
iterativeBMAsurv
April 19, 2010

crossVal Cross Validation for Iterative Bayesian Model Averaging

Description

This function performs k runs of n-fold cross validation on a training dataset for survival analysis
on microarray data, where k and n are specified by the user.

Usage

crossVal(exset, survTime, censor, diseaseType="cancer", nbest=10, maxNvar=25, p=100, cutPoint=50, verbose=FALSE, noFolds=10, noRuns=10)

Arguments

exset Data matrix for the training set where columns are variables and rows are obser-
vations. In the case of gene expression data, the columns (variables) represent
genes, while the rows (observations) represent samples. The data is not assumed
to be pre-sorted by rank.

survTime Vector of survival times for the patient samples in the training set. Survival times
are assumed to be presented in uniform format (e.g., months or days), and the
length of this vector should be equal to the number of rows in exset.

censor Vector of censor data for the patient samples in the training set. In general, 0 =
censored and 1 = uncensored. The length of this vector should equal the number
of rows in exset and the number of elements in survTime.

diseaseType String denoting the type of disease in the training dataset (used for writing to
file). Default is ’cancer’.

nbest A number specifying the number of models of each size returned to bic.surv
in the BMA package. The default is 10.

maxNvar A number indicating the maximum number of variables used in each iteration
of bic.surv from the BMA package. The default is 25.

p A number indicating the maximum number of top univariate genes used in the
iterative bic.surv algorithm. This number is assumed to be less than the total
number of genes in the training data. A larger p usually requires longer com-
putational time as more iterations of the bic.surv algorithm are potentially
applied. The default is 100.

cutPoint Threshold percent for separating high- from low-risk groups. The default is 50.

1

2 crossVal

verbose A boolean variable indicating whether or not to print interim information to the
console. The default is FALSE.

noFolds A number specifying the desired number of folds in each cross validation run.
The default is 10.

noRuns A number specifying the desired number of cross validation runs. The default is
10.

Details

This function performs k runs of n-fold cross validation, where k and n are specified by the user
through the noRuns and noFolds arguments respectively. For each run of cross validation, the
training set, survival times, and censor data are re-ordered according to a random permutation.
For each fold of cross validation, 1/nth of the data is set aside to act as the validation set. In each
fold, the iterateBMAsurv.train.predict.assess function is called in order to carry out
a complete run of survival analysis. This means the univariate ranking measure for this cross valida-
tion function is Cox Proportional Hazards Regression; see iterateBMAsurv.train.wrapper
to experiment with alternate univariate ranking methods. With each run of cross validation, the sur-
vival analysis statistics are saved and written to file.

Value

The output of this function is a series of files giving information on cross validation results. The file
beginning with ’foldresults’ contains information for every fold in the form of a 2 x 2 table indi-
cating the number of test samples in each category (high-risk or censored, high-risk or uncensored,
low-risk or censored, low-risk or uncensored). This file also gives the accumulated percentage of
uncensored statistic from each run. The file beginning with ’runresults’ gives the total number of
test samples assigned to each category along with percentage uncensored across the entire run. The
end of this file contains this same information, averaged across all runs. The file beginning with
’stats’ gives the statistics from each fold, including the p-value, chi-square statistic, and variance
matrix. Finally, the file beginning with ’avg_p_value_chi_square’ gives the overall means and
standard deviations of the p-values and chi-square statistics across all runs and all folds.

Note

The BMA package is required. Also, smaller training sets may lead to cross validation folds where
all test samples are assigned to one risk group or all samples are in the same censor category (all
samples are either censored or uncensored). In this case, the fold is skipped, and cross validation
proceeds from the next fold. This particular error will be evidenced by a missing fold result in the
output files. All averages will be calculated as if this fold had never occurred.

References

Annest, A., Yeung, K.Y., Bumgarner, R.E., and Raftery, A.E. (2008). Iterative Bayesian Model
Averaging for Survival Analysis. Manuscript in Progress.

Raftery, A.E. (1995). Bayesian model selection in social research (with Discussion). Sociological
Methodology 1995 (Peter V. Marsden, ed.), pp. 111-196, Cambridge, Mass.: Blackwells.

Volinsky, C., Madigan, D., Raftery, A., and Kronmal, R. (1997) Bayesian Model Averaging in
Proprtional Hazard Models: Assessing the Risk of a Stroke. Applied Statistics 46: 433-448.

Yeung, K.Y., Bumgarner, R.E. and Raftery, A.E. (2005) Bayesian Model Averaging: Development
of an improved multi-class, gene selection and classification tool for microarray data. Bioinformat-
ics 21: 2394-2402.

imageplot.iterate.bma.surv 3

See Also

iterateBMAsurv.train.predict.assess iterateBMAsurv.train.wrapper, iterateBMAsurv.train,
singleGeneCoxph, predictBicSurv, predictiveAssessCategory, trainData,
trainSurv, trainCens

Examples

library (BMA)
library(iterativeBMAsurv)
data(trainData)
data(trainSurv)
data(trainCens)

Perform 1 run of 2-fold cross validation on the training set, using p=10 genes and nbest=5 for fast computation
cv <- crossVal (exset=trainData, survTime=trainSurv, censor=trainCens, diseaseType="DLBCL", noRuns=1, noFolds=2, p=10, nbest=5)

Upon completion of this function, all relevant output files will be in the working R directory.

imageplot.iterate.bma.surv
An image plot visualization tool

Description

Create a visualization of the models and variables selected by the iterative BMA algorithm.

Usage

imageplot.iterate.bma.surv (bicreg.out, color="default", ...)

Arguments

bicreg.out An object of type ’bicreg’, ’bic.glm’ or ’bic.surv’

color The color of the plot. The value ’default’ uses the current default R color scheme
for image. The value ’blackandwhite’ produces a black and white image.

... Other parameters to be passed to the image and axis functions.

Details

This function is a modification of the imageplot.bma function from the BMA package. The
difference is that variables (genes) with probne0 equal to 0 are removed before plotting. The
arguments of this function are identical to those in imageplot.bma.

Value

An heatmap-style image, with the BMA selected variables on the vertical axis, and the BMA se-
lected models on the horizontal axis. The variables (genes) are sorted in descreasing order of the
posterior probability that the variable is not equal to 0 (probne0) from top to bottom. The models
are sorted in descreasing order of the model posterior probability (postprob) from left to right.

4 iterateBMAsurv.train.predict.assess

Note

The BMA package is required.

References

Annest, A., Yeung, K.Y., Bumgarner, R.E., and Raftery, A.E. (2008). Iterative Bayesian Model
Averaging for Survival Analysis. Manuscript in Progress.

