
affy
April 19, 2010

AffyBatch-class Class AffyBatch

Description

This is a class representation for Affymetrix GeneChip probe level data. The main component are
the intensities from multiple arrays of the same CDF type. It extends eSet.

Objects from the Class

Objects can be created using the function read.affybatch or the wrapper ReadAffy.

Slots

cdfName: Object of class character representing the name of CDF file associated with the
arrays in the AffyBatch.

nrow: Object of class integer representing the physical number of rows in the arrays.

ncol: Object of class integer representing the physical number of columns in the arrays.

assayData: Object of class AssayData containing the raw data, which will be at minimum
a matrix of intensity values. This slot can also hold a matrix of standard errors if the ’sd’
argument is set to TRUE in the call to ReadAffy.

phenoData: Object of class AnnotatedDataFrame containing phenotypic data for the sam-
ples.

annotation A character string identifying the annotation that may be used for the ExpressionSet
instance.

protocolData: Object of class AnnotatedDataFrame containing protocol data for the sam-
ples.

featureData Object of class AnnotatedDataFrame containing feature-level (e.g., probeset-
level) information.

experimentData: Object of class "MIAME" containing experiment-level information.

.__classVersion__: Object of class Versions describing the R and Biobase version num-
ber used to create the instance. Intended for developer use.

Extends

Class "eSet", directly.

1

2 AffyBatch-class

Methods

cdfName signature(object = "AffyBatch"): obtains the cdfName slot.

pm<- signature(object = "AffyBatch"): replaces the perfect match intensities.

pm signature(object = "AffyBatch"): extracts the pm intensities.

mm<- signature(object = "AffyBatch"): replaces the mismatch intensities.

mm signature(object = "AffyBatch"): extracts the mm intensities.

probes signature(object = "AffyBatch", which): extract the perfect match or mis-
match probe intensities. Uses which can be "pm" and "mm".

exprs signature(object = "AffyBatch"): extracts the expression matrix.

exprs<- signature(object = "AffyBatch", value = "matrix"): replaces the ex-
pression matrix.

se.exprs signature(object = "AffyBatch"): extracts the matrix of standard errors of
expression values, if available.

se.exprs<- signature(object = "AffyBatch", value = "matrix"): replaces the
matrix of standard errors of expression values.

[<- signature(x = "AffyBatch"): replaces subsets.

[signature(x = "AffyBatch"): subsets by array.

boxplot signature(x = "AffyBatch"): creates a boxplots of log base 2 intensities (pm,
mm or both). Defaults to both.

hist signature(x = "AffyBatch"): creates a plot showing all the histograms of the pm,mm
or both data. See plotDensity.

computeExprSet signature(x = "AffyBatch", summary.method = "character"):
For each probe set computes an expression value using summary.method.

featureNames signature(object = "AffyBatch"): return the probe set names also re-
ferred to as the Affymetrix IDs. Notice that one can not assign featureNames. You must
do this by changing the cdfenvs.

geneNames signature(object="AffyBatch’"): deprecated, use featureNames.

getCdfInfo signature(object = "AffyBatch"): retrieve the environment that defines
the location of probes by probe set.

image signature(x = "AffyBatch"): creates an image for each sample.

indexProbes signature(object = "AffyBatch", which = "character"): returns
a list with locations of the probes in each probe set. The affyID corresponding to the probe set
to retrieve can be specified in an optional parameter genenames. By default, all the affyIDs
are retrieved. The names of the elements in the list returned are the affyIDs. which can be
"pm", "mm", or "both". If "both" then perfect match locations are given followed by mismatch
locations.
signature(object = "AffyBatch", which = "missing") (i.e., calling indexProbes
without a "which" argument) is the same as setting "which" to "pm".

intensity<- signature(object = "AffyBatch"): a replacement method for the exprs
slot, i.e. the intensities.

intensity signature(object = "AffyBatch"): extract the exprs slot, i.e. the intensi-
ties.

length signature(x = "AffyBatch"): returns the number of samples.

pmindex signature(object = "AffyBatch"): return the location of perfect matches in
the intensity matrix.

AffyBatch-class 3

mmindex signature(object = "AffyBatch"): return the location of the mismatch in-
tensities.

dim signature(x = "AffyBatch"): Row and column dimensions.
ncol signature(x = "AffyBatch"): An accessor function for ncol.
nrow signature(x = "AffyBatch"): an accessor function for nrow.
normalize signature(object = "AffyBatch"): a method to normalize. The method

accepts an argument method. The default methods is specified in package options (see the
main vignette).

normalize.methods signature(object = "AffyBatch"): returns the normalization meth-
ods defined for this class. See normalize.

probeNames signature(object = "AffyBatch"): returns the probe set associated with
each row of the intensity matrix.

probeset signature(object = "AffyBatch",genenames=NULL, locations=NULL):
Extracts ProbeSet objects related to the probe sets given in genenames. If an alternative
set of locations defining pms and mms a list with those locations should be passed via the
locations argument.

bg.correct signature(object = "AffyBatch", method="character") applies back-
ground correction methods defined by method.

updateObject signature(object = "AffyBatch", ..., verbose=FALSE): update,
if necessary, an object of class AffyBatch to its current class definition. verbose=TRUE pro-
vides details about the conversion process.

Note

This class is better described in the vignette.

See Also

related methods merge.AffyBatch, pairs.AffyBatch, and eSet

Examples

if (require(affydata)) {
load example
data(Dilution)

nice print
print(Dilution)

pm(Dilution)[1:5,]
mm(Dilution)[1:5,]

get indexes for the PM probes for the affyID "1900_at"
mypmindex <- pmindex(Dilution,"1900_at")
same operation using the primitive
mypmindex <- indexProbes(Dilution, which="pm", genenames="1900_at")[[1]]
get the probe intensities from the index
intensity(Dilution)[mypmindex,]

description(Dilution) ##we can also use the methods of eSet
sampleNames(Dilution)
abstract(Dilution)

}

4 AffyRNAdeg

affy-options Options for the affy package

Description

Description of the options for the affy package.

Note

The affy package options are contained in the Bioconductor options. The options are:

• use.widgets: a logical used to decide on the default of widget use.

• compress.cel: a logical

• compress.cdf: a logical

• probes.loc: a list. Each element of the list is it self a list with two elements what and
where. When looking for the informations about the locations of the probes on the array, the
elements in the list will be looked at one after the other. The first one for which what and
where lead to the matching locations information is used. The element what can be one of
package, environment or file. The element where depends on the corresponding element what.

– if package: location for the package (like it would be for the argument lib.loc for the
function library.)

– if environment: an environment to look for the information (like the argument env
for the function get).

– if file: a character with the path in which a CDF file can be found.

Examples

get the options
opt <- getOption("BioC")
affy.opt <- opt$affy

list their names
names(affy.opt)

set the option compress.cel
affy.opt$compress.cel <- TRUE
options(BioC=opt)

AffyRNAdeg Function to assess RNA degradation in Affymetrix GeneChip data.

Description

Uses ordered probes in probeset to detect possible RNA degradation. Plots and statistics used for
evaluation.

AffyRNAdeg 5

Usage

AffyRNAdeg(abatch,log.it=TRUE)
summaryAffyRNAdeg(rna.deg.obj,signif.digits=3)
plotAffyRNAdeg(rna.deg.obj, transform = "shift.scale", cols = NULL, ...)

Arguments

abatch An object of class AffyBatch-class.

log.it A logical argument: If log.it=T, then probe data is log2 transformed.

rna.deg.obj Output from AffyRNAdeg.
signif.digits

Number of significant digits to show.

transform Possible choices are "shift.scale","shift.only", and "neither". "Shift" vertically
staggers the plots for individual chips, to make the display easier to read. "Scale"
normalizes so that standard deviation is equal to 1.

cols A vector of colors for plot, length = number of chips.

