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1 What CNVtools is meant to do

1.1 Input data

CNVtools is a R package meant to perform robust case-control and quantitative trait association testing of
copy number variants (CNVs). The association testing procedure for CNVtools requires a one-dimensional
normalized data summary per sample. Another vector is required to provide the case-control status or,
alternatively, a quantitative trait. Another optional input vector is used to separate the samples in batches
in situations where one expects the signal distribution to differentially affect each batch because of potential
technical artifacts. This issue of differential bias is discussed in details in the companion publication published
in Nature Genetics in 2008 (see Reference at the end of this vignette).

In addition, CNVtools fits a mixture model to the one-dimensional CNV data summary. For this approach
to make sense, it is essential that the distinct components can at least be distinguished in the histogram
of the normalized signal. If this is not the case mixture models are not an modeling appropriate tool and
CNVtools cannot be used to analyze such data.

Note that no code is provided in this package for CNV signal normalization. However, is it frequent
for multiple CNV probes located in the same chromosome region to provide information about the same



CNV. It is therefore useful to combine the information across a small number of CNV probes to obtain a
one-dimensional signal for each sample. In fact, this summary step is required to use the CNVtools routines
which need a one-dimensional data summary as input. This data summary step is the purpose of the
functions apply.pca and apply.ldf which suggest two methods to summarize CNV data across multiple
probes: principal component and canonical correlation analysis. Unlike the actual association testing routines
(like CNVtest.binary) and the underlying C code, these two functions are not essential to CNVtools but we
thought it would be convenient to include them.

1.2 Genome-wide or single CNV data

Unlike a R package like “snpMatrix” specifically designed for genome-wide data, the CNVtools functions are
implemented to analyze each CNV separately. To be more explicit, we did not design data structure to
store and analyze data from multiple CNVs (for example genome-wide). However, this package was initially
designed to analyze CNV data generated by the Wellcome Trust Case Control Consortium, which performed
a genome-wide scan for association for eight common disorders (approximately 19,000 samples). Therefore
CNVtools is well suited for large scale CNV association studies but it is the users task to write a wrapper
in order to apply the CNVtools code separately for each CNV. To give some explicit computation time:
for the WTCCC CNV association study, and using recently purchased computers (as of 2009, a mixture of
Dual-Core AMD Opteron Processor 2220 and Quad-Core AMD Opteron Processor 2384), CNVtools could
analyze approximately 3,000 CNVs typed in 19,000 individuals for an approximate total time of 20 days of
computing (6h using a 80 nodes computing cluster).

2 First look at the data

We first load an example CNV data set, called A112, in the two WTCCC control groups (1958 British
Birth cohort and National Blood Services). The data required for CNVtools is a matrix of normalized signal
intensities. In this example each row represents an individual and each column represents a locus within the
CNV. To get a feel for the data, we plot the histograms for the mean intensity as well as the first principal
component analysis (Figure 1).

> library(CNVtools)
> data(A112)
> head(A112)

subject cohort SNPO SNP1 SNP2 SNP3
1 WTCCCO01-11474A1 58C -0.12647400 -0.1214220 -0.1423570 0.0449446
2 WTCCCO01-11474A2 58C -0.21574200 0.0265778 -0.0964269 0.0617480
3 WTCCCO01-11474A3 58C -0.00150499 0.0820076 -0.2853430 0.1589580
4 WTCCCO01-11474A4 58C -0.055638290 -0.1691450 -0.0592800 0.0264289
5 WTCCCO01-11474A5 58C -0.12926900 0.2014540 -0.8474870 -0.2647420
6 WTCCCO01-11474A6 58C -0.06209860 0.1826130 0.1245160 -0.1731720

SNP4 SNP5 SNP6 SNP7 SNP8 SNP9
0.0259435 0.1351870 0.0746991 0.40581000 -0.18601600 0.0990579
0.1521360 -0.0445652 -0.3751110 -0.39122600 0.10114500 0.1816270
0.0320422 0.1823220 0.0699921 0.29014900 0.00885492 -0.0387201
.0208353 -0.2740840 0.0310302 0.20566300 0.12842100 -0.2219500
-0.0502723 -0.2150250 -0.2254730 0.00162372 0.08069250 0.0562238
-0.0870918 -0.0902743 -0.0634414 -0.80391700 0.37845800 -0.1880560

SNP10 SNP11 SNP12 SNP13 SNP14 SNP15 SNP16
.1969750 0.0448241 -0.0193997 0.13117800 -0.163383 0.1545760 0.0253607
.0688791 -0.1166620 0.0217019 -0.05719720 -0.138044 -0.0554405 -0.0536655
3 0.1131100 0.0609800 0.2402140 0.23635400 -0.111235 0.5082330 0.0272966
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4 -0.2299260 0.0198905

