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baySeq-classes baySeq - classes

Description

The countData class defines a class for summarising count data and estiablishing prior parame-
ters on distributions defined upon the count data. The countDataPosterior extends this class
by including posterior likelihood estimates on the data. Only countData objects should be es-
tablished by the user directly. countDataPosterior objects are established by the functions
described in getLikelihoods.

Slots

Objects of these class should contain the following list components:

data: Count data (matrix).
libsizes: Vector of library size for each sample.
groups: Group (model) structure to test on the data (list).
annotation: Annotation data for each count (data.frame).
priors: Prior parameter information.
posteriors: Estimated posterior likelihoods for each group (matrix). ’countDataPosterior’ class only.
estProps: Estimated proportion of tags belonging to each group (numeric). ’countDataPosterior’ class only.

Methods

Methods ’dim’, ’[’ and ’show’ have been defined for these classes.

Author(s)

Thomas J. Hardcastle

Examples

library(baySeq)

data(simCount)
data(libsizes)
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groups <- list(c(1,1,1,1,1,1,1,1,1,1), c(1,1,1,1,1,2,2,2,2,2))

#create new 'countData' object
CD <- new("countData", data = simCount, libsizes = libsizes, groups = groups)

CD[1:10,]
dim(CD)

baySeq-package Empirical Bayesian analysis of patterns of differential expression in
count data.

Description

This package is intended to identify differential expression in high-throughput ’count’ data, such
as that derived from next-generation sequencing machines. We achieve this by empirical bayesian
methods, first bootstrapping to estimate prior parameters from the data and then assessing posterior
likelihoods of the models proposed.

Details

Package: baySeq
Type: Package
Version: 1.0
Date: 2009-16-05
License: GPL-3
LazyLoad: yes

To use the package, construct a countData object and use the functions documented in getPriors
to empirically determine priors on the data. Then use the functions documented in getLikelihoods
to establish posterior likelihoods for the models proposed. A few convenience functions, getTPs
and topCounts are also included.

The package (optionally) makes use of the ’snow’ package for parallelisation of computationally
intensive functions. This is highly recommended for large data sets.

See the vignette for more details.

Author(s)

Thomas J. Hardcastle

Maintainer: Thomas J. Hardcastle <tjh48@cam.ac.uk>

References

Hardcastle T.J., and Kelly, K (2009). Empirical Bayesian methods for differential expression in
count data. In submission.
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Examples

# See vignette for more examples.

# load test data
data(simCount)
data(libsizes)

# define hypotheses on data
groups <- list(c(1,1,1,1,1,1,1,1,1,1), c(1,1,1,1,1,2,2,2,2,2))

# construct 'countData' object
CD <- new("countData", data = simCount, libsizes = libsizes, groups = groups)
CD[1:10,]

# estimate prior distributions on 'countData' object using Poisson
# method. Other methods are available - see getPriors
CDP.Poi <- getPriors.Pois(CD, samplesize = 20, iterations = 1000, takemean = TRUE)

# estimate posterior likelihoods for each row of data belonging to each hypothesis
CDPost.Poi <- getLikelihoods.Pois(CDP.Poi, prs = c(0.5, 0.5), estimatePriors = TRUE, cl = NULL)

# display the rows of data showing greatest association with the second
# hypothesis (differential expression)
topCounts(CDPost.Poi, group = 2, number = 10)

# find true positive selection rate
getTPs(CDPost.Poi, group = 2, TPs = 1:100)[1:100]

factCount Simulated data for testing the baySeq package methods; simulated
counts from a factorial design differential expression analysis

Description

This data set is a matrix of simulated counts from a simple pairwise expression analysis. It is
simulated according to a negative binomial distribution with varying parameters for each row. The
first hundred rows of the data are truly differentially expressed between the first four samples and
the second four samples. The second hundred rows of the data are truly differentially expressed
between samples 1,2,5,6 and samples 3,4,7,8.

Usage

factCount

Format

A matrix of which each of the eight columns represents a sample, and each row some discrete data
(acquired by sequencing).

Source

Simulation.
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References

Hardcastle T.J., and Kelly, K (2009). Empirical Bayesian methods for differential expression in
count data. In submission.

