And the problems caused by the
difference of biological replicates or technical replicate are not an issue in the rank products analysis,
either.

12

5 Advanced usage of the package

Since the rank product method uses ranks instead of actual expression to identify genes, the method
can be generally used in many other cases beside the simple two-class comparison. As what mentioned
in the introduction, the rank product is equivalent to calculating the geometric mean rank which is
robust to the outliers. However, replacing the product by the sum leads to a statistics (average rank)
that is slightly more sensitive to individual data value and puts a higher premium on consistency
between the ranks in various lists (Breitling et al., submitted). There is a function RSadvance in the
RankProd library which can be used to perform a rank sum analysis. Since the rank sum method
hasn’t been published yet, we would only recommend it to the advanced users, and we will not
guarantee the performance. The following examples show the potential usage.

5.1 Identify genes with consistent down- or up-regulation upon drug-treatment

This example was inspired by a question posted in the BioC mailing-list. There are 3 studies and 4
to 5 doses of a drug within each study (the doses are not the same in each study). Genes that are
consistently up- or down- regulated by drug compared to control are of interests. Rank sum method
can be potentially used towards this end by treating 3 studies as 3 origins in a multi-origin study
introduced in section 3.2.

Although the drug doses are different in each study, people do expect genes with high rank in
ascending order (treatment vs. control) across different studies to be consistently down-regulated,
genes with high rank in descending order (treatment wvs. control) to be consistently up-regulated.
Since we would expect candidate genes having relative consistent high rank in all studies, we prefer
to use RSadvance to perform a three-origin analysis treating each study as one origin. The identified
genes would be good candidates for consistent down- or up-regulation under various conditions

5.2 Simultaneously identify genes up-regulated under one condition and down-
regulated under another condition

Normally, when people conduct a microarray study that studies responses in two different (and
opposing) conditions, two lists of genes will be identified independently: up-regulated genes under
condition 1, down-regulated genes under condition 2. Genes appearing in both lists will be called
as the candidate genes. However, the rank-based method can be used to identify the desired list of
genes in a single analysis. In other words, one significance is controlled for the identification. This is
another advantage of the rank-based method compared to other methods.

To perform this analysis, one can rank genes in ascending order under one condition and descending
order under another condition, then put all ranks together as in a 2-origin study to identify the
desired candidate genes. Since we would expect consistent ranks for the candidate genes under both
conditions, we would prefer RSadvance instead of rank product. The practical application is a bit
complicated, the data arab is again used to illustrate the usage. Suppose we want to check the
consistence of the data sets generated in two different labs. For example, we would look for genes
that were measured to be up-regulated in class 2 at lab 1, but down-regulated in class 2 at lab 2.
In stead of changing the function to rank genes in different order under two conditions, we switched

13

class labels for lab 2. Thus the resulted ”class 2” is the real class 2 in lab 1 and the real class 1 in lab
2, and the resulted ”class 1”7 is the real class 1 in labl and the real class in lab2. We call the resulted

classes as hypothetical class 1 or 2.

> arab.cl2 <- arab.cl

> arab.cl2[arab.cl == 0 & arab.origin == 2] <- 1
> arab.cl2[arab.cl == 1 & arab.origin == 2] <- 0
> arab.cl2

[1J 0001111100

Looking for genes that are consistently up-regulated under hypothetical class 2 is equivalent as
looking for genes that are up-regulated under class 2 in lab 1 and down-regulated under class 2 in
lab2. Ideally, we would expect genes having very different ranks from two labs after switching class
labels in lab 2, therefore a rank sum analysis is preferred to emphasis on consistency on the candidate
genes. As illustration purpose, we used only first 500 genes to perform a fast analysis

> Rsum.adv.out <- RSadvance(arab, arab.cl2, arab.origin, num.perm

+ logged = TRUE, gene.names = arab.gnames, rand = 123)

The data is from 2 different origins

Rank Sum analysis for two-class case

Starting 100 permutations...
Computing pfp...

> topGene (Rsum.adv.out, cutoff = 0.05, gene.names = arab.gnames)

No genes called significant under classl < class2

No genes called significant under classl > class2

$Tablel
NULL

$Table2
NULL

= 100,

No gene was found to be differentially expressed at level of FDR=0.05, indicating a relative good
consistency of the experiments conducted at two labs. Further study the top 10 genes in the lists

indicates that those genes are indeed similar

14

> topGene (Rsum. adv. out,

num.gene = 10, gene.names

= arab.gnames)

Tablel: Genes called significant under classl < class2

Table2: Genes called significant under classl > class2

$Tablel
gene.index
245392_at 492
245181 _at 281
245305_at 405
245233_at 333
245254 _at 354
244951 _s_at 51
245269_at 369 1
245082_at 182 1
245234 _at 334 1
245380_at 480 1
$Table2
gene.index RP
245259_at 359 98
245343_at 443 98
245252_at 352 100.
245338_at 438 105.
245080_at 180 121.
245188_at 288 126.
245098_at 198 127.
244986_at 86 128.
245277 _at 377 131.
245021 _at 121 133.