-0.3210060 0.14955900 -0.534339 -0.7596830 -0.1940050

5 -0.0636589 -0.0433160 -0.5579070 0.13913000 -0.778225 -0.9224910 0.0343805

6 -0.1368910 -0.0779523 0.1212290 0.00857489 0.179257 -0.0675581 -0.1812210
SNP17 SNP18 SNP19 SNP20 SNP21 SNP22 SNP23

1 -0.0560689 -0.0751385 -0.485160 -0.0288187 -0.1945410 -0.0456346 0.0929479

2 0.1212250 0.1018410 -0.200404 -0.1797650 -0.0456029 0.2835270 -0.0813351

3 -0.1532160 -0.1135340 0.183407 -0.0960403 0.1230410 -0.1076840 -0.0180287

4 -0.1035420 0.1661650 -0.318173 -0.7149550 -0.7436040 -0.2483910 -0.2552810

5 -0.0130905 0.1538550 -0.589194 -0.4773230 -0.6345150 0.1788480 -0.4428020

6 -0.1676740 0.3261350 -0.199970 0.0908316 0.1268390 0.1787620 0.1138070
SNP24 SNP25 SNP26 SNP27 SNP28 SNP29 SNP30

1 -0.222375 -0.368043 -0.1448800 -0.00706918 0.0356588 -0.346104000 -0.1318280

2 -0.143908 -0.105819 -0.2330800 -0.07807670 0.0980952 -0.152811000 0.0728393

3 0.401502 0.240364 -0.1334340 -0.00942116 -0.0514102 -0.254315000 0.0708932

4 -0.106774 0.203908 0.3008000 -0.24017000 0.1681400 0.298436000 0.1303020

5 -0.124996 -0.191220 -0.1863940 -0.08408520 -0.2589270 -0.000203031 -0.0516899

6 -0.228779 -0.409863 0.0208064 0.01472170 0.2187790 -0.384239000 -0.0265277
SNP31 SNP32

1 0.0140277 0.0583939

2 -0.2176910 0.0172098

3 -0.1251580 -0.1050300

4 -0.0139433 0.0432413

5 0.0381275 -0.0992932

6 -0.2410430 -0.0577618

> raw.signal <- as.matrix(A112[, -c(1, 2)1)

> dimnames (raw.signal) [[1]] <- Al112$subject

> mean.signal <- apply(raw.signal, MAR = 1, FUN = mean)

> pca.signal <- apply.pca(raw.signal)

> pdf ("fig/mean_pca_signal.pdf", width = 10, height = 5)

> par(mfrow = c(1, 2))

> hist(mean.signal, breaks = 50, main = "Mean signal", cex.lab = 1.3)

> hist(pca.signal, breaks = 50, main = "First PCA signal", cex.lab = 1.3)

> dev.off()

null device
1

3 Model selection using the Bayesian Information Criterion (BIC)

To determine the number of components of the CNV for the downstream analysis we can run the model
selection algorithm. The models scanned by this function can be specified by the user, however the default
settings allow for determining the number of components using some general models for the mean and
variance of the components. We specify 3 iterations under HO to increase the chances of locating a global
maximum for each model. The output of the model selection gives the BIC (and AIC) for the different
models. The model that minimizes the chosen statistic is the most likely model. This is demonstrated in

Figure 2.

> batches <- factor(A112$cohort)
> sample <- factor(Al112$subject)

> set.seed(0)
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Figure 1: Histograms for the mean intensity and the first principal component of the CNV A112

> results <- CNVtest.select.model (signal = pca.signal, batch = batches,

+ sample = sample, n.HO = 3, method = "BIC", v.ncomp = 1:5,

+ v.model.component = rep("gaussian", 5), v.model.mean = rep("~ strata(cn)",
+ 5), v.model.var = rep("~1", 5))

> ncomp <- results$selected

> pdf ("fig/modelselect.pdf", width = 5, height = 5)

> plot(-results$BIC, xlab = "n comp", ylab = "-BIC", type = "b",

+ 1ty = 2, col = "red", pch = "+")

> dev.off()

null device
1

4 Clustering the PCA transformed data

We can then cluster the result of the pca analysis under the null hypothesis of no association between the
number of copies and the case-control status. The data will be clustered only once, assuming the null
hypothesis Hy. Because of this we do not have to specify any case-control status. We assume free model
for the means and the variances for each number of copies using '~ strata(cn)’. We could have chosen
free variances for each combination of batch and copy number using '~ strata(cn, batch)’. Alternatively
a variance model proportional to the number of copies is possible using '~ cn’. Note, however, that the
formulation using strata is much quicker and numerically robust, and should be used when possible. We can
also provide an optional vector of starting values for the mean locations of the three clusters.