Clyde, M. (1999) Bayesian Model Averaging and Model Search Strategies (with discussion). In
Bayesian Statistics 6. J.M. Bernardo, A.P. Dawid, J.O. Berger, and A.F.M. Smith eds. Oxford
University Press, pages 157-185.

Yeung, K.Y., Bumgarner, R.E. and Raftery, A.E. (2005) Bayesian Model Averaging: Development
of an improved multi-class, gene selection and classification tool for microarray data. Bioinformat-
ics 21: 2394-2402.

See Also

iterateBMAsurv.train.wrapper, iterateBMAsurv.train.predict.assess, trainData,
trainSurv, trainCens

Examples

library (BMA)
library (iterativeBMAsurv)
data(trainData)
data(trainSurv)
data(trainCens)

Training phase: select relevant genes
Assumes the training data is in sorted order with the desired number of genes
ret.bic.surv <- iterateBMAsurv.train.wrapper (x=trainData, surv.time=trainSurv, cens.vec=trainCens)

Produce an image plot to visualize the selected genes and models
imageplot.iterate.bma.surv (ret.bic.surv$obj)

iterateBMAsurv.train.predict.assess
Iterative Bayesian Model Averaging: training, prediction, assessment

Description

Survival analysis and variable selection on microarray data. This is a multivariate technique to select
a small number of relevant variables (typically genes) to perform survival analysis on microarray
data. This function performs the training, prediction, and assessment steps. The data is not assumed
to be pre-sorted by rank before this function is called.

Usage

iterateBMAsurv.train.predict.assess (train.dat, test.dat, surv.time.train, surv.time.test, cens.vec.train, cens.vec.test, p=100, nbest=10, maxNvar=25, maxIter=200000, thresProbne0=1, cutPoint=50, verbose = FALSE, suff.string="")

iterateBMAsurv.train.predict.assess 5

Arguments

train.dat Data matrix for the training set where columns are variables and rows are obser-
vations. In the case of gene expression data, the columns (variables) represent
genes, while the rows (observations) represent samples. If Cox Proportional
Hazards Regression is the desired univariate ranking measure, the data does
not need to be pre-sorted. To use a different univariate ranking measure, see
iterateBMAsurv.train.wrapper.

test.dat Data matrix for the test set where columns are variables and rows are obser-
vations. In the case of gene expression data, the columns (variables) represent
genes, while the rows (observations) represent samples. The test set should con-
tain the same variables as the training set.

surv.time.train
Vector of survival times for the patient samples in the training set. Survival times
are assumed to be presented in uniform format (e.g., months or days), and the
length of this vector should be equal to the number of rows in train.dat.

surv.time.test
Vector of survival times for the patient samples in the test set. Survival times
are assumed to be presented in uniform format (e.g., months or days), and the
length of this vector should be equal to the number of rows in test.dat.

cens.vec.train
Vector of censor data for the patient samples in the training set. In general, 0 =
censored and 1 = uncensored. The length of this vector should equal the number
of rows in train.dat and the number of elements in surv.time.train.

cens.vec.test
Vector of censor data for the patient samples in the test set. In general, 0 =
censored and 1 = uncensored. The length of this vector should equal the number
of rows in train.dat and the number of elements in surv.time.test.

p A number indicating the maximum number of top univariate genes used in the
iterative bic.surv algorithm. This number is assumed to be less than the total
number of genes in the training data. A larger p usually requires longer com-
putational time as more iterations of the bic.surv algorithm are potentially
applied. The default is 100.

nbest A number specifying the number of models of each size returned to bic.surv
in the BMA package. The default is 10.

maxNvar A number indicating the maximum number of variables used in each iteration
of bic.surv from the BMA package. The default is 25.

maxIter A number indicating the maximum iterations of bic.surv. The default is
200000.

thresProbne0 A number specifying the threshold for the posterior probability that each vari-
able (gene) is non-zero (in percent). Variables (genes) with such posterior proba-
bility less than this threshold are dropped in the iterative application of bic.surv.
The default is 1 percent.

cutPoint Threshold percent for separating high- from low-risk groups. The default is 50.

verbose A boolean variable indicating whether or not to print interim information to the
console. The default is FALSE.

suff.string A string for writing to file.

6 iterateBMAsurv.train.predict.assess

Details

This function consists of the training phase, the prediction phase, and the assessment phase. The
training phase first orders all the variables (genes) by a univariate measure called Cox Proportional
Hazards Regression, and then iteratively applies the bic.surv algorithm from the BMA package.
The prediction phase uses the variables (genes) selected in the training phase to predict the risk
scores of the patient samples in the test set. In the assessment phase, the risk scores are used to
designate each test sample as either high-risk or low-risk based on the user-designated cutPoint.
Prediction accuracy is measured by the p-value difference between groups as calculated through
the central chi-square distribution. In addition, a Kaplan-Meier Survival Analysis Curve illustrating
the difference between risk groups is written to file in the working R directory. If Cox Proportional
Hazards Regression is the desired univariate ranking algorithm, then calling this function with the
training and testing sets is all that is necessary for a complete survival analysis run.

Value

If all samples are assigned to a single risk group or all samples are in the same censor category, an
error message is printed and a boolean variable success is returned as FALSE.If both risk groups
are present in the patient test samples, a Kaplan-Meier Survival Analysis Curve is written to file,
and a list with 6 components is returned:

nvar The number of variables selected by the last iteration of bic.surv.

nmodel The number of models selected by the last iteration of bic.surv.

ypred The predicted risk scores on the test samples.

result.table A 2 x 2 table indicating the number of test samples in each category (high-
risk/censored, high-risk/uncensored, low-risk/censored, low-risk/uncensored).

statistics An object of class survdiff that contains the statistics from survival analysis,
including the variance matrix, chi-square statistic, and p-value.

success A boolean variable returned as TRUE if both risk groups are present in the pa-
tient test samples.

Note

The BMA package is required.

References

Annest, A., Yeung, K.Y., Bumgarner, R.E., and Raftery, A.E. (2008). Iterative Bayesian Model
Averaging for Survival Analysis. Manuscript in Progress.

Raftery, A.E. (1995). Bayesian model selection in social research (with Discussion). Sociological
Methodology 1995 (Peter V. Marsden, ed.), pp. 111-196, Cambridge, Mass.: Blackwells.

Volinsky, C., Madigan, D., Raftery, A., and Kronmal, R. (1997) Bayesian Model Averaging in
Proprtional Hazard Models: Assessing the Risk of a Stroke. Applied Statistics 46: 433-448.