... further arguments for plot function.

Details

Within each probeset, probes are numbered directionally from the 5’ end to the 3’ end. Probe inten-
sities are averaged by probe number, across all genes. If log.it=FALSE and transform="Neither",
then plotAffyRNAdeg simply shows these means for each chip. Shifted and scaled versions of the
plot can make it easier to see.

Value

AffyRNAdeg returns a list with the following components:

sample.names
names of samples, derived from affy batch object

means.by.number
average intensity by probe position

ses standard errors for probe position averages

slope from linear regression of means.by.number

pvalue from linear regression of means.by.number

Author(s)

Leslie Cope

Examples

if (require(affydata)) {
data(Dilution)
RNAdeg<-AffyRNAdeg(Dilution)
plotAffyRNAdeg(RNAdeg)

}

6 barplot.ProbeSet

affy.scalevalue.exprSet
Scale normalization for expreSets

Description

Normalizes expression values using the method described in the Affymetrix user manual.

Usage

affy.scalevalue.exprSet(eset, sc = 500, analysis="absolute")

Arguments

eset An ExpressionSet object.

sc Value at which all arrays will be scaled to.

analysis Should we do absolute or comparison analysis, although "comparison" is still
not implemented.

Details

This is function was implemented from the Affymetrix technical documentation for MAS 5.0. It
can be downloaded from the website of the company. Please refer to this document for details.

Value

A normalized ExpressionSet.

Author(s)

Laurent

barplot.ProbeSet show a ProbeSet as barplots

Description

Displays the probe intensities in a ProbeSet as a barplots

Usage

S3 method for class 'ProbeSet':
barplot(height, xlab = "Probe pair", ylab = "Intensity",

main = NA, col.pm = "red", col.mm = "blue", beside = TRUE, names.arg = "pp",
ask = TRUE, scale, ...)

bg.adjust 7

Arguments

height an object of class ProbeSet.

xlab label for x axis.

ylab label for y axis.

main main label for the figure.

col.pm color for the ‘pm’ intensities.

col.mm color for the ‘mm’ intensities.

beside bars beside each others or not.

names.arg names to be plotted below each bar or group of bars.

ask ask before ploting the next barplot.

scale put all the barplot to the same scale.

... extra parameters to be passed to barplot.

Examples

if (require(affydata)) {
data(Dilution)
gn <- geneNames(Dilution)
pps <- probeset(Dilution, gn[1])[[1]]

barplot.ProbeSet(pps)
}

bg.adjust Background adjustment (internal function)

Description

An internal function to be used by bg.correct.rma.

Usage

bg.adjust(pm, n.pts = 2^14, ...)
bg.parameters(pm, n.pts = 2^14)

Arguments

pm a pm matrix

n.pts number of points to use in call to density.

... extra arguments to pass to bg.adjust.

Details

Assumes PMs are a convolution of normal and exponential. So we observe X+Y where X is back-
ground and Y is signal. bg.adjust returns E[Y|X+Y, Y>0] as our background corrected PM.
bg.parameters provides ad hoc estimates of the parameters of the normal and exponential dis-
tributions.

8 bg.correct

Value

a matrix

See Also

bg.correct.rma

bg.correct Background Correction

Description

Background corrects probe intensities in an object of class AffyBatch.

Usage

bg.correct(object, method, ...)

bg.correct.rma(object,...)
bg.correct.mas(object, griddim)
bg.correct.none(object, ...)

Arguments

object An object of class AffyBatch.

method A character that defines what background correction method will be used.
Available methods are given by bg.correct.methods.

griddim grid dimension used for mas background estimate. The array is divided into
griddim equal parts. Default is 16.

... arguments to pass along to the engine function.

Details

The name of the method to apply must be double-quoted. Methods provided with the package are
currently:

• bg.correct.none: returns object unchanged.

• bg.correct.chipwide: noise correction as described in a ‘white paper’ from Affymetrix.

• bg.correct.rma: the model based correction used by the RMA expression measure.

They are listed in the variable bg.correct.methods. The user must supply the word after
"bg.correct", i.e none, subtractmm, rma, etc...

More details are available in the vignette.

R implementations similar in function to the internal implementation used by bg.correct.rma
are in bg.adjust.

Value

An AffyBatch for which the intensities have been background adjusted. For some methods
(RMA), only PMs are corrected and the MMs remain the same.

cdfenv.example 9

Examples

if (require(affydata)) {
data(Dilution)

##bgc will be the bg corrected version of Dilution
bgc <- bg.correct(Dilution, method="rma")

##This plot shows the tranformation
plot(pm(Dilution)[,1],pm(bgc)[,1],log="xy",
main="PMs before and after background correction")

}

cdfenv.example Example cdfenv

Description

Example cdfenv (environment containing the probe locations).

Usage

data(cdfenv.example)

Format

An environment cdfenv.example containing the probe locations

Source

Affymetrix CDF file for the array Hu6800

cdfFromBioC Functions to obtain CDF files

Description

A set of functions to obtain CDF files from various locations.

Usage

cdfFromBioC(cdfname, lib = .libPaths()[1], verbose = TRUE)
cdfFromLibPath(cdfname, lib = NULL, verbose=TRUE)
cdfFromEnvironment(cdfname, where, verbose=TRUE)

Arguments

cdfname name of the CDF.

lib install directory for the CDF package.

where environment to search.

verbose logical controlling extra output.

10 cleancdfname

Details

These functions all take a requested CDF environment name and will attempt to locate that envi-
ronment in the appropriate location (a package’s data directory, as a CDF package in the .libPaths(),
from a loaded environment or on the Bioconductor website. If the environment can not be found, it
will return a list of the methods tried that failed.

Value

The CDF environment or a list detailing the failed locations.

Author(s)

Jeff Gentry

cleancdfname Clean Affymetrix’s CDF name

Description

This function converts Affymetrix’s names for CDF files to the names used in the annotation pack-
age and in all Bioconductor.

Usage

cleancdfname(cdfname, addcdf = TRUE)

Arguments

cdfname A character denoting Affymetrix’x CDF file name

addcdf A logical. If TRUE it adds the string "cdf" at the end of the cleaned CDF
name. This is used to name the cdfenvs packages.

Details

This function takes a CDF filename obtained from an Affymetrix file (from a CEL file for example)
and convert it to a convention of ours: all small caps and only alphanumeric characters. The details
of the rule can be seen in the code. We observed exceptions that made us create a set of special
cases for mapping CEL to CDF. The object mapCdfName holds information about these cases. It
is a data.frame of three elements: the first is the name as found in the CDF file, the second the
name in the CEL file and the third the name in Bioconductor. mapCdfName can be loaded using
data(mapCdfName).

Value

A character

Examples

cdf.tags <- c("HG_U95Av2", "HG-133A")
for (i in cdf.tags)

cat(i, "becomes", cleancdfname(i), "\n")

debug.affy123 11

debug.affy123 Debugging Flag

Description

For developmental use only

expresso From raw probe intensities to expression values

Description

Goes from raw probe intensities to expression values

Usage

expresso(
afbatch,

background correction
bg.correct = TRUE,
bgcorrect.method = NULL,
bgcorrect.param = list(),

normalize
normalize = TRUE,
normalize.method = NULL,
normalize.param = list(),

pm correction
pmcorrect.method = NULL,
pmcorrect.param = list(),

expression values
summary.method = NULL,
summary.param = list(),
summary.subset = NULL,

misc.
verbose = TRUE,

widget = FALSE)

Arguments

afbatch an AffyBatch object.

bg.correct a boolean to express whether background correction is wanted or not.
bgcorrect.method

the name of the background adjustment method.
bgcorrect.param

a list of parameters for bgcorrect.method (if needed/wanted).

normalize normalization step wished or not.