See Also

factlibsizes

factlibsizes Simulated data for testing the baySeq package methods; simulated li-
brary sizes from a pairwise differential expression analysis

Description

This data set is a vector of library sizes for the factCount matrix.

Usage

factlibsizes

Format

A vector containing library sizes for the ten libraries whose data is given in the factCountmatrix.

Source

Simulation.

References

Hardcastle T.J., and Kelly, K (2009). Empirical Bayesian methods for differential expression in
count data. In submission.

See Also

factCount

getLikelihoods Finds posterior likelihoods for each count as belonging to some hy-
pothesis.

Description

These functions calculate posterior probabilities for each of the ’counts’ in the countDP object
belonging to each of the groups specified. The choice of function depends on the prior belief about
the underlying distribution of the data. It is essential that the method used for calculating priors
matches the method used for calculating the posterior probabilites.

For a comparison of the methods, see Hardcastle & Kelly, 2009.
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Usage

getLikelihoods.Dirichlet(cDP, prs, estimatePriors = TRUE, subset = NULL, cl)
getLikelihoods.Pois(cDP, prs, estimatePriors = TRUE, subset = NULL, distpriors = FALSE, cl)
getLikelihoods.NBboot(cDP, prs, estimatePriors = TRUE, subset = NULL,
bootStraps = 2, conv = 1e-4, cl)

Arguments

cDP An object of type countData.

prs (Initial) prior probabilities for each of the groups in the ’countDP’ object.
estimatePriors

Should the prior probabilities on each of the groups be estimated by bootstrap
from the data? Defaults to TRUE.

subset Numeric vector giving the subset of counts for which posterior likelihoods should
be estimated.

distpriors Should the Poisson method use an empirically derived distribution on the prior
parameters of the Poisson distribution, or use the mean of the maximum likeli-
hood estimates (default).

bootStraps How many iterations of bootstrapping should be used in the (re)estimation of
priors in the negative binomial method.

conv If not null, bootstrapping iterations will cease if the mean squared difference
between posterior likelihoods of consecutive bootstraps drops below this value.

cl A SNOW cluster object.

Details

These functions estimate, under the assumption of various distributions, the (log) posterior likeli-
hoods that each count belongs to a group defined by the @group slot of the countData object.
The posterior likelihoods are stored on the natural log scale in the @posteriors slot of the
countDataPosterior object generated by this function. This is because the posterior likeli-
hoods are calculated in this form, and ordering of the counts is better done on these log-likelihoods
than on the likelihoods.

The Dirichlet and Poisson methods produce almost identical results in simulation. The Negative
Binomial method produces results with much lower false discovery rates, but takes considerably
longer to run. The quality of the results of the Negative Binomial is further improved by increasing
the amount of bootstrapping. However, this further increases the run time.

Filtering the data may be extremely advantageous in reducing run time. This can be done by passing
a numeric vector to ’subset’ defining a subset of the data for which posterior likelihoods are required.

See Hardcastle & Kelly (2009) for a full comparison of the methods.

A ’cluster’ object is strongly recommended in order to parallelise the estimation of posterior likeli-
hoods, particularly for the negative binomial method. However, passing NULL to the cl variable
will allow the functions to run in non-parallel mode.

Value

A countDataPosterior object.

Author(s)

Thomas J. Hardcastle
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References

Hardcastle T.J., and Kelly, K (2009). Empirical Bayesian methods for differential expression in
count data. In submission.

See Also

countData, getPriors, topCounts, getTPs

Examples

library(baySeq)

# See vignette for more examples.

# Create a {countData} object and estimate priors for the
# Poisson methods.
data(simCount)
data(libsizes)
groups <- list(c(1,1,1,1,1,1,1,1,1,1), c(1,1,1,1,1,2,2,2,2,2))
CD <- new("countData", data = simCount, libsizes = libsizes, groups = groups)
CDP.Poi <- getPriors.Pois(CD, samplesize = 20, iterations = 1000,
takemean = TRUE)

# Get likelihoods for data with Poisson method
CDPost.Poi <- getLikelihoods.Pois(CDP.Poi, prs = c(0.5, 0.5),
estimatePriors = TRUE, cl = NULL)