Yeung, K.Y., Bumgarner, R.E. and Raftery, A.E. (2005) Bayesian Model Averaging: Development
of an improved multi-class, gene selection and classification tool for microarray data. Bioinformat-
ics 21: 2394-2402.

See Also

iterateBMAsurv.train.wrapper, iterateBMAsurv.train, singleGeneCoxph,
predictBicSurv, predictiveAssessCategory, trainData, trainSurv, trainCens,
testData, testSurv, testCens

iterateBMAsurv.train 7

Examples

library (BMA)
library(iterativeBMAsurv)
data(trainData)
data(trainSurv)
data(trainCens)
data(testData)
data(testSurv)
data(testCens)

Use p=10 genes and nbest=5 for fast computation
ret.bma <- iterateBMAsurv.train.predict.assess (train.dat=trainData, test.dat=testData, surv.time.train=trainSurv, surv.time.test=testSurv, cens.vec.train=trainCens, cens.vec.test=testCens, p=10, nbest=5)

Extract the statistics from this survival analysis run
number.genes <- ret.bma$nvar
number.models <- ret.bma$nmodel
evaluate.success <- ret.bma$statistics

iterateBMAsurv.train
Iterative Bayesian Model Averaging: training

Description

Survival analysis and variable selection on microarray data. This is a multivariate technique to select
a small number of relevant variables (typically genes) to perform survival analysis on microarray
data. This function performs the training phase. It repeatedly calls bic.surv from the BMA
package until all variables are exhausted. The variables in the dataset are assumed to be pre-sorted
by rank.

Usage

iterateBMAsurv.train (x, surv.time, cens.vec, curr.mat, stopVar=0, nextVar, nbest=10, maxNvar=25, maxIter=200000, thresProbne0=1, verbose = FALSE, suff.string="")

Arguments

x Data matrix where columns are variables and rows are observations. The vari-
ables (columns) are assumed to be sorted using a univariate measure. In the case
of gene expression data, the columns (variables) represent genes, while the rows
(observations) represent samples.

surv.time Vector of survival times for the patient samples. Survival times are assumed to
be presented in uniform format (e.g., months or days), and the length of this
vector should be equal to the number of rows in x.

cens.vec Vector of censor data for the patient samples. In general, 0 = censored and 1 =
uncensored. The length of this vector should equal the number of rows in x and
the number of elements in surv.time.

curr.mat Matrix of independent variables in the active bic.surv window. There can be
at most maxNvar variables in the window at any given time.

stopVar 0 to continue iterations, 1 to stop iterations (default 0)

8 iterateBMAsurv.train

nextVar Integer placeholder indicating the next variable to be brought into the active
bic.surv window.

nbest A number specifying the number of models of each size returned to bic.surv
in the BMA package. The default is 10.

maxNvar A number indicating the maximum number of variables used in each iteration
of bic.surv from the BMA package. The default is 25.

maxIter A number indicating the maximum iterations of bic.surv. The default is
200000.

thresProbne0 A number specifying the threshold for the posterior probability that each vari-
able (gene) is non-zero (in percent). Variables (genes) with such posterior proba-
bility less than this threshold are dropped in the iterative application of bic.surv.
The default is 1 percent.

verbose A boolean variable indicating whether or not to print interim information to the
console. The default is FALSE.

suff.string A string for writing to file.

Details

The training phase consists of first ordering all the variables (genes) by a univariate measure such
as Cox Proportional Hazards Regression, and then iteratively applying the bic.surv algorithm
from the BMA package. In the first application of the bic.surv algorithm, the top maxNvar
univariate ranked genes are used. After each application of the bic.surv algorithm, the genes
with probne0 < thresProbne0 are dropped, and the next univariate ordered genes are added
to the active bic.surv window.

Value

On the last iteration of bic.surv, four items are returned:

curr.mat A vector containing the names of the variables (genes) from the final iteration
of bic.surv

.

stopVar The ending value of stopVar after all iterations.

nextVar The ending value of nextVar after all iterations.

An object of class bic.surv resulting from the last iteration of bic.surv.
The object is a list consisting of the following components:

namesx the names of the variables in the last iteration of bic.surv.
postprob the posterior probabilities of the models selected.
label labels identifying the models selected.
bic values of BIC for the models.
size the number of independent variables in each of the models.
which a logical matrix with one row per model and one column per variable

indicating whether that variable is in the model.
probne0 the posterior probability that each variable is non-zero (in percent).
postmean the posterior mean of each coefficient (from model averaging).
postsd the posterior standard deviation of each coefficient (from model averag-

ing).

iterateBMAsurv.train 9

condpostmean the posterior mean of each coefficient conditional on the vari-
able being included in the model.

condpostsd the posterior standard deviation of each coefficient conditional on
the variable being included in the model.

mle matrix with one row per model and one column per variable giving the
maximum likelihood estimate of each coefficient for each model.

se matrix with one row per model and one column per variable giving the stan-
dard error of each coefficient for each model.

reduced a logical indicating whether any variables were dropped before model
averaging.

dropped a vector containing the names of those variables dropped before model
averaging.

call the matched call that created the bma.lm object.

Note

The BMA package is required.

References

Annest, A., Yeung, K.Y., Bumgarner, R.E., and Raftery, A.E. (2008). Iterative Bayesian Model
Averaging for Survival Analysis. Manuscript in Progress.

Raftery, A.E. (1995). Bayesian model selection in social research (with Discussion). Sociological
Methodology 1995 (Peter V. Marsden, ed.), pp. 111-196, Cambridge, Mass.: Blackwells.

Volinsky, C., Madigan, D., Raftery, A., and Kronmal, R. (1997) Bayesian Model Averaging in
Proprtional Hazard Models: Assessing the Risk of a Stroke. Applied Statistics 46: 433-448.

Yeung, K.Y., Bumgarner, R.E. and Raftery, A.E. (2005) Bayesian Model Averaging: Development
of an improved multi-class, gene selection and classification tool for microarray data. Bioinformat-
ics 21: 2394-2402.