12 expresso

normalize.method
the normalization method to use.

normalize.param
a list of parameters to be passed to the normalization method (if wanted).

pmcorrect.method
the name of the PM adjustment method.

pmcorrect.param
a list of parameters for pmcorrect.method (if needed/wanted).

summary.method
the method used for the computation of expression values.

summary.param
a list of parameters to be passed to the summary.method (if wanted).

summary.subset
a list of ’affyids’. If NULL, an expression summary value is computed for ev-
erything on the chip.

verbose logical value. If TRUE, it writes out some messages.
widget a boolean to specify the use of widgets (the package tkWidget is required).

Details

Some arguments can be left to NULL if the widget=TRUE. In this case, a widget pops up and
let the user choose with the mouse. The arguments are: AffyBatch, bgcorrect.method,
normalize.method, pmcorrect.method and summary.method.

For the mas 5.0 and 4.0 methods ones need to normalize after obtaining expression. The function
affy.scalevalue.exprSet does this.

For the Li and Wong summary method notice you will not get the same results as you would get
with dChip. dChip is not open source so it is not easy to reproduce. Notice also that this iterative
algorithm will not always converge. If you run the algorithm on thousands of probes expect some
non-convergence warnings. These are more likely when few arrays are used. We recommend using
this method only if you have 10 or more arrays. Please refer to the fit.li.wong help page for
more details.

Value

An object of class ExpressionSet, with an attribute pps.warnings as returned by the method
computeExprSet.

See Also

AffyBatch

Examples

if (require(affydata)) {
data(Dilution)

eset <- expresso(Dilution, bgcorrect.method="rma",
normalize.method="constant",pmcorrect.method="pmonly",
summary.method="avgdiff")

##to see options available for bg correction type:
bgcorrect.methods()

}

expressoWidget 13

expressoWidget A widget for users to pick correction methods

Description

This widget is called by expresso to allow users to select correction methods that will be used to
process affy data.

Usage

expressoWidget(BGMethods, normMethods, PMMethods, expMethods, BGDefault,
normDefault, PMDefault, expDefault)

Arguments

BGMethods a vector of character strings for the available methods that can be used as a
background correction method of affy data.

normMethods a vector of character strings for the available methods that can be used as a
normalization method of affy data.

PMMethods a vector of character strings for the available methods that can be used as a PM
correction method of affy data.

expMethods a vector of character strings for the available methods that can be used as a
summary method of affy data.

BGDefault a character string for the name of a default background correction method.

normDefault a character string for the name of a default normalization method.

PMDefault a character string for the name of a default PM correction method.

expDefault a character string for the name of a default summary method.

Details

The widget will be invoked when expresso is called with argument "widget" set to TRUE. Default
values can be changed using the drop down list boxes. Double clicking on an option from the drop-
down list makes an selection. The first element of the list for available methods will be the default
method if no default is provided.

Value

The widget returns a list of selected correction methods.

BG background correction method

NORM normalization method

PM PM correction method

EXP summary method

Author(s)

Jianhua Zhang

14 fit.li.wong

References

Documentations of affy package

See Also

expresso

Examples

if(interactive()){
require(widgetTools)
expressoWidget(c("mas", "none", "rma"), c("constant", "quantiles"),

c("mas", "pmonly"), c("liwong", "playerout"))
}

fit.li.wong Fit Li and Wong Model to a Probe Set

Description

Fits the model described in Li and Wong (2001) to a probe set with I chips and J probes.

Usage

fit.li.wong(data.matrix, remove.outliers=TRUE, normal.array.quantile=0.5,
normal.resid.quantile=0.9, large.threshold=3, large.variation=0.8,
outlier.fraction=0.14, delta=1e-06, maxit=50,
outer.maxit=50,verbose=FALSE, ...)

li.wong(data.matrix,remove.outliers=TRUE, normal.array.quantile=0.5,
normal.resid.quantile=0.9, large.threshold=3, large.variation=0.8,
outlier.fraction=0.14, delta=1e-06, maxit=50,
outer.maxit=50,verbose=FALSE)

Arguments

data.matrix an I x J matrix containing the probe set data. Typically the i,j entry will contain
the PM-MM value for probe pair j in chip i. Another possible use, is to use PM
instead of PM-MM.

remove.outliers
logical value indicating if the algorithm will remove outliers according to the
procedure described in Li and Wong (2001).

large.threshold
used to define outliers.

normal.array.quantile
quantile to be used when determining what a normal SD is. probes or chips hav-
ing estimates with SDs bigger than the quantile normal.array.quantile
of all SDs x large.threshold.

normal.resid.quantile
any residual bigger than the normal.resid.quantile quantile of all resid-
uals x large.threshold is considered an outlier.

fit.li.wong 15

large.variation
any probe or chip describing more than this much total variation is considered
an outlier.

outlier.fraction
this is the maximum fraction of single outliers that can be in the same probe or
chip.

delta numerical value used to define the stopping criterion.

maxit maximum number of iterations when fitting the model.

outer.maxit maximum number of iterations of defined outliers.

verbose logical value. If TRUE information is given of the status of the algorithm.

... additional arguments.

Details

This is Bioconductor’s implementation of the Li and Wong algorithm. The Li and Wong PNAS
2001 paper was followed. However, you will not get the same results as you would get with dChip.
dChip is not open source so it is not easy to reproduce.

Notice that this iterative algorithm will not always converge. If you run the algorithm on thousands
of probes expect some non-convergence warnings. These are more likely when few arrays are used.
We recommend using this method only if you have 10 or more arrays.

Please refer to references for more details.

Value

li.wong returns a vector of expression measures (or column effects) followed by their respective
standard error estimates. It was designed to work with express which is no longer part of the
package.

fit.li.wong returns much more. Namely, a list containing the fitted parameters and relevant
information.

theta fitted thetas.

phi fitted phis.

sigma.eps estimated standard deviation of the error term.

sigma.theta estimated standard error of theta.

sigma.phi estimated standard error of phis.
theta.outliers

logical vector describing which chips (thetas) are considered outliers (TRUE).

phi.outliers logical vector describing which probe sets (phis) are considered outliers (TRUE)

convergence1 logical value. If FALSE the algorithm did not converge when fitting the phis and
thetas.

convergence2 logical value. If FALSE the algorithm did not converge in deciding what are
outliers.

iter number of iterations needed to achieve convergence.

delta difference between thetas when iteration stopped.

Author(s)

Rafael A. Irizarry, Cheng Li, Fred A. Wright, Ben Bolstad

16 generateExprSet-method

References

Li, C. and Wong, W.H. (2001) Genome Biology 2, 1–11.

Li, C. and Wong, W.H. (2001) Proc. Natl. Acad. Sci USA 98, 31–36.

See Also

li.wong, expresso

Examples

x <- sweep(matrix(2^rnorm(600),30,20),1,seq(1,2,len=30),FUN="+")
fit1 <- fit.li.wong(x)
plot(x[1,])
lines(fit1$theta)

generateExprSet-method
generate a set of expression values

Description

Generate a set of expression values from the probe pair information. The set of expression is
returned as an ExpressionSet object.

Usage

computeExprSet(x, pmcorrect.method, summary.method, ...)

generateExprSet.methods()

upDate.generateExprSet.methods(x)

Arguments

x a AffyBatch holding the probe level informations to generate the expression
values, for computeExprSet, and for upDate.generateExprSet.methods it is a
character vector..

pmcorrect.method
the method used to correct PM values (see section ’details’).

summary.method
the method used to generate the expression value (see section ’details’).