## Not run:

# Alternatively, get priors for negative binomial method
CDP.NBML <- getPriors.NB(CD, samplesize = 10^5, estimation = "ML", cl = NULL)

# Get likelihoods for data with negative binomial method with bootstrapping

CDPost.NBML <- getLikelihoods.NBboot(CDP.NBML, pres = c(0.5, 0.5),
estimatePriors = TRUE, bootStraps = 2, cl = NULL)

# Alternatively, if we have the 'snow' package installed we
# can parallelise the functions. This will usually (not always) offer
# significant performance gain.

library(snow)
cl <- makeCluster(4, 'SOCK')

CDP.NBML <- getPriors.NB(CD, samplesize = 10^5, estimation = "ML", cl = cl)
CDPost.NBML <- getLikelihoods.NBboot(CDP.NBML, pres = c(0.5, 0.5),
estimatePriors = TRUE, bootStraps = 2, cl = cl)

## End(Not run)
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getPosteriors An internal function in the baySeq package for calculating posterior
likelihoods given likelihoods of the data.

Description

For likelihoods of the data given a set of models, this function calculates the posterior likelihoods
of the models given the data. An internal function of baySeq, which should not in general be called
by the user.

Usage

getPosteriors(ps, prs, estimatePriors = FALSE, maxit = 100, accuracy = 1e-5)

Arguments

ps A matrix containing likelihoods of the data for each count (rows) under each
model (columns).

prs (Initial) prior probabilities for each of the models.
estimatePriors

Should the prior probabilities on each of the groups be estimated by bootstrap
from the data? Defaults to FALSE.

maxit What is the maximum number of iterations that should be tried if we are boot-
strapping prior probabilities from the data?

accuracy How small should the difference in estimated priors be before we stop bootstrap-
ping.

Details

An internal function, that will not in general be called by the user. It takes the log-likelihoods of the
data given the models being tested and returns the posterior likelihoods of the models. An initial
estimate for the prior likelihoods of the models is required but can be iteratively re-estimated from
the data by taking the mean of the posterior likelihoods across all data.

Value

A list containing posteriors: estimated posterior likelihoods of the model for each count (log-scale)
priors: estimated (or given) prior probabilities of the model

Author(s)

Thomas J. Hardcastle

References

Hardcastle T.J., and Kelly, K (2009). Empirical Bayesian methods for differential expression in
count data. In submission.

See Also

getLikelihoods
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Examples

# Simulate some log-likeihoods of data given models (each model
# describes one column of the 'ps' object).
ps <- log(rbind(

cbind(runif(10000, 0, 0.1), runif(10000, 0.3, 0.9)),
cbind(runif(10000, 0.4, 0.9), runif(1000, 0, 0.2))))

# get posterior log-likelihoods of model, estimating prior likelihoods
# of each model from the data.

pps <- getPosteriors(ps, prs <- c(0.5, 0.5), estimatePriors = TRUE)

pps$priors

pps$posteriors[,1:10]

getPriors Estimates prior parameters for the underlying distributions of ’count’
data.

Description

These functions estimate, via maximum likelihood methods, the parameters of the underlying dis-
tributions for the different methods of describing the ’count’ data.

Usage

getPriors.Dirichlet(cD, samplesize = 10^5, iterations = 10^3)
getPriors.Pois(cD, samplesize = 10^5, iterations = 10^3, takemean = TRUE)
getPriors.NB(cD, samplesize = 10^5, estimation = "ML", cl)

Arguments

cD A countData object.

samplesize How large a sample should be taken in estimating the priors?

iterations Over how many iterations should we take samples and re-estimate the priors?

takemean If TRUE (recommended), we take the mean of the estimated priors to define a
gamma distribution. If FALSE, we use all estimated priors to define an empirical
distribtion on the parameters of the gamma distribution.

estimation Defaults to "ML", indicating maximum likelihood estimation of priors. Cur-
rently, the only other possibility is "QL", a quasi-likelihood method.

cl A SNOW cluster object.



getPriors 9

Details

These functions empirically estimate prior parameters for different distributions used in estimating
posterior likelihoods of each count belonging to a particular group. The choice of which function
to use for estimating the prior parameters will depend on the choice of which method is being used
to estimate the posterior likeihoods (see getLikelihoods).