See Also

iterateBMAsurv.train.wrapper, iterateBMAsurv.train.predict.assess, singleGeneCoxph,
predictBicSurv, trainData, trainSurv, trainCens, testData

Examples

library(BMA)
library(iterativeBMAsurv)
data(trainData)
data(trainSurv)
data(trainCens)
data(testData)

Training data should be pre-sorted before beginning

Initialize the matrix for the active bic.surv window with variables 1 through maxNvar
maxNvar <- 25
curr.mat <- trainData[, 1:maxNvar]
nextVar <- maxNvar + 1

Training phase: select relevant genes using nbest=5 for fast computation
ret.bic.surv <- iterateBMAsurv.train (x=trainData, surv.time=trainSurv, cens.vec=trainCens, curr.mat, stopVar=0, nextVar, nbest=5, maxNvar=25)

10 iterateBMAsurv.train.wrapper

Apply bic.surv again using selected genes
ret.bma <- bic.surv (x=ret.bic.surv$curr.mat, surv.t=trainSurv, cens=trainCens, nbest=5, maxCol=(maxNvar+1))

Get the matrix for genes with probne0 > 0
ret.gene.mat <- ret.bic.surv$curr.mat[ret.bma$probne0 > 0]

Get the gene names from ret.gene.mat
selected.genes <- dimnames(ret.gene.mat)[[2]]

Show the posterior probabilities of selected models
ret.bma$postprob

Get the subset of test data with the genes from the last iteration of
'bic.surv'
curr.test.dat <- testData[, selected.genes]

Compute the predicted risk scores for the test samples
y.pred.test <- apply (curr.test.dat, 1, predictBicSurv, postprob.vec=ret.bma$postprob, mle.mat=ret.bma$mle)

iterateBMAsurv.train.wrapper
Iterative Bayesian Model Averaging: training

Description

This function is a wrapper for iterateBMAsurv.train, which repeatedly calls bic.surv
from the BMA package until all variables are exhausted. At the point when this function is called,
the variables in the dataset are assumed to be pre-sorted by rank.

Usage

iterateBMAsurv.train.wrapper (x, surv.time, cens.vec, nbest=10,
maxNvar=25, maxIter=200000, thresProbne0=1, verbose=FALSE, suff.string="")

Arguments

x Data matrix where columns are variables and rows are observations. The vari-
ables (columns) are assumed to be sorted using a univariate measure. In the case
of gene expression data, the columns (variables) represent genes, while the rows
(observations) represent samples.

surv.time Vector of survival times for the patient samples. Survival times are assumed to
be presented in uniform format (e.g., months or days), and the length of this
vector should be equal to the number of rows in x.

cens.vec Vector of censor data for the patient samples. In general, 0 = censored and 1 =
uncensored. The length of this vector should equal the number of rows in x and
the number of elements in surv.time.

nbest A number specifying the number of models of each size returned to bic.surv
in the BMA package. The default is 10.

maxNvar A number indicating the maximum number of variables used in each iteration
of bic.surv from the BMA package. The default is 25.

iterateBMAsurv.train.wrapper 11

maxIter A number indicating the maximum iterations of bic.surv. The default is
200000.

thresProbne0 A number specifying the threshold for the posterior probability that each vari-
able (gene) is non-zero (in percent). Variables (genes) with such posterior proba-
bility less than this threshold are dropped in the iterative application of bic.surv.
The default is 1 percent.

verbose A boolean variable indicating whether or not to print interim information to the
console. The default is FALSE.

suff.string A string for writing to file.

Details

In this wrapper function for iterateBMAsurv.train, the variables are assumed to be sorted,
and bic.surv is called repeatedly until all the variables have been exhausted. In the first ap-
plication of the bic.surv algorithm, the top maxNvar univariate ranked genes are used. After
each application of the bic.surv algorithm, the genes with probne0 < thresProbne0 are
dropped, and the next univariate ordered genes are added to the bic.surv window. The function
iterateBMAsurv.train.predict.assess calls SingleGeneCoxph before calling this
function. Using this function directly, users can experiment with alternative univariate measures.

Value

If maxIter is reached or the iterations stop before all variables are exhausted, -1 is returned. If all
variables are exhausted, two items are returned:

curr.names A vector containing the names of the variables (genes) from the last iteration of
bic.surv

.

obj An object of class bic.surv returned by the last iteration of bic.surv. The
object of class bic.surv is a list consisting of the following components:

namesx the names of the variables in the last iteration of bic.surv.
postprob The posterior probabilities of the models selected.
label Labels identifying the models selected.
bic Values of BIC for the models.
size The number of independent variables in each of the models.
which A logical matrix with one row per model and one column per variable

indicating whether that variable is in the model.
probne0 The posterior probability that each variable is non-zero (in percent).
postmean The posterior mean of each coefficient (from model averaging).
postsd The posterior standard deviation of each coefficient (from model aver-

aging).
condpostmean The posterior mean of each coefficient conditional on the vari-

able being included in the model.
condpostsd The posterior standard deviation of each coefficient conditional on

the variable being included in the model.
mle Matrix with one row per model and one column per variable giving the

maximum likelihood estimate of each coefficient for each model.
se Matrix with one row per model and one column per variable giving the stan-

dard error of each coefficient for each model.

12 iterateBMAsurv.train.wrapper

reduced A logical indicating whether any variables were dropped before model
averaging.

dropped A vector containing the names of those variables dropped before model
averaging.

call The matched call that created the bma.lm object.

Note

The BMA package is required.

References

Annest, A., Yeung, K.Y., Bumgarner, R.E., and Raftery, A.E. (2008). Iterative Bayesian Model
Averaging for Survival Analysis. Manuscript in Progress.

Raftery, A.E. (1995). Bayesian model selection in social research (with Discussion). Sociological
Methodology 1995 (Peter V. Marsden, ed.), pp. 111-196, Cambridge, Mass.: Blackwells.

Volinsky, C., Madigan, D., Raftery, A., and Kronmal, R. (1997) Bayesian Model Averaging in
Proprtional Hazard Models: Assessing the Risk of a Stroke. Applied Statistics 46: 433-448.

Yeung, K.Y., Bumgarner, R.E. and Raftery, A.E. (2005) Bayesian Model Averaging: Development
of an improved multi-class, gene selection and classification tool for microarray data. Bioinformat-
ics 21: 2394-2402.

See Also

iterateBMAsurv.train.predict.assess, iterateBMAsurv.train, predictiveAssessCategory,
singleGeneCoxph, trainData, trainSurv, trainCens

Examples

library (BMA)
library(iterativeBMAsurv)
data(trainData)
data(trainSurv)
data(trainCens)

Training data should be pre-sorted before beginning

Run iterative bic.surv, using nbest=5 for fast computation
ret.list <- iterateBMAsurv.train.wrapper (x=trainData, surv.time=trainSurv, cens.vec=trainCens, nbest=5)

Extract the 'bic.surv' object
ret.bma <- ret.list$obj

Extract the names of the genes from the last iteration of 'bic.surv'
gene.names <- ret.list$curr.names

iterativeBMAsurv-package 13

iterativeBMAsurv-package
The Iterative Bayesian Model Averaging (BMA) algorithm for survival
analysis

Description

The iterative Bayesian Model Averaging (BMA) algorithm for survival analysis is a variable selec-
tion method for applying survival analysis to microarray data..