... any of the options of the normalization you would like to modify.

generateExprVal.method.avgdiff 17

Details

An extra argument ids= can be passed. It must be a vector of affids. The expression values will
only be computed and returned for these affyids.

The different methods available through this mechanism can be accessed by calling the method
generateExprSet.methods with an object of call Cel.container as an argument.

In the Affymetrix design, MM probes were included to measure the noise (or background signal).
The original algorithm for background correction was to subtract the MM signal to the PM signal.
The methods currently included in the package are "bg.correct.subtractmm", "bg.correct.pmonly"
and "bg.correct.adjust".

To alter the available methods for generating ExprSets use upDate.generateExprSet.methods.

See Also

method generateExprSet of the class AffyBatch
expresso

Examples

if (require(affydata)) {
data(Dilution)

ids <- c("1000_at","1001_at")

eset <- computeExprSet(Dilution, pmcorrect.method="pmonly",
summary.method="avgdiff", ids=ids)

}

generateExprVal.method.avgdiff
Generate an expression value from the probes informations

Description

Generate an expression from the probes

Usage

generateExprVal.method.avgdiff(probes, ...)
generateExprVal.method.medianpolish(probes, ...)
generateExprVal.method.liwong(probes, ...)
generateExprVal.method.mas(probes, ...)

Arguments

probes a matrix of probe intensities with rows representing probes and columns rep-
resenting samples. Usually pm(probeset) where probeset is a of class
ProbeSet.

... extra arguments to pass to the respective function.

18 generateExprVal.method.playerout

Value

A list containing entries:

exprs The expression values.

se.exprs The standard error estimate.

See Also

generateExprSet-methods, generateExprVal.method.playerout, fit.li.wong

Examples

data(SpikeIn) ##SpikeIn is a ProbeSets
probes <- pm(SpikeIn)
avgdiff <- generateExprVal.method.avgdiff(probes)
medianpolish <- generateExprVal.method.medianpolish(probes)
liwong <- generateExprVal.method.liwong(probes)
playerout <- generateExprVal.method.playerout(probes)
mas <- generateExprVal.method.mas(probes)

concentrations <- as.numeric(sampleNames(SpikeIn))
plot(concentrations,avgdiff$exprs,log="xy",ylim=c(50,10000),pch="a",type="b")
points(concentrations,2^medianpolish$exprs,pch="m",col=2,type="b",lty=2)
points(concentrations,liwong$exprs,pch="l",col=3,type="b",lty=3)
points(concentrations,playerout$exprs,pch="p",col=4,type="b",lty=4)
points(concentrations,mas$exprs,pch="p",col=4,type="b",lty=4)

generateExprVal.method.playerout
Generate an expression value from the probes informations

Description

Generate an expression from the probes

Usage

generateExprVal.method.playerout(probes, weights=FALSE, optim.method="L-BFGS-B")

Arguments

probes a list of probes slots from PPSet.container

weights Should the resulting weights be returned ?

optim.method see parameter ’optim’ for the function optim

Details

A non-parametric method to weight each perfect match probe in the set and to compute a weighted
mean of the perfect match values. One will notice this method only makes use of the perfect
matches. (see function playerout.costfunction for the cost function).

generateExprVal 19

Value

A vector of expression values.

Author(s)

Laurent <laurent@cbs.dtu.dk>
(Thanks to E. Lazaridris for the original playerout code and the discussions about it)

References

Emmanuel N. Lazaridis, Dominic Sinibaldi, Gregory Bloom, Shrikant Mane and Richard Jove
A simple method to improve probe set estimates from oligonucleotide arrays, Mathematical Bio-
sciences, Volume 176, Issue 1, March 2002, Pages 53-58

generateExprVal Compute a summary expression value from the probes intensities

Description

Compute a summary expression value from the probes intensities

Usage

express.summary.stat(x, pmcorrect, summary, ...)
express.summary.stat.methods() # vector of names of methods
upDate.express.summary.stat.methods(x)

Arguments

x a (ProbeSet

pmcorrect the method used to correct the PM values before summarizing to an expression
value.

summary the method used to generate the expression value.

... other parameters the method might need... (see the corresponding methods be-
low...)

Value

Returns a vector of expression values.

Examples

if (require(affydata)) {
data(Dilution)

p <- probeset(Dilution, "1001_at")[[1]]

par(mfcol=c(5,2))
mymethods <- express.summary.stat.methods()
nmet <- length(mymethods)
nc <- ncol(pm(p))

20 hlog

layout(matrix(c(1:nc, rep(nc+1, nc)), nc, 2), width = c(1, 1))

barplot(p)

results <- matrix(0, nc, nmet)
rownames(results) <- paste("sample", 1:nc)
colnames(results) <- mymethods

for (i in 1:nmet) {
ev <- express.summary.stat(p, summary=mymethods[i], pmcorrect="pmonly")
if (mymethods[[i]] != "medianpolish")
results[, i] <- 2^(ev$exprs)

else
results[, i] <- ev$exprs

}

dotchart(results, labels=paste("sample", 1:nc))
}

hlog Hybrid Log

Description

Given a constant c this function returns x if x is less than c and sign(x)*(c*log(abs(x)/c)
+ c) if its not. Notice this is a continuous odd (f(-x)=-f(x)) function with continuous first deriva-
tive. The main purpose is to perform log transformation when one has negative numbers, for exam-
ple for PM-MM.

Usage

hlog(x, constant=1)

Arguments

x a number.

constant the constant c (see description).

Details

If constant is less than or equal to 0 log(x) is returned for all x. If constant is infinity x is
returned for all x.

Author(s)

Rafael A. Irizarry

justRMA 21

justRMA Read CEL files into an ExpressionSet

Description

Read CEL files and compute an expression measure without using an AffyBatch.

Usage

just.rma(..., filenames = character(0),
phenoData = new("AnnotatedDataFrame"),
description = NULL,
notes = "",
compress = getOption("BioC")$affy$compress.cel,
rm.mask = FALSE, rm.outliers = FALSE, rm.extra = FALSE,
verbose=FALSE, background=TRUE, normalize=TRUE,
bgversion=2, destructive=FALSE, cdfname = NULL)

justRMA(..., filenames=character(0),
widget=getOption("BioC")$affy$use.widgets,
compress=getOption("BioC")$affy$compress.cel,
celfile.path=getwd(),
sampleNames=NULL,
phenoData=NULL,
description=NULL,
notes="",
rm.mask=FALSE, rm.outliers=FALSE, rm.extra=FALSE,
hdf5=FALSE, hdf5FilePath=NULL,verbose=FALSE,
normalize=TRUE, background=TRUE,
bgversion=2, destructive=FALSE, cdfname = NULL)

Arguments

... file names separated by comma.

filenames file names in a character vector.

phenoData an AnnotatedDataFrame object.

description a MIAME object.

notes notes.

compress are the CEL files compressed?

rm.mask should the spots marked as ’MASKS’ set to NA?

rm.outliers should the spots marked as ’OUTLIERS’ set to NA?

rm.extra if TRUE, then overrides what is in rm.mask and rm.oultiers.

hdf5 use of hdf5 ? (not available yet)

hdf5FilePath a filename to use with hdf5 (not available yet).

verbose verbosity flag.

widget a logical specifying if widgets should be used.

celfile.path a character denoting the path ReadAffy should look for cel files.

22 justRMA

sampleNames a character vector of sample names to be used in the AffyBatch.

normalize logical value. If TRUE, then normalize data using quantile normalization.

background logical value. If TRUE, then background correct using RMA background cor-
rection.

bgversion integer value indicating which RMA background to use 1: use background sim-
ilar to pure R rma background given in affy version 1.0 - 1.0.2
2: use background similar to pure R rma background given in affy version 1.1
and above

destructive logical value. If TRUE, then works on the PM matrix in place as much as possi-
ble, good for large datasets.

cdfname Used to specify the name of an alternative cdf package. If set to NULL, then the
usual cdf package based on Affymetrix’ mappings will be used.