A ’cluster’ object is recommended in order to estimate the priors for the negative binomial distribu-
tion. Passing NULL to this variable will cause the function to run in non-parallel mode.

Value

A countData object.

Author(s)

Thomas J. Hardcastle

References

Hardcastle T.J., and Kelly, K (2009). Empirical Bayesian methods for differential expression in
count data. In submission.

See Also

countData, getLikelihoods

Examples

# See vignette for more examples.

# Create a {countData} object.
data(simCount)
data(libsizes)
groups <- list(c(1,1,1,1,1,1,1,1,1,1), c(1,1,1,1,1,2,2,2,2,2))
CD <- new("countData", data = simCount, libsizes = libsizes, groups =
groups)

# Estimate priors using Poisson method.
CDP.Poi <- getPriors.Pois(CD, samplesize = 20, iterations = 1000,
takemean = TRUE)

## Not run:

# Alternatively, get priors for negative binomial method

CDP.NBML <- getPriors.NB(CD, samplesize = 10^5, estimation = "ML", cl = NULL)

# Alternatively, if we have the 'snow' package installed we
# can parallelise the prior estimation (for the negative binomial
# methods only). This will usually (not always) offer
# significant performance gain.

library(snow)
cl <- makeCluster(4, 'SOCK')

CDP.NBML <- getPriors.NB(CD, samplesize = 10^5, estimation = "ML", cl = cl)
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## End(Not run)

getTPs Gets the number of true positives in the top n counts selected by ranked
posterior likelihoods

Description

If the true positives are known, this function will return a vector, the ith member of which gives the
number of true positives identified if the top i counts, based on estimated posterior likelihoods, are
chosen.

Usage

getTPs(cDP, group, decreasing = TRUE, TPs)

Arguments

cDP countDataPosterior object, containing posterior likelihoods for each group.

group Which group should we give the counts for?

decreasing Ordering on posterior likelihoods.

TPs Known true positives.

Details

In the rare (or simulated) cases where the true positives are known, this function will calculate the
number of true positives selected at any cutoff.

Value

A vector, the ith member of which gives the number of true positives identified if the top i counts
are chosen.

Author(s)

Thomas J. Hardcastle

See Also

countDataPosterior
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Examples

# Create a {countData} object and estimate priors for the Poisson methods.
data(simCount)
data(libsizes)
groups <- list(c(1,1,1,1,1,1,1,1,1,1), c(1,1,1,1,1,2,2,2,2,2))
CD <- new("countData", data = simCount, libsizes = libsizes, groups = groups)
CDP.Poi <- getPriors.Pois(CD, samplesize = 20, iterations = 1000,
takemean = TRUE)

# Get likelihoods for data with Poisson method
CDPost.Poi <- getLikelihoods.Pois(CDP.Poi, prs = c(0.5, 0.5),
estimatePriors = TRUE, cl = NULL)

# If the first hundred rows in the 'simCount' matrix are known to be
# truly differentially expressed (the second hypothesis defined in the
# 'groups' list) then we find the number of true positives for the top n
# genes selected as the nth member of

getTPs(CDPost.Poi, group = 2, decreasing = TRUE, TPs = 1:100)

libsizes Simulated data for testing the baySeq package methods; simulated li-
brary sizes from a pairwise differential expression analysis

Description

This data set is a vector of library sizes for the simCount matrix.

Usage

libsizes

Format

A vector containing library sizes for the ten libraries whose data is given in the simCount matrix.

Source

Simulation.

References

Hardcastle T.J., and Kelly, K (2009). Empirical Bayesian methods for differential expression in
count data. In submission.

See Also

simCount
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logsum An internal function for the baySeq package that calculates the log of
the sum of the exponential of two variables

Description

If x = log(y), where y is a vector, this function returns log(sum(y)) given x.

Usage

logsum(x)

Arguments

x Vector of log-values.

Value

Numeric.

Author(s)

Thomas J. Hardcastle

See Also

countDataPosterior

Examples

x <- logsum(log(c(3, 4, 5)))
exp(x) == sum(c(3,4,5))

PDgivenr Functions for estimating the likelihood of the data given an equiva-
lence relation for some assumption on the distribution.