Details

Package: iterativeBMAsurv
Type: Package
Version: 0.1.0
Date: 2008-3-24
License: GPL version 2 or higher

The function iterateBMAsurv.train selects relevant variables by iteratively applying the
bic.surv function from the BMA package until all variables in the training data are exhausted.
The variables are assumed to be pre-sorted by rank when this function is called. The function
iterateBMAsurv.train.wrapper acts as a wrapper for iterateBMAsurv.train, re-
turning the names of the selected variables and an object of class bic.surv if the iterations ex-
haust all variables in the training set (-1 otherwise). Again, the variables are assumed to be pre-
sorted by rank, so calling this function allows users to experiment with different univariate ranking
measures. The function iterateBMAsurv.train.predict.assess combines the training,
prediction, and assessment phases. It returns a list consisting of the numbers of selected genes and
models from the training phase, the predicted risk scores of the test samples, and the overall survival
analysis statistics indicating the difference between risk groups (p-value, chi-square statistic, and
variance matrix). It also writes a Kaplan-Meier survival analysis curve to file, which serves as a pic-
torial nonparametric estimator of the difference between risk groups. The variables are not assumed
to be pre-sorted by rank when this function is called. iterateBMAsurv.train.predict.assess
calls singleGeneCoxph, which ranks the genes based on their log likelihood scores using
Cox Proportional Hazards Regression. iterateBMAsurv.train.predict.assess calls
iterateBMAsurv.train.wrapper in its training phase, so if Cox Proportional Hazards Re-
gression is the desired univariate ranking algorithm, then calling this function with the training and
testing sets is all that is necessary for a complete survival analysis run. The function crossVal
performs k runs of n-fold cross validation on a training data set, where k and n are specified by
the user. crossVal calls iterateBMAsurv.train.predict.assess during each fold,
so Cox Proportional Hazards Regression is the univariate ranking measure for this function.

Author(s)

Ka Yee Yeung, University of Washington, Seattle, WA, Amalia Annest, University of Washington,
Tacoma, WA

Maintainer: Ka Yee Yeung <kayee@u.washington.edu> Amalia Annest <amanu@u.washington.edu>

14 predictBicSurv

References

Annest, A., Yeung, K.Y., Bumgarner, R.E., and Raftery, A.E. (2008). Iterative Bayesian Model
Averaging for Survival Analysis. Manuscript in Progress.

Raftery, A.E. (1995). Bayesian model selection in social research (with Discussion). Sociological
Methodology 1995 (Peter V. Marsden, ed.), pp. 111-196, Cambridge, Mass.: Blackwells.

Volinsky, C., Madigan, D., Raftery, A., and Kronmal, R. (1997) Bayesian Model Averaging in
Proprtional Hazard Models: Assessing the Risk of a Stroke. Applied Statistics 46: 433-448.

Yeung, K.Y., Bumgarner, R.E. and Raftery, A.E. (2005) Bayesian Model Averaging: Development
of an improved multi-class, gene selection and classification tool for microarray data. Bioinformat-
ics 21: 2394-2402.

See Also

iterateBMAsurv.train, iterateBMAsurv.train.wrapper, iterateBMAsurv.train.predict.assess,
singleGeneCoxph, predictiveAssessCategory, crossVal, trainData, trainSurv,
trainCens, testData, testSurv, testCens

Examples

library (BMA)
library (iterativeBMAsurv)
data(trainData)
data(trainSurv)
data(trainCens)
data(testData)
data(testSurv)
data(testCens)

Use p=10 genes and nbest=5 for fast computation
ret.bma <- iterateBMAsurv.train.predict.assess (train.dat=trainData, test.dat=testData, surv.time.train=trainSurv, surv.time.test=testSurv, cens.vec.train=trainCens, cens.vec.test=testCens, p=10, nbest=5)

Extract the statistics from this survival analysis run
number.genes <- ret.bma$nvar
number.models <- ret.bma$nmodel
evaluate.success <- ret.bma$statistics

Perform 1 run of 2-fold cross validation on the training set, using p=10 genes and nbest=5 for fast computation
cv <- crossVal(exset=trainData, survTime=trainSurv, censor=trainCens, diseaseType="DLBCL", noFolds=2, noRuns=1, p=10, nbest=5)

predictBicSurv Predicted patient risk scores from iterative Bayesian Model Averaging

Description

This function predicts the risk scores for patient samples in the test set.

Usage

predictBicSurv(newdata.vec, postprob.vec, mle.mat)

predictBicSurv 15

Arguments

newdata.vec A vector consisting of the data from a test sample.

postprob.vec A vector consisting of the posterior probability of each BMA selected model.

mle.mat A matrix with one row per model and one column per variable giving the maxi-
mum likelihood estimate of each coefficient for each bic.surv selected model.

Details

The function begins by computing the risk score of each model k in the selected set of models
M. The risk score for a model k = sum (coefficient in model k * corresponding expression level
in newdata.vec). The function then predicts a patient risk score by summing the product of the
posterior probability of model k and the risk score of model k over all models in M. In other words,
predicted patient risk score = sum (postprob model k * risk score model k). This function is called
by iterateBMAsurv.train.predict.assess.

Value

A real number representing the predicted risk score of a given patient sample.

References

Annest, A., Yeung, K.Y., Bumgarner, R.E., and Raftery, A.E. (2008). Iterative Bayesian Model
Averaging for Survival Analysis. Manuscript in Progress.

Raftery, A.E. (1995). Bayesian model selection in social research (with Discussion). Sociological
Methodology 1995 (Peter V. Marsden, ed.), pp. 111-196, Cambridge, Mass.: Blackwells.

Volinsky, C., Madigan, D., Raftery, A., and Kronmal, R. (1997) Bayesian Model Averaging in
Proprtional Hazard Models: Assessing the Risk of a Stroke. Applied Statistics 46: 433-448.

Yeung, K.Y., Bumgarner, R.E. and Raftery, A.E. (2005) Bayesian Model Averaging: Development
of an improved multi-class, gene selection and classification tool for microarray data. Bioinformat-
ics 21: 2394-2402.