Note that we must check the status of the fit. Only 'C’ should be accepted for further analysis. The
possibilities include

'C’ Converged. This is the only acceptable status.
"M’ Maximum iterations reached. The EM algorithm did not converge.
P’ Posterior density problem. The posterior probabilities are not monotonic.

'F’ Fit failed. Most likely due to singularity at o = 0.
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Figure 2: The BIC as a function of the number of components fit to the data output from the model selection
stage. The most appropriate model is the one that minimises the BIC.

The output contains a list, and the first element of this list is the data frame of interest. In Figure 3 we plot
the result of the clustering.

vV + VvV Vv VvV

[1]
pdf ("fig/pca-fit.pdf", width = 10, height =

V + Vv + Vv VvV

ncomp <- 3
batches <- factor(A112$cohort)
sample <- factor(A112$subject)

fit.pca <- CNVtest.binary(signal = pca.signal, sample

batch = batches, ncomp = ncomp, n.HO = 3, n.H1

print(fit.pca$status.HO)
||Cl|

par (mfrow = c(1, 2))
cnv.plot(fit.pca$posterior.HO, batch
breaks = 50, col = "red")
cnv.plot(fit.pca$posterior.HO, batch
breaks = 50, col = "red")
dev.off ()

null device

1

5)
"568C", main

"NBS", main

= sample,

0, model.var = "~ strata(cn)")

"Cohort 58C",

"Cohort NBS",



Cohort 58C Cohort NBS

50 60
| |

60 80
| |

40

30
|

Frequency
40

Frequency
10 20
I I
20
I

posterior$signal posterior$signal

Figure 3: Output of the clustering procedure using the pca (under the null hypothesis Hy of no allele
frequency difference between both cohorts). The colored lines show the posterior probability for each of the
three copy number classes (copy number = 1,2 or 3). For clarity the scale for the posterior probabilities is
not shown but the maximum is 1 and the three posterior probabilities always add up to 1.

5 Assigning individuals to a copy number genotype

The output from the clustering under Hy can be used to obtain the posterior probabilities and MAP estimates
of an individuals cluster membership. This can also be applied after the LDF improvement (see below). The
columns P1, P2, P3 represent the posterior probability of belonging to component 1, 2, 3. The column
labeled cn is the MAP assignment.

> head(fit.pca$posterior.HO)

subject batch signal trait P1 P2 P3 cn
1 WTCCCO1-11474A1  58C 0.1918171 0 0.04565297 0.954289722 0.0000000 2
2 WTCCCO01-11474A2  58C 0.1187269 0 0.06635041 0.933624517 0.0000000 2
3 WICCC01-11474A3  58C -0.6572859 0 0.92980569 0.070194309 0.0000000 1
4 WTCCCO01-11474A4 58C 1.4943201 0 0.00000000 0.002402710 0.9975957 3
5 WTCCC01-11474A5 58C 2.1352589 0 0.00000000 0.000000000 0.9999996 3
6 WICCCO01-11474A6  58C -0.5394552 0 0.84146496 0.158535032 0.0000000 1

6 Improving using the LDF procedure

It is now possible to use the posterior probabilities from the pca procedure to improve the fit. This is done
by using a linear discriminant analysis.

> ncomp <- 3

> pca.posterior <- as.matrix((fit.pca$posterior.HO)[, paste("P",

+ seq(1:ncomp), sep = "")])

> dimnames (pca.posterior) [[1]] <- (fit.pca$posterior.H0)$subject

> 1df.signal <- apply.ldf(raw.signal, pca.posterior)

> pdf ("fig/ldf_pca_signal.pdf", width = 10, height = 5)

> par (mfrow = c(1, 2))

> hist(pca.signal, breaks = 50, main = "First PCA signal", cex.lab = 1.3)
> hist(1df.signal, breaks = 50, main = "LDF signal", cex.lab = 1.3)

> dev.off()
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Figure 4: Comparing the LDF and PCA analysis, both clustered under the null hypothesis of no association.

The results of the LDF analysis can now be see in Figure 4 and we can observe a clear improvement.
The data will then be much easier to cluster.

7 Testing for genetic association with a dichotomous disease trait

7.1 Some mathematical details

The association testing approach has been described previously (see reference below) but for completeness
we sketch the principle. We use a likelihood ratio approach to test for association between the genotype calls
and the case-control status. Genotypes are called using a finite mixture model. Formally, this association
test can be as summarized as jointly fitting two linear models:

X
logit(Y)

Y+ 0'Z + ¢ (1)
o+ BX (2)

The first model is the Gaussian or T mixture model, and the second model is a traditional generalized
logit linear model. Notations are:

e X is a N-dimensional vector of signal intensities, where N is the number of samples in the study.