Details

justRMA is a wrapper for just.rma that permits the user to read in phenoData, MIAME in-
formation, and CEL files using widgets. One can also define files where to read phenoData and
MIAME information.

If the function is called with no arguments justRMA(), then all the CEL files in the working direc-
tory are read, converted to an expression measure using RMA and put into an ExpressionSet.
However, the arguments give the user great flexibility.

phenoData is read using read.AnnotatedDataFrame. If a character is given, it tries to read
the file with that name to obtain the AnnotatedDataFrame object as described in read.AnnotatedDataFrame.
If left NULL and widget=FALSE (widget=TRUE is not currently supported), then a default
object is created. It will be an object of class AnnotatedDataFrame with its pData being a
data.frame with column x indexing the CEL files.

description is read using read.MIAME. If a character is given, it tries to read the file with
that name to obtain a MIAME instance. If left NULL but widget=TRUE, then widgets are used. If
left NULL and widget=FALSE, then an empty instance of MIAME is created.

The arguments rm.masks, rm.outliers, rm.extra are passed along to the function read.celfile.

Value

An ExpressionSet object, containing expression values identical to what one would get from
running rma on an AffyBatch.

Author(s)

In the beginning: James MacDonald <jmacdon@med.umich.edu> Supporting routines, mainte-
nance and just.rma: Ben Bolstad <bmb@bmbolstad.com>

See Also

rma, read.affybatch

list.celfiles 23

list.celfiles List the Cel Files in a Directory/Folder

Description

This function produces a vector containing the names of files in the named directory/folder ending
in .cel or .CEL.

Usage

list.celfiles(...)

Arguments

... arguments to pass along to list.files

Value

A character vector of file names.

See Also

list.files

Examples

list.celfiles()

loess.normalize Normalize arrays

Description

This function treats PM and MM as the raw data on each chip. It fits loess curves to MVA plots and
tries to normalize the chips with respect to each other by forcing log ratios to be scattered around
the same constant.

Usage

loess.normalize(mat, subset = sample(1:(dim(mat)[2]), 5000), epsilon
= 10^-2, maxit = 1, log.it = TRUE, verbose = TRUE,
span = 2/3, family.loess = "symmetric")

24 MAplot

Arguments

mat a matrix with columns containing the values of the chips to normalize.

subset a subset of the data to fit a loess to.

epsilon small value used for the stopping criterion.

maxit maximum number of iterations.

log.it logical. If TRUE it takes the log2 of mat

verbose logical. If TRUE displays current pair of chip being worked on.

span span to be used by loess.

family.loess "gaussian" or "symmetric" as in loess.

Details

Experience shows that you only need 1-2 iterations to obtain useful results. This function is not
written in an efficient way. In order to make it faster, loess is fit to a sample of the data which
we then use to predict the curve for all the data. By setting family.loess="gaussian" the
function is faster, but you risk losing information on differentially expressed genes. The function
normalize.quantiles is faster.

Value

A matrix with normalized values for chips in columns.

Author(s)

Rafael A. Irizarry

See Also

normalize.quantiles, maffy.normalize, maffy.subset

MAplot Relative M vs. A plots

Description

Create boxplots of M or M vs A plots. Where M is determined relative to a specified chip or to a
pseudo-median reference chip.

Usage

MAplot(object,...)
Mbox(object,...)
ma.plot(A, M, subset = sample(1:length(M), min(c(10000, length(M)))),

show.statistics = TRUE, span = 2/3, family.loess = "gaussian",
cex = 2, plot.method = c("normal","smoothScatter","add"),
add.loess = TRUE, lwd = 1, lty = 1, loess.col = "red", ...)

mas5calls 25

Arguments

object an AffyBatch-class.

... additional parameters for the routine.

A a vector to plot along the horizontal axis.

M a vector to plot along vertical axis.

subset a set of indices to use when drawing the loess curve.
show.statistics

logical. If TRUE, some summary statistics of the M values are drawn.

span span to be used for loess fit.

family.loess "guassian" or "symmetric" as in loess.

cex size of text when writing summary statistics on plot.

plot.method a string specifying how the plot is to be drawn. "normal" plots points, "smoothScatter"
uses the smoothScatter function. Specifying "add"means that the MAplot
should be added to the current plot.

add.loess add a loess line to the plot.

lwd width of loess line.

lty line type for loess line.

loess.col color for loess line.

See Also

mva.pairs

Examples

if (require(affydata)) {
data(Dilution)
MAplot(Dilution)
Mbox(Dilution)

}

mas5calls MAS 5.0 Absolute Detection

Description

Performs the Wilcoxon signed rank-based gene expression presence/absence detection algorithm
first implemented in the Affymetrix Microarray Suite version 5.

Usage

mas5calls(object,...)

mas5calls.AffyBatch(object, ids = NULL, verbose = TRUE, tau = 0.015,
alpha1 = 0.04, alpha2 = 0.06,
ignore.saturated=TRUE)

26 mas5calls

mas5calls.ProbeSet(object, tau = 0.015, alpha1 = 0.04, alpha2 = 0.06,
ignore.saturated=TRUE)

mas5.detection(mat, tau = 0.015, alpha1 = 0.04, alpha2 = 0.06,
exact.pvals = FALSE, cont.correct = FALSE)

Arguments

object an object of class AffyBatch or ProbeSet.

ids probeset IDs for which you want to compute calls.

mat an n-by-2 matrix of paired values (pairs in rows), PMs first col.

verbose logical. It TRUE, status of processing is reported.

tau a small positive constant.

alpha1 a significance threshold in (0, alpha2).

alpha2 a significance threshold in (alpha1, 0.5).

exact.pvals logical controlling whether exact p-values are computed (irrelevant if n<50 and
there are no ties). Otherwise the normal approximation is used.

ignore.saturated
if TRUE, do the saturation correction described in the paper, with a saturation
level of 46000.

cont.correct logical controlling whether continuity correction is used in the p-value normal
approximation.

... any of the above arguments that applies.

Details

This function performs the hypothesis test:

H0: median(Ri) = tau, corresponding to absence of transcript H1: median(Ri) > tau, corresponding
to presence of transcript

where Ri = (PMi - MMi) / (PMi + MMi) for each i a probe-pair in the probe-set represented by data.

Currently exact.pvals=TRUE is not supported, and cont.correct=TRUE works but does not give
great results (so both should be left as FALSE). The defaults for tau, alpha1 and alpha2 correspond
to those in MAS5.0.

The p-value that is returned estimates the usual quantity:

Pr(observing a more "present looking" probe-set than data | data is absent)

So that small p-values imply presence while large ones imply absence of transcript. The detection
call is computed by thresholding the p-value as in:

call "P" if p-value < alpha1 call "M" if alpha1 <= p-value < alpha2 call "A" if alpha2 <= p-value

This implementation has been validated against the original MAS5.0 implementation with the fol-
lowing results (for exact.pvals and cont.correct set to F):

Average Relative Change from MAS5.0 p-values:38% Proportion of calls different to MAS5.0
calls:1.0%

where "average/proportion" means over all probe-sets and arrays, where the data came from 11
bacterial control probe-sets spiked-in over a range of concentrations (from 0 to 150 pico-mols) over
26 arrays. These are the spike-in data from the GeneLogic Concentration Series Spikein Dataset.

Clearly the p-values computed here differ from those computed by MAS5.0 – this will be improved
in subsequent releases of the affy package. However the p-value discrepancies are small enough to

mas5calls 27

result in the call being very closely aligned with those of MAS5.0 (99 percent were identical on the
validation set) – so this implementation will still be of use.