See Also

iterateBMAsurv.train.predict.assess, iterateBMAsurv.train.wrapper, predictiveAssessCategory,
trainData, trainSurv, trainCens, testData

Examples

library (BMA)
library (iterativeBMAsurv)
data(trainData)
data(trainSurv)
data(trainCens)
data(testData)

Training phase: select relevant genes. Assume the training data is sorted
and includes the desired number of top-ranked genes.
ret.list <- iterateBMAsurv.train.wrapper (x=trainData, surv.time=trainSurv, cens.vec=trainCens, nbest=5)
ret.bma <- ret.list$obj

Get the selected genes with probne0 > 0
selected.genes <- ret.list$curr.names[ret.bma$probne0 > 0]

16 predictiveAssessCategory

Get the subset of test data with the genes from the last iteration of bic.surv
curr.test.dat <- testData [, selected.genes]

Compute the predicted risk scores for the test samples
y.pred.test <- apply (curr.test.dat, 1, predictBicSurv, postprob.vec=ret.bma$postprob, mle.mat=ret.bma$mle)

predictiveAssessCategory
Risk Groups: assignment of patient test samples

Description

This function assigns a risk group (high-risk or low-risk) to each patient sample in the test set based
on the value of the patient’s predicted risk score. The cutPoint between high-risk and low-risk
is designated by the user.

Usage

predictiveAssessCategory (y.pred.test, y.pred.train, cens.vec.test, cutPoint=50)

Arguments

y.pred.test A vector containing the predicted risk scores of the test samples.

y.pred.train A vector containing the computed risk scores of the training samples.
cens.vec.test

A vector of censor data for the patient samples in the test set. In general, 0 =
censored and 1 = uncensored.

cutPoint Threshold percent for separating high- from low-risk groups. The default is 50.

Details

This function begins by using the computed risk scores of the training set (y.pred.train) to
define a real-number empirical cutoff point between high- and low-risk groups. The cutoff point is
determined by the percentile cutPoint as designated by the user. The predicted risk scores from
the test samples are then matched against this cutoff point to determine whether they belong in the
high-risk or the low-risk category.

Value

A list consisting of 2 components:

assign.risk A 2 x 2 table indicating the number of test samples in each category (high-
risk/censored, high-risk/uncensored, low-risk/censored, low-risk/uncensored).

groups A list of all patient samples in the test set with their corresponding ’High-risk’
or ’Low-risk’ designations.

predictiveAssessCategory 17

References

Annest, A., Yeung, K.Y., Bumgarner, R.E., and Raftery, A.E. (2008). Iterative Bayesian Model
Averaging for Survival Analysis. Manuscript in Progress.

Raftery, A.E. (1995). Bayesian model selection in social research (with Discussion). Sociological
Methodology 1995 (Peter V. Marsden, ed.), pp. 111-196, Cambridge, Mass.: Blackwells.

Volinsky, C., Madigan, D., Raftery, A., and Kronmal, R. (1997) Bayesian Model Averaging in
Proprtional Hazard Models: Assessing the Risk of a Stroke. Applied Statistics 46: 433-448.

Yeung, K.Y., Bumgarner, R.E. and Raftery, A.E. (2005) Bayesian Model Averaging: Development
of an improved multi-class, gene selection and classification tool for microarray data. Bioinformat-
ics 21: 2394-2402.

See Also

iterateBMAsurv.train.predict.assess, predictBicSurv, singleGeneCoxph,
printTopGenes, trainData, trainSurv, trainCens, testData, testSurv, testCens,

Examples

library(BMA)
library(iterativeBMAsurv)
data(trainData)
data(trainSurv)
data(trainCens)
data(testData)
data(testSurv)
data(testCens)

Training should be pre-sorted before beginning

Initialize the matrix for the active bic.surv window with variables 1 through maxNvar
maxNvar <- 25
curr.mat <- trainData[, 1:maxNvar]
nextVar <- maxNvar + 1

Training phase: select relevant genes, using nbest=5 for fast computation
ret.bic.surv <- iterateBMAsurv.train (x=trainData, surv.time=trainSurv, cens.vec=trainCens, curr.mat, stopVar=0, nextVar, maxNvar=25, nbest=5)

Apply bic.surv again using selected genes
ret.bma <- bic.surv (x=ret.bic.surv$curr.mat, surv.t=trainSurv, cens=trainCens, nbest=5, maxCol=(maxNvar+1))

Get the matrix for genes with probne0 > 0
ret.gene.mat <- ret.bic.surv$curr.mat[ret.bma$probne0 > 0]

Get the gene names from ret.gene.mat
selected.genes <- dimnames(ret.gene.mat)[[2]]

Show the posterior probabilities of selected models
ret.bma$postprob

Get the subset of test data with the genes from the last iteration of 'bic.surv'
curr.test.dat <- testData[, selected.genes]

Compute the predicted risk scores for the test samples
y.pred.test <- apply (curr.test.dat, 1, predictBicSurv, postprob.vec=ret.bma$postprob, mle.mat=ret.bma$mle)

18 printTopGenes

Compute the risk scores in the training set
y.pred.train <- apply (trainData[, selected.genes], 1, predictBicSurv, postprob.vec=ret.bma$postprob, mle.mat=ret.bma$mle)

Assign risk categories for test samples
ret.table <- predictiveAssessCategory (y.pred.test, y.pred.train, testCens, cutPoint=50)

Extract risk group vector and risk group table
risk.list <- ret.table$groups
risk.table <- ret.table$assign.risk

Create a survival object from the test set
mySurv.obj <- Surv(testSurv, testCens)

Extract statistics including p-value and chi-square
stats <- survdiff(mySurv.obj ~ unlist(risk.list))

The entire block of code above can be executed simply by calling
'iterateBMAsurv.train.predict.assess'

printTopGenes Write a training set including the top-ranked G variables from a sorted
matrix to file

Description

This function takes a matrix of rank-ordered variables and writes a training set containing the top G
variables in the matrix to file.

Usage

printTopGenes (retMatrix, numGlist=c(10, 30, 50, 100, 500, 1000, ncol(trainData)), trainData, myPrefix="sorted_topCoxphGenes_")

Arguments

retMatrix A three-column matrix where the first column contains the sorted variable names
(the top log-ranked variable appears first), the second column contains the orig-
inal index of the variables, and the third column contains the variable ranking
from 1 to ncol(trainData).

numGlist A list of values for the desired number of top-ranked variables to be written to
file. A separate file will be written for each number G in the list, containing
genes 1:G (default = c(10, 30, 50, 100, 500, 1000, ncol(trainData))).

trainData Data matrix where columns are variables and rows are observations. In the case
of gene expression data, the columns (variables) represent genes, while the rows
(observations) represent patient samples.

myPrefix A string prefix for the filename (default = ’sorted_topCoxphGenes_’).