> plotRP(Rsum.adv.out, ¢

RP/Rsum FC: (classl/class?2)

75.5385 0.8302
80.3077 0.8253
83.8462 0.8603
89.5385 0.8589
89.7692 0.8246
95.0000 0.8757
04.6923 0.8857
06.5385 0.8583
07.2308 0.8627
09.4615 0.8924

/Rsum FC: (class1/class?2)
.5385 1.1298 3
.9231 1.1236 1
5385 1.1839 1
4615 1.1656 1
6154 1.1203 2
3846 1.1088 2
2308 1.0786 2
1538 1.1526 1
3846 1.0567 1
3077 1.2048 1

utoff = 0.05)

.8900
.9850
.4367
.3800
.3060
.3017
.0564
.8781
.8767
.8210

pfp P.value
.9250 .0018
.6500 .0026
.5450 .0033
.5625 .0045
.4520 .0045
.4925 .0059
. 7229 .0101
.6862 .0110
.6300 .0113
.6270 .0125

O O O O O O O o o o
O O O O O O O O o o

pfp P.value
.0078
.0079
.0086
.0110
.0231
.0276
.0288
.0300
.0338
.0364

O O O O O O O O o o

No genes found using the input cutoff class 1 < class 2

No genes found using the input cutoff: class 1 > class 2

15

Identification of Up—-regulated genes under class 2

- i o?%fnm—m_‘_,

estimated PFP
0.8
I

0.5
|
oo @

I I I I I
100 200 300 400 500

o

number of identified genes

Identification of down-regulated genes under class 2

o
o < 5
u pu—
o B
S o
g 3.
= 13
+— °
" o
q) - pu—
- T T T T T T
0 100 200 300 400 500

number of identified genes

The plot of the estimated pfp vs. number of identified genes is shown in figure 2. The abnormal pat-
terns in the plot compared with that in figure 1 also indicate a meaningless identification. However,
due to the stability of the rank product statistics against outliers, genes would be identified using
rank product method

> RP.adv.out <- RPadvance(arab, arab.cl2, arab.origin, num.perm = 100,

+ logged = TRUE, gene.names = arab.gnames, rand = 123)

The data is from 2 different origins
Rank Product analysis for two-class case

Starting 100 permutations...

Computing pfp...

16

> topGene (RP.adv.out, cutoff = 0.05, gene.names = arab.gnames)

Tablel: Genes called significant under classl < class2

Table2: Genes called significant under classl > class2

$Tablel

gene.index RP/Rsum FC:(classl/class2) pfp P.value
245244 _at 344 8.8253 0.8710 0.0000 0e+00
245336_at 436 12.4416 0.9822 0.0050 0e+00
245119_at 219 13.3021 0.7238 0.0033 0e+00
245304_at 404 15.5140 0.7973 0.0025 0e+00
245176_at 276 15.5174 0.8950 0.0020 0e+00
245254 _at 354 23.9023 0.8246 0.0200 2e-04
245196_at 296 26.8246 0.8908 0.0314 4e-04
$Table2

gene.index RP/Rsum FC:(classl/class2) pfp P.value
245362_at 462 6.7647 1.0344 0.0000 0e+00
245136_at 236 13.4622 1.0749 0.0050 0e+00
245277 _at 377 19.1517 1.0567 0.0133 le-04
245296_at 396 22.0083 0.9371 0.0250 2e-04

However, the log fold-change indicating non-significant finding, which is also confirmed by the further
study of the the ranks under 13 comparisons for one gene(first 9 in lab 1, next 4 in from lab 2).

> RP.adv.out$0rirank[[1]] [344,]
[1] 3 4 3 1 1 1 1 1 1 495 496 453 492

The approach discussed in this section is still in the early stages of development, is not published
yet. Hence, it should only be used with caution and with further detailed examination.

Reference

Breitling, R., Armengaud, P., Amtmann, A., and Herzyk, P.(2004) Rank Products: A simple, yet
powerful, new method to detect differentially regulated genes in replicated microarray experi-
ments, FEBS Letter, 57383-92

Nemhauser JL, Mockler TC, Chory J. (2004) Interdependency of brassinosteroid and auxin signaling
in Arabidopsis. PLoS Biol. 21460

http://arabidopsis.org/info/expression/ATGenExpress.jsp

17