The function mas5.detect is no longer the engine function for the others. C code is no available
that computes the Wilcox test faster. The function is kept so that people can look at the R code
(instead of C).

Value

mas5.detect returns a list containing the following components:

pval a real p-value in [0,1] equal to the probability of observing probe-level intensities
that are more present looking than data assuming the data represents an absent
transcript; that is a transcript is more likely to be present for p-values closer 0.

call either "P", "M" or "A" representing a call of present, marginal or absent; com-
puted by simply thresholding pval using alpha1 and alpha2.

The mas5calls method for AffyBatch returns an ExpressionSet with calls accessible
with exprs(obj) and p-values available with assayData(obj)[["se.exprs"]]. The
code mas5calls for ProbeSet returns a list with vectors of calls and p-values.

Author(s)

Crispin Miller, Benjamin I. P. Rubinstein, Rafael A. Irizarry

References

Liu, W. M. and Mei, R. and Di, X. and Ryder, T. B. and Hubbell, E. and Dee, S. and Webster,
T. A. and Harrington, C. A. and Ho, M. H. and Baid, J. and Smeekens, S. P. (2002) Analysis of
high density expression microarrays with signed-rank call algorithms, Bioinformatics, 18(12), pp.
1593–1599.

Liu, W. and Mei, R. and Bartell, D. M. and Di, X. and Webster, T. A. and Ryder, T. (2001) Rank-
based algorithms for analysis of microarrays, Proceedings of SPIE, Microarrays: Optical Technolo-
gies and Informatics, 4266.

Affymetrix (2002) Statistical Algorithms Description Document, Affymetrix Inc., Santa Clara, CA,
whitepaper. http://www.affymetrix.com/support/technical/whitepapers/sadd_
whitepaper.pdf, http://www.affymetrix.com/support/technical/whitepapers/
sadd_whitepaper.pdf

Examples

if (require(affydata)) {
data(Dilution)
PACalls <- mas5calls(Dilution)

}

http://www.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf
http://www.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf
http://www.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf
http://www.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf

28 mas5

mas5 MAS 5.0 expression measure

Description

This function converts an instance of AffyBatch into an instance of ExpressionSet using
our implementation of Affymetrix’s MAS 5.0 expression measure.

Usage

mas5(object, normalize = TRUE, sc = 500, analysis = "absolute", ...)

Arguments

object an instance of AffyBatch

normalize logical. If TRUE scale normalization is used after we obtain an instance of
ExpressionSet

sc Value at which all arrays will be scaled to.

analysis should we do absolute or comparison analysis, although "comparison" is still
not implemented.

... other arguments to be passed to expresso.

Details

This function is a wrapper for expresso and affy.scalevalue.exprSet.

Value

ExpressionSet

The methods used by this function were implemented based upon available documentation. In
particular a useful reference is Statistical Algorithms Description Document by Affymetrix. Our
implementation is based on what is written in the documentation and, as you might appreciate,
there are places where the documentation is less than clear. This function does not give exactly the
same results. All source code of our implementation is available. You are free to read it and suggest
fixes.

For more information visit this URL: http://stat-www.berkeley.edu/users/bolstad/

See Also

expresso,affy.scalevalue.exprSet

Examples

if (require(affydata)) {
data(Dilution)
eset <- mas5(Dilution)

}

http://stat-www.berkeley.edu/users/bolstad/

merge.AffyBatch 29

merge.AffyBatch merge two AffyBatch objects

Description

merge two AffyBatch objects into one.

Usage

S3 method for class 'AffyBatch':
merge(x, y, annotation = paste(annotation(x),

annotation(y)), description = NULL, notes =
character(0), ...)

Arguments

x an AffyBatch object.

y an AffyBatch object.

annotation a character vector.

description a characterORmiame, eventually NULL.

notes a character vector.

... additional arguments.

Details

To be done.

Value

A object if class AffyBatch.

See Also

AffyBatch-class

mva.pairs M vs. A Matrix

Description

A matrix of M vs. A plots is produced. Plots are made on the upper triangle and the IQR of the Ms
are displayed in the lower triangle

Usage

mva.pairs(x, labels=colnames(x), log.it=TRUE,span=2/3,family.loess="gaussian",
digits=3,line.col=2,main="MVA plot",cex=2,...)

30 normalize.constant

Arguments

x a matrix containing the chip data in the columns.

labels the names of the variables.

log.it logical. If TRUE, uses log scale.

span span to be used for loess fit.

family.loess "gaussian" or "symmetric" as in loess.

digits number of digits to use in the display of IQR.

line.col color of the loess line.

main an overall title for the plot.

cex size for text.

... graphical parameters can be given as arguments to mva.plot.

See Also

pairs

Examples

x <- matrix(rnorm(4000),1000,4)
x[,1] <- x[,1]^2
dimnames(x) <- list(NULL,c("chip 1","chip 2","chip 3","chip 4"))
mva.pairs(x,log=FALSE,main="example")

normalize.constant Scale probe intensities

Description

Scale array intensities in a AffyBatch.

Usage

normalize.AffyBatch.constant(abatch, refindex=1, FUN=mean, na.rm=TRUE)
normalize.constant(x, refconstant, FUN=mean, na.rm=TRUE)

Arguments

abatch an instance of the AffyBatch-class.

x a vector of intensities on a chip (to normalize to the reference).

refindex the index of the array used as a reference.

refconstant the constant used as a reference.

FUN a function generating a value from the intensities on an array. Typically mean
or median.

na.rm parameter passed to the function FUN.

Value

An AffyBatch with an attribute "constant" holding the value of the factor used for scaling.

normalize.contrasts 31

Author(s)

L. Gautier <laurent@cbs.dtu.dk>

See Also

AffyBatch

normalize.contrasts
Normalize intensities using the contrasts method

Description

Scale chip objects in an AffyBatch-class.

Usage

normalize.AffyBatch.contrasts(abatch,span=2/3, choose.subset=TRUE,
subset.size=5000, verbose=TRUE,
family="symmetric",
type=c("together","pmonly","mmonly","separate"))

Arguments

abatch an AffyBatch-class object.

span parameter to be passed to the function loess.

choose.subset

subset.size

verbose verbosity flag.

family parameter to be passed to the function loess.

type a string specifying how the normalization should be applied.

Value

An object of the same class as the one passed.

See Also

maffy.normalize

32 normalize.invariantset

normalize.invariantset
Invariant Set normalization

Description

Normalize arrays in an AffyBatch using an invariant set.

Usage

normalize.AffyBatch.invariantset(abatch, prd.td = c(0.003, 0.007),
verbose = FALSE,
baseline.type = c("mean","median","pseudo-mean","pseudo-median"),
type = c("separate","pmonly","mmonly","together"))

normalize.invariantset(data, ref, prd.td=c(0.003,0.007))

Arguments

abatch an AffyBatch object.
data a vector of intensities on a chip (to normalize to the reference).
ref a vector of reference intensities.
prd.td cutoff parameter (details in the bibliographic reference).
baseline.type

specifies how to determine the baseline array.
type a string specifying how the normalization should be applied. See details for

more.
verbose logical indicating printing throughout the normalization.

Details

The set of invariant intensities between data and ref is found through an iterative process (based
on the respective ranks the intensities). This set of intensities is used to generate a normalization
curve by smoothing.

The type argument should be one of "separate","pmonly","mmonly","together"
which indicates whether to normalize only one probe type (PM,MM) or both together or separately.

Value

Respectively a AffyBatch of normalized objects, or a vector of normalized intensities, with an
attribute "invariant.set" holding the indexes of the ’invariant’ intensities.