Details

This function is called by iterateBMAsurv.train.predict.assess. It is meant to be
used in conjunction with singleGeneCoxph, as the retMatrix argument is returned by singleGeneCoxph.

singleGeneCoxph 19

Value

A file or files consisting of the training data sorted in descending order by the top-ranked G variables
(one file for each G in numGList).

References

Annest, A., Yeung, K.Y., Bumgarner, R.E., and Raftery, A.E. (2008). Iterative Bayesian Model
Averaging for Survival Analysis. Manuscript in Progress.

Raftery, A.E. (1995). Bayesian model selection in social research (with Discussion). Sociological
Methodology 1995 (Peter V. Marsden, ed.), pp. 111-196, Cambridge, Mass.: Blackwells.

Volinsky, C., Madigan, D., Raftery, A., and Kronmal, R. (1997) Bayesian Model Averaging in
Proprtional Hazard Models: Assessing the Risk of a Stroke. Applied Statistics 46: 433-448.

Yeung, K.Y., Bumgarner, R.E. and Raftery, A.E. (2005) Bayesian Model Averaging: Development
of an improved multi-class, gene selection and classification tool for microarray data. Bioinformat-
ics 21: 2394-2402.

See Also

iterateBMAsurv.train.predict.assess, singleGeneCoxph, trainData, trainSurv,
trainCens,

Examples

library(BMA)
library(iterativeBMAsurv)
data(trainData)
data(trainSurv)
data(trainCens)

Start by ranking and sorting the genes; in this case we use the Cox Proportional Hazards Model
sorted.genes <- singleGeneCoxph(trainData, trainSurv, trainCens)

Write top 100 genes to file
sorted.top.genes <- printTopGenes(retMatrix=sorted.genes, 100, trainData)

The file, 'sorted_topCoxphGenes_100', is now in the working R directory.

singleGeneCoxph Univariate Cox Proportional Hazards Model for selecting top log-
ranked predicitve variables

Description

This is a univariate technique to rank variables by their predictive relevance for use in survival
analysis on microarray data. The log likelihood is computed for each indiviual variable, where a
larger log likelihood value indicates a higher rank.

Usage

singleGeneCoxph(trainData, survData, censoredData)

20 singleGeneCoxph

Arguments

trainData Data matrix where columns are variables and rows are observations. In the case
of gene expression data, the columns (variables) represent genes, while the rows
(observations) represent patient samples.

survData Vector of survival times for the patient samples. Survival times are assumed to
be presented in uniform format (e.g., months or days), and the length of this
vector should be equal to the number of rows in trainData.

censoredData Vector of censor data for the patient samples. In general, 0 = censored and 1
= uncensored. The length of this vector should equal the number of rows in
trainData and the number of elements in survData.

Details

This function is called by iterateBMAsurv.train.predict.assess.

Value

This function returns a sorted three-column matrix of the training data variables. The first column
gives the variable names with the top log-ranked variable appearing first. The second column gives
the original indexes of the variables, and the third column gives the rank of the variables from 1
through ncol(trainData). The matrix is also written to file in the working R directory under the
filename ’sorted_loglik.txt’.

References

Annest, A., Yeung, K.Y., Bumgarner, R.E., and Raftery, A.E. (2008). Iterative Bayesian Model
Averaging for Survival Analysis. Manuscript in Progress.

Cox, D. (1972). Regression Models and Life Tables. Journal of the Royal Statistical Society Series
B 34: 187-220.

Raftery, A.E. (1995). Bayesian model selection in social research (with Discussion). Sociological
Methodology 1995 (Peter V. Marsden, ed.), pp. 111-196, Cambridge, Mass.: Blackwells.

Volinsky, C., Madigan, D., Raftery, A., and Kronmal, R. (1997) Bayesian Model Averaging in
Proprtional Hazard Models: Assessing the Risk of a Stroke. Applied Statistics 46: 433-448.

Yeung, K.Y., Bumgarner, R.E. and Raftery, A.E. (2005) Bayesian Model Averaging: Development
of an improved multi-class, gene selection and classification tool for microarray data. Bioinformat-
ics 21: 2394-2402.

See Also

iterateBMAsurv.train.predict.assess, printTopGenes, trainData, trainSurv,
trainCens

Examples

library(BMA)
library(iterativeBMAsurv)
data(trainData)
data(trainSurv)
data(trainCens)

sorted.genes <- singleGeneCoxph(trainData, trainSurv, trainCens)

testCens 21

Write top 100 genes to file
sorted.top.genes <- printTopGenes(retMatrix=sorted.genes, 100, trainData)

The file, 'sorted_topCoxphGenes_100', is now in the working R directory.

testCens Sample Test Data for the Iterative BMA Algorithm for Survival Analy-
sis

Description

This is an diffuse large B-cell lymphoma (DLBCL) dataset from Rosenwald et al. (2002). This is a
vector of censor information for 36 test samples. In this vector, 0 = censored and 1 = uncensored.

Usage

data(testCens)

Format

The vector is called testCens.

Source

Full dataset: http://llmpp.nih.gov/DLBCL/.

References

Rosenwald, A., Wright, G., Wing, C., Connors, J., Campo, E. et al. (2002). The Use of Molecular
Profiling to Predict Survival After Chemotherapy for Diffuse Large-B-Cell Lymphoma. The New
England Journal of Medicine, 346(25), 1937-1947.

testData Sample Test Data for the Iterative BMA Algorithm for Survival Analy-
sis

Description

This is an adapted diffuse large B-cell lymphoma (DLBCL) dataset from Rosenwald et al. (2002).
This data matrix consists of the expression levels from 36 DLBCL samples (rows), and 100 top
univariate genes (columns). This dataset is used as a sample test set in our examples.

Usage

data(trainData)

Format

The data matrix is called testData. Each entry in the matrix represents the expression level of
one gene from a DLBCL sample.

http://llmpp.nih.gov/DLBCL/

22 testSurv

Details

We started with the full expression data from Rosenwald et al. (2002), which is available along with
corresponding patient information at their supplemental website http://llmpp.nih.gov/
DLBCL/. We selected a subset of the 80 test samples, and then performed Cox Proportional Hazards
Regression to obtain the 100 genes with the highest log likelihood. The filtered dataset consists of
36 test samples, and it is available at our website http://expression.washington.edu/
ibmasurv/protected.

Source

Full dataset: http://llmpp.nih.gov/DLBCL/.