Z is the (N, G) matrix of genotype assignment, where G designates the number of copy number classes:
Z;; = 1 if and only if the sample ¢ has genotype j. Each row z; of Z is sampled from a multinomial
distribution with probabilities (®;)$ ; representing the genotype frequencies in the sampled population.

e The error term ¢ is normally distributed with mean 0.

0 is a G dimensional vector, linking the genotype status with the mean value of the signal intensity.

«a and [ are scalar and 8 # 0 under the alternative H;. Our default assumption is that the log-odds
ratio is proportional to the genotype X.

Y is the N dimensional binary vector describing the case-control status.



7.2 Example

Now that we have summarised the intensity data in an efficient manner we can use it to test for genetic
association between both cohorts. Here we have defined an artificial trait, 0 for NBS and 1 for 58C. We
can specify the number of iterations under Hy and H, and in that case we will use one iteration for each
scenario because the data quality is sufficient and does not require multiple iterations to be fitted properly.

ncomp <- 3

trait <- ifelse(A112$cohort == "58C", 0, 1)

fit.1ldf <- CNVtest.binary(signal = 1df.signal, sample = sample,
batch = batches, disease.status = trait, ncomp = ncomp, n.HO = 3,
n.H1 = 1, model.var = "“cn")

print (fit.ldf$status.HO)

vV + + Vv VvV

[1] IICII

> print(fit.ldf$status.H1)

[1] "c"

> pdf ("fig/ldf-fit.pdf", width = 10, height = 5)

> par(mfrow = c(1, 2))

> cnv.plot(fit.ldf$posterior.HO, batch = "58C", main = "Cohort 58C",
+ breaks = 50, col = "red")

> cnv.plot(fit.ldf$posterior.HO, batch = "NBS", main = "Cohort NBS",
+ breaks = 50, col = "red")

> dev.off ()

null device
1

> LR.statistic <- -2 * (fit.ldf$model.HO0$InL - fit.ldf$model.H1$1nL)
> print(LR.statistic)

[1] 1.546307

If the fit is correct and there is indeed no association, this statistic should be distributed as x? with one
degree of freedom. The fit can be checked in Figure 5.

Note that the assumed disease model, under the alternate hypothesis Hy, is a linear odds model, which
means that the effect on the log-odds is proportional to the number of alleles. We might be interested in
testing an allelic model, where the odds are not constrained by a linear trend. This is done by specifying the
model.disease formula when fitting the data, as follows:

> fit.1ldf <- CNVtest.binary(signal = 1df.signal, sample = sample,
+ batch = batches, disease.status = trait, ncomp = 3, n.HO = 3,
+ n.H1 = 1, model.disease = " ~ as.factor(cn)")

> print(fit.ldf$status.HO)

[1] non
> print(fit.ldf$status.H1)
[1] |ICI|

> LR.statistic <- -2 * (fit.ldf$model.HO0$InL - fit.ldf$model.H1$1nL)
> print (LR.statistic)
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Figure 5: Output of the clustering procedure using the LDF, under the null hypothesis Hy of no association.
The colored lines show the posterior probability for each of the three copy number classes. For clarity the
scale for the posterior probabilities is not shown but the maximum is 1 and the three posterior probabilities
always add up to 1.

[1] 3.112371

The default for model.disease is ~ cn. Introducing the factor adds one degree of freedom, canceling
the default linear constraint. The resulting statistic is now distributed, under the null, as x? with 2 degrees
of freedom.

8 Testing for genetic association with a quantitative trait

Now consider the testing of association with a quantitative trait. The model now consists of a standard
regression instead of a logistic regression. For this example we will generate a gaussian hypothetical trait
and test for association with the combined NBS and 58C individuals. The association test is done in a
completely analogous way, namely the LR under Hy should be distributed as x? with one degree of freedom
assuming a linear trend model.

> batches <- rep("ALL", length(sample))

> qt <- rnorm(length(sample), mean = 9, sd = 1)

> fit.1df <- CNVtest.qt(signal = 1df.signal, sample = sample, batch = batches,
+ gt = qt, ncomp = ncomp, n.H0O = 3, n.H1 = 1, model.var = "“strata(cn)")
> print(fit.ldf$status.HO)

[1] ||C||
> print(fit.ldf$status.H1)
[1] ||Cl|

> LR.statistic <- -2 * (fit.ldf$model.HO0$InL - fit.ldf$model.H1$1nL)
> print(LR.statistic)

[1] 0.7683424

> pdf("fig/qt-fit.pdf", width = 15, height = 5)
> qt.plot(fit.1df)
> dev.off ()
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Figure 6: Output of the quantitative trait association procedure on the LDF transformed data. For the
rightmost graph the colored lines show the posterior probability for each of the three copy number classes.
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