Author(s)

L. Gautier <laurent@cbs.dtu.dk> (Thanks to Cheng Li for the discussions about the algorithm.)

References

Cheng Li and Wing Hung Wong, Model-based analysis of oligonucleotides arrays: model valida-
tion, design issues and standard error application. Genome Biology 2001, 2(8):research0032.1-
0032.11

normalize.loess 33

See Also

normalize to normalize AffyBatch objects.

normalize.loess Scale microarray data

Description

Normalizes arrays using loess.

Usage

normalize.loess(mat, subset = sample(1:(dim(mat)[1]), min(c(5000,
nrow(mat)))), epsilon = 10^-2, maxit = 1, log.it =
TRUE, verbose = TRUE, span = 2/3, family.loess =
"symmetric")

normalize.AffyBatch.loess(abatch,type=c("together","pmonly","mmonly","separate"), ...)

Arguments

mat a matrix with columns containing the values of the chips to normalize.

abatch an AffyBatch object.

subset a subset of the data to fit a loess to.

epsilon a tolerance value (supposed to be a small value - used as a stopping criterion).

maxit maximum number of iterations.

log.it logical. If TRUE it takes the log2 of mat

verbose logical. If TRUE displays current pair of chip being worked on.

span parameter to be passed the function loess

family.loess parameter to be passed the function loess. "gaussian" or "symmetric"
are acceptable values for this parameter.

type A string specifying how the normalization should be applied. See details for
more.

... any of the options of normalize.loess you would like to modify (described above).

Details

The type argument should be one of "separate","pmonly","mmonly","together"which
indicates whether to normalize only one probe type (PM,MM) or both together or separately.

See Also

normalize

34 normalize-methods

Examples

if (require(affydata)) {
#data(Dilution)
#x <- pm(Dilution[,1:3])
#mva.pairs(x)
#x <- normalize.loess(x,subset=1:nrow(x))
#mva.pairs(x)

}

normalize-methods Normalize Affymetrix Probe Level Data - methods

Description

Method for normalizing Affymetrix Probe Level Data

Usage

normalize.methods(object)
bgcorrect.methods()
upDate.bgcorrect.methods(x)
pmcorrect.methods()
upDate.pmcorrect.methods(x)

Arguments

object An AffyBatch.

x A character vector that will replace the existing one.

Details

If object is an AffyBatch object, then normalize(object) returns an AffyBatch ob-
ject with the intensities normalized using the methodology specified by getOption("BioC")$affy$normalize.method.
The affy package default is quantiles.

Other methodologies can be used by specifying them with the method argument. For example to
use the invariant set methodology described by Li and Wong (2001) one would type: normalize(object,
method="invariantset").

Further arguments passed by ..., apart from method, are passed along to the function responsible
for the methodology defined by the method argument.

A character vector of nicknames for the methodologies available is returned by normalize.methods(object)),
where object is an AffyBatch, or simply by typing normalize.AffyBatch.methods.
If the nickname of a method is called "loess", the help page for that specific methodology can be
accessed by typing ?normalize.loess.

For more on the normalization methodologies currently implemented please refer to the vignette
‘Custom Processing Methods’.

To add your own normalization procedures please refer to the customMethods vignette.

The functions: bgcorrect.methods, pmcorrect.methods, provide access to internal vec-
tors listing the corresponding capabilities.

normalize.qspline 35

See Also

AffyBatch-class, normalize.

Examples

if (require(affydata)) {
data(Dilution)
normalize.methods(Dilution)
generateExprSet.methods()
bgcorrect.methods()
pmcorrect.methods()

}

normalize.qspline Normalize arrays

Description

normalizes arrays in an AffyBatch each other or to a set of target intensities

Usage

normalize.AffyBatch.qspline(abatch,type=c("together", "pmonly", "mmonly",
"separate"), ...)

normalize.qspline(x, target = NULL, samples = NULL,
fit.iters = 5, min.offset = 5,
spline.method = "natural", smooth = TRUE,
spar = 0, p.min = 0, p.max = 1.0,
incl.ends = TRUE, converge = FALSE,
verbose = TRUE, na.rm = FALSE)

Arguments

x a data.matrix of intensities

abatch an AffyBatch

target numerical vector of intensity values to normalize to. (could be the name for one
of the celfiles in ’abatch’).

samples numerical, the number of quantiles to be used for spline. if (0,1], then it is a
sampling rate.

fit.iters number of spline interpolations to average.

min.offset minimum span between quantiles (rank difference) for the different fit iterations.
spline.method

specifies the type of spline to be used. Possible values are ‘"fmm"’, ‘"natural"’,
and ‘"periodic"’.

smooth logical, if ‘TRUE’, smoothing splines are used on the quantiles.

spar smoothing parameter for ‘splinefun’, typically in (0,1].

p.min minimum percentile for the first quantile.

36 normalize.quantiles

p.max maximum percentile for the last quantile.

incl.ends include the minimum and maximum values from the normalized and target ar-
rays in the fit.

converge (currently unimplemented)

verbose logical, if ‘TRUE’ then normalization progress is reported.

na.rm logical, if ‘TRUE’ then handle NA values (by ignoring them).

type a string specifying how the normalization should be applied. See details for
more.

... optional parameters to be passed through.

Details

This normalization method uses the quantiles from each array and the target to fit a system of cubic
splines to normalize the data. The target should be the mean (geometric) or median of each probe
but could also be the name of a particular chip in the abatch object.

Parameters setting can be of much importance when using this method. The parameter fit.iter
is used as a starting point to find a more appropriate value. Unfortunately the algorithm used
do not converge in some cases. If this happens, the fit.iter value is used and a warning is
thrown. Use of different settings for the parameter samples was reported to give good results.
More specifically, for about 200 data points use samples = 0.33, for about 2000 data points
use samples = 0.05, for about 10000 data points use samples = 0.02 (thanks to Paul
Boutros).

The type argument should be one of "separate","pmonly","mmonly","together"
which indicates whether to normalize only one probe type (PM,MM) or both together or separately.

Value

a normalized AffyBatch.

Author(s)

Laurent and Workman C.

References

Christopher Workman, Lars Juhl Jensen, Hanne Jarmer, Randy Berka, Laurent Gautier, Henrik
Bjorn Nielsen, Hans-Henrik Saxild, Claus Nielsen, Soren Brunak, and Steen Knudsen. A new
non-linear normal- ization method for reducing variability in dna microarray experiments. Genome
Biology, accepted, 2002

normalize.quantiles
Quantile Normalization

Description

Using a normalization based upon quantiles, this function normalizes a matrix of probe level inten-
sities.

normalize.quantiles.robust 37

Usage

normalize.AffyBatch.quantiles(abatch, type=c("separate","pmonly","mmonly","together"))

Arguments

abatch an AffyBatch object.

type A string specifying how the normalization should be applied. See details for
more.

Details

This method is based upon the concept of a quantile-quantile plot extended to n dimensions. No
special allowances are made for outliers. If you make use of quantile normalization either through
rma or expresso please cite Bolstad et al, Bioinformatics (2003).

The type argument should be one of "separate","pmonly","mmonly","together"which
indicates whether to normalize only one probe type (PM,MM) or both together or separately.

Value

A normalized AffyBatch.