References

Rosenwald, A., Wright, G., Wing, C., Connors, J., Campo, E. et al. (2002). The Use of Molecular
Profiling to Predict Survival After Chemotherapy for Diffuse Large-B-Cell Lymphoma. The New
England Journal of Medicine, 346(25), 1937-1947.

testSurv Sample Test Data for the Iterative BMA Algorithm for Survival Analy-
sis

Description

This is an diffuse large B-cell lymphoma (DLBCL) dataset from Rosenwald et al. (2002). This is a
vector of survival times for 36 test samples. All survival times are given in years.

Usage

data(testSurv)

Format

The vector is called testSurv.

Source

Full dataset: http://llmpp.nih.gov/DLBCL/.

References

Rosenwald, A., Wright, G., Wing, C., Connors, J., Campo, E. et al. (2002). The Use of Molecular
Profiling to Predict Survival After Chemotherapy for Diffuse Large-B-Cell Lymphoma. The New
England Journal of Medicine, 346(25), 1937-1947.

http://llmpp.nih.gov/DLBCL/
http://llmpp.nih.gov/DLBCL/
http://expression.washington.edu/ibmasurv/protected
http://expression.washington.edu/ibmasurv/protected
http://llmpp.nih.gov/DLBCL/
http://llmpp.nih.gov/DLBCL/

trainCens 23

trainCens Sample Training Data for the Iterative BMA Algorithm for Survival
Analysis

Description

This is an diffuse large B-cell lymphoma (DLBCL) dataset from Rosenwald et al. (2002). This
is a vector of censor information for 65 training samples. In this vector, 0 = censored and 1 =
uncensored.

Usage

data(trainCens)

Format

The vector is called trainCens.

Source

Full dataset: http://llmpp.nih.gov/DLBCL/.

References

Rosenwald, A., Wright, G., Wing, C., Connors, J., Campo, E. et al. (2002). The Use of Molecular
Profiling to Predict Survival After Chemotherapy for Diffuse Large-B-Cell Lymphoma. The New
England Journal of Medicine, 346(25), 1937-1947.

trainData Sample Training Data for the Iterative BMA Algorithm for Survival
Analysis

Description

This is an adapted diffuse large B-cell lymphoma (DLBCL) dataset from Rosenwald et al. (2002).
This data matrix consists of the expression levels from 65 DLBCL samples (rows), and 100 top
univariate genes (columns). This dataset is used as a sample training set in our examples.

Usage

data(trainData)

Format

The data matrix is called trainData. Each entry in the matrix represents the expression level of
one gene from a DLBCL sample.

http://llmpp.nih.gov/DLBCL/

24 trainSurv

Details

We started with the full expression data from Rosenwald et al. (2002), which is available along
with corresponding patient information at their supplemental website http://llmpp.nih.
gov/DLBCL/. We selected a subset of the 160 training samples, and then performed Cox Pro-
portional Hazards Regression to obtain the 100 genes with the highest log likelihood. The filtered
dataset consists of 65 training samples, and it is available at our website http://expression.
washington.edu/ibmasurv/protected.

Source

Full dataset: http://llmpp.nih.gov/DLBCL/.

References

Rosenwald, A., Wright, G., Wing, C., Connors, J., Campo, E. et al. (2002). The Use of Molecular
Profiling to Predict Survival After Chemotherapy for Diffuse Large-B-Cell Lymphoma. The New
England Journal of Medicine, 346(25), 1937-1947.

trainSurv Sample Training Data for the Iterative BMA Algorithm for Survival
Analysis

Description

This is an diffuse large B-cell lymphoma (DLBCL) dataset from Rosenwald et al. (2002). This is a
vector of survival times for 65 training samples. All survival times are given in years.

Usage

data(trainSurv)

Format

The vector is called trainSurv.

Source

Full dataset: http://llmpp.nih.gov/DLBCL/.

References

Rosenwald, A., Wright, G., Wing, C., Connors, J., Campo, E. et al. (2002). The Use of Molecular
Profiling to Predict Survival After Chemotherapy for Diffuse Large-B-Cell Lymphoma. The New
England Journal of Medicine, 346(25), 1937-1947.

http://llmpp.nih.gov/DLBCL/
http://llmpp.nih.gov/DLBCL/
http://expression.washington.edu/ibmasurv/protected
http://expression.washington.edu/ibmasurv/protected
http://llmpp.nih.gov/DLBCL/
http://llmpp.nih.gov/DLBCL/

Index

∗Topic datasets
testCens, 21
testData, 21
testSurv, 22
trainCens, 23
trainData, 23
trainSurv, 24

∗Topic multivariate
iterateBMAsurv.train, 7
iterateBMAsurv.train.predict.assess,

4
iterateBMAsurv.train.wrapper,

10
iterativeBMAsurv-package, 13

∗Topic print
printTopGenes, 18

∗Topic regression
singleGeneCoxph, 19

∗Topic survival
crossVal, 1
imageplot.iterate.bma.surv, 3
iterateBMAsurv.train, 7
iterateBMAsurv.train.predict.assess,

4
iterateBMAsurv.train.wrapper,

10
iterativeBMAsurv-package, 13
predictBicSurv, 14
predictiveAssessCategory, 16

∗Topic univar
printTopGenes, 18
singleGeneCoxph, 19

crossVal, 1, 14

imageplot.iterate.bma.surv, 3
iterateBMAsurv.train, 3, 6, 7, 12, 14
iterateBMAsurv.train.predict.assess,

3, 4, 4, 9, 12, 14, 15, 17, 19, 20
iterateBMAsurv.train.wrapper, 3,

4, 6, 9, 10, 14, 15
iterativeBMAsurv

(iterativeBMAsurv-package),
13

iterativeBMAsurv-package, 13

predictBicSurv, 3, 6, 9, 14, 17
predictiveAssessCategory, 3, 6, 12,

14, 15, 16
printTopGenes, 17, 18, 20

singleGeneCoxph, 3, 6, 9, 12, 14, 17, 19,
19

testCens, 6, 14, 17, 21
testData, 6, 9, 14, 15, 17, 21
testSurv, 6, 14, 17, 22
trainCens, 3, 4, 6, 9, 12, 14, 15, 17, 19, 20,

23
trainData, 3, 4, 6, 9, 12, 14, 15, 17, 19, 20,

23
trainSurv, 3, 4, 6, 9, 12, 14, 15, 17, 19, 20,

24

25

	crossVal
	imageplot.iterate.bma.surv
	iterateBMAsurv.train.predict.assess
	iterateBMAsurv.train
	iterateBMAsurv.train.wrapper
	iterativeBMAsurv-package
	predictBicSurv
	predictiveAssessCategory
	printTopGenes
	singleGeneCoxph
	testCens
	testData
	testSurv
	trainCens
	trainData
	trainSurv
	Index