Description

These functions aim to calculate the likelihood of the data given an equivalence relation R for some
assumed distribution. They are internal functions to baySeq and should not be called by the user.

Usage

PDgivenr.Dirichlet(us, prior, group)
PDgivenr.Pois(us, ns, prior, group)
PDgivenr.PoisIndie(us, ns, prior, group)
PDgivenr.NBIndie(us, ns, prior, group, priorWeights)
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Arguments

us Number of counts.

ns Library size.

prior Prior parameters on distribution.

group Hypothesised grouping of the data based on equivalence relation.

priorWeights Weightings for each prior to be used in numerical integration.

Details

Not intended to be called by the user.

Value

Numeric value giving log-likelihood of data given distribution and grouping.

Author(s)

Thomas J. Hardcastle

References

Hardcastle T.J., and Kelly, K (2009). Empirical Bayesian methods for differential expression in
count data. In submission.

Examples

data(simCount)
data(libsizes)
groups <- list(c(1,1,1,1,1,1,1,1,1,1), c(1,1,1,1,1,2,2,2,2,2))
CD <- new("countData", data = simCount, libsizes = libsizes, groups =
groups)

# Estimate priors using Poisson method.
CDP.Poi <- getPriors.Pois(CD, samplesize = 20, iterations = 1000,
takemean = TRUE)

# Calculate likelihood of first row of data given the first hypothesis
# defined by the 'groups' slot of CDP.Poi by Poisson methods

PDgivenr.Pois(us = CDP.Poi@data[1,], ns = CDP.Poi@libsizes, prior =
CDP.Poi@priors$priors[[1]], group = CDP.Poi@groups[[1]])

# Calculate likelihood of each row of data given the first hypothesis
# defined by the 'groups' slot of CDP.Poi by Poisson methods

apply(CDP.Poi@data, 1, PDgivenr.Pois, ns = CDP.Poi@libsizes, prior =
CDP.Poi@priors$priors[[1]], group = CDP.Poi@groups[[1]])
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simCount Simulated data for testing the baySeq package methods; simulated
counts from a pairwise differential expression analysis

Description

This data set is a matrix of simulated counts from a simple pairwise expression analysis. It is
simulated according to a negative binomial distribution with varying parameters for each row. The
first hundred rows of the data are truly differentially expressed, the remainder have no differential
expression. Library sizes for these data sets are given in libsizes.

Usage

simCount

Format

A matrix of which each of the ten columns represents a sample, and each row some discrete data
(acquired by sequencing).

Source

Simulation.

References

Hardcastle T.J., and Kelly, K (2009). Empirical Bayesian methods for differential expression in
count data. In submission.

See Also

libsizes

topCounts Get the top counts corresponding to some group from a ’countData-
Posterior’ object

Description

Takes posterior likelihoods and returns the counts with highest (or lowest) likelihood of association
with a given group.

Usage

topCounts(cDP, group, decreasing = TRUE, number = 10)
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Arguments

cDP countDataPosterior object, containing posterior likelihoods for each group.

group Which group should we give the counts for?

decreasing Ordering on posterior likelihoods.

number How many results should be returned?

Value

A dataframe of the top counts associated with some model (group), described by annotation drawn
from the ’@annotation’ slot of the ’cDP’ object and the raw data from the ’@data’ slot, together
with the posterior log-likelihoods.

Author(s)

Thomas J. Hardcastle

See Also

countDataPosterior

Examples

data(simCount)
data(libsizes)

# Make 'countData' object and calculate posterior likelihoods for each
# item belonging to each hypothesis.
groups <- list(c(1,1,1,1,1,1,1,1,1,1), c(1,1,1,1,1,2,2,2,2,2))
CD <- new("countData", data = simCount, libsizes = libsizes, groups = groups)
CDP.Poi <- getPriors.Pois(CD, samplesize = 20, iterations = 1000, takemean = TRUE)
CDPost.Poi <- getLikelihoods.Pois(CDP.Poi, prs = c(0.5, 0.5), estimatePriors = TRUE, cl = NULL)

# Report the top ten rows of data that have highest (log) likelihood of belonging to
# group 2 of the data (i.e., differentially expressed)

topCounts(CDPost.Poi, group = 2, number = 10)
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