Author(s)

Ben Bolstad, <bmbolstad.com>

References

Bolstad, B (2001) Probe Level Quantile Normalization of High Density Oligonucleotide Array
Data. Unpublished manuscript http://bmbolstad.com/stuff/qnorm.pdf

Bolstad, B. M., Irizarry R. A., Astrand, M, and Speed, T. P. (2003) A Comparison of Normalization
Methods for High Density Oligonucleotide Array Data Based on Bias and Variance. Bioinformatics
19(2) ,pp 185-193. http://bmbolstad.com/misc/normalize/normalize.html

See Also

normalize

normalize.quantiles.robust
Robust Quantile Normalization

Description

Using a normalization based upon quantiles, this function normalizes a matrix of probe level inten-
sities. Allows weighting of chips

http://bmbolstad.com/stuff/qnorm.pdf
http://bmbolstad.com/misc/normalize/normalize.html

38 normalize.quantiles.robust

Usage

normalize.AffyBatch.quantiles.robust(abatch,
type = c("separate","pmonly","mmonly","together"),
weights = NULL,
remove.extreme = c("variance","mean","both","none"),
n.remove = 1, use.median = FALSE,
use.log2 = FALSE)

Arguments

abatch an AffyBatch object.

type a string specifying how the normalization should be applied. See details for
more.

weights a vector of weights, one for each chip.
remove.extreme

if weights is NULL, then this will be used for determining which chips to remove
from the calculation of the normalization distribution. See details for more info.

n.remove number of chips to remove.

use.median if TRUE, the use the median to compute normalization chip; otherwise uses a
weighted mean.

use.log2 work on log2 scale. This means we will be using the geometric mean rather than
ordinary mean.

Details

This method is based upon the concept of a quantile-quantile plot extended to n dimensions. Note
that the matrix is of intensities not log intensities. The function performs better with raw intensities.

Choosing variance will remove chips with variances much higher or lower than the other chips,
mean removes chips with the mean most different from all the other means, both removes first
extreme variance and then an extreme mean. The option none does not remove any chips, but will
assign equal weights to all chips.

The type argument should be one of "separate","pmonly","mmonly","together"which
indicates whether to normalize only one probe type (PM,MM) or both together or separately.

Value

a matrix of normalized intensities

Note

This function is still experimental.

Author(s)

Ben Bolstad, <bmb@bmbolstad.com>

See Also

normalize, normalize.quantiles

normalize 39

normalize Normalize - generic

Description

A generic function which normalizes microarray data. Normalization is intended to remove from
the intensity measures any systematic trends which arise from the microarray technology rather than
from differences between the probes or between the target RNA samples hybridized to the arrays.

Usage

normalize(object, ...)

Arguments

object a data object containing microarray data.

... any other arguments.

See Also

Type showMethods("normalize") at the R prompt to see what methods are available. Help
on individual methods is generally available as normalize.<class> where <class> is the class of
the data object. For example, for the main class in the affy package use ?normalize.AffyBatch.

Other Bioconductor packages include some related generic functions: normalizeWithinArrays,
and normalizeBetweenArrays, in the limma package.

pairs.AffyBatch plot intensities using ’pairs’

Description

Plot intensities using the function ’pairs’

Usage

S3 method for class 'AffyBatch':
pairs(x, panel=points, ..., transfo=I, main=NULL, oma=NULL,

font.main = par("font.main"),
cex.main = par("cex.main"), cex.labels = NULL,
lower.panel=panel, upper.panel=NULL, diag.panel=NULL,
font.labels = 1, row1attop = TRUE, gap = 1)

40 plotDensity

Arguments

x an AffyBatch object.

panel a function to produce a plot (see pairs).

... extra parameters for the ’panel’ function.

transfo a function to transform the intensity values before generating the plot. ’log’ and
’log2’ are popular choices.

main title for the plot

oma see ’oma’ in par.

font.main see pairs.

cex.main see pairs.

cex.labels see pairs.

lower.panel a function to produce the plots in the lower triangle (see pairs).

upper.panel a function to produce the plots in the upper triangle (see pairs).

diag.panel a function to produce the plots in the diagonal (see pairs).

font.labels see pairs.

row1attop see pairs.

gap see pairs.

Details

Plots with several chips can represent zillions of points. They require a lot of memory and can be
very slow to be displayed. You may want to try to split of the plots, or to plot them in a device like
’png’ or ’jpeg’.

plotDensity Plot Densities

Description

Plots the non-parametric density estimates using values contained in the columns of a matrix.

Usage

plotDensity(mat, ylab = "density", xlab="x", type="l", col=1:6,
na.rm = TRUE, ...)

plotDensity.AffyBatch(x, col = 1:6, log = TRUE,
which=c("pm","mm","both"),
ylab = "density",
xlab = NULL, ...)

plotLocation 41

Arguments

mat a matrix containing the values to make densities in the columns.

x an object of class AffyBatch.

log logical value. If TRUE the log of the intensities in the AffyBatch are plotted.

which should a histogram of the PMs, MMs, or both be made?

col the colors to use for the different arrays.

ylab a title for the y axis.

xlab a title for the x axis.

type type for the plot.

na.rm handling of NA values.

... graphical parameters can be given as arguments to plot.

Details

The list returned can be convenient for plotting large input matrices with different colors/line types
schemes (the computation of the densities can take some time).

To match other functions in base R, this function should probably be called matdensity, as it is
sharing similarities with matplot and matlines.

Value

It returns invisibly a list of two matrices ‘x’ and ‘y’.

Author(s)

Ben Bolstad and Laurent Gautier

Examples

if (require(affydata)) {
data(Dilution)
plotDensity(exprs(Dilution), log="x")

}

plotLocation Plot a location on a cel image

Description

Plots a location on a previously plotted cel image. This can be used to locate the physical location
of probes on the array.

Usage

plotLocation(x, col="green", pch=22, ...)

42 plot.ProbeSet

Arguments

x a ‘location’. It can be obtained by the method of AffyBatch indexProbes,
or made elsewhere (basically a location is nrows and two columns array. The
first column corresponds to the x positions and the second columns corresponds
to the y positions of n elements to locate).

col colors for the plot.

pch plotting type (see function plot).

... other parameters passed to the function points.

Author(s)

Laurent

See Also

AffyBatch

Examples

if (require(affydata)) {
data(Dilution)

image of the celfile
image(Dilution[, 1])

genenames, arbitrarily pick the 101th
n <- geneNames(Dilution)[101]

get the location for the gene n
l <- indexProbes(Dilution, "both", n)[[1]]
convert the index to X/Y coordinates
xy <- indices2xy(l, abatch=Dilution)

plot
plotLocation(xy)

}

plot.ProbeSet plot a probe set

Description

Plot intensities by probe set.

Usage

S3 method for class 'ProbeSet':
plot(x, which=c("pm", "mm"), xlab = "probes", type = "l", ylim = NULL, ...)

pmcorrect 43

Arguments

x a ProbeSet object.

which get the PM or the MM.

xlab x-axis label.

type plot type.

ylim range of the y-axis.

... optional arguments to be passed to matplot.

Value

This function is only used for its (graphical) side-effect.

See Also

ProbeSet

Examples

data(SpikeIn)
plot(SpikeIn)

pmcorrect PM Correction

Description

Corrects the PM intensities in a ProbeSet for non-specific binding.

Usage

pmcorrect.pmonly(object)

pmcorrect.subtractmm(object)

pmcorrect.mas(object, contrast.tau=0.03, scale.tau=10, delta=2^(-20))

Arguments

object An object of class ProbeSet.

contrast.tau a number denoting the contrast tau parameter in the MAS 5.0 pm correction
algorithm.

scale.tau a number denoting the scale tau parameter in the MAS 5.0 pm correction algo-
rithm.

delta a number denoting the delta parameter in the MAS 5.0 pm correction algorithm.

Details

These are the pm correction methods perfromed by Affymetrix MAS 4.0 (subtractmm) and MAS
5.0 (mas). See the Affymetrix Manual for details. pmonly does what you think: does not change
the PM values.

44 ppsetApply

Value

A ProbeSet for which the pm slot contains the corrected PM values.

References

Affymetrix MAS 4.0 and 5.0 manual

Examples

if (require(affydata)) {
data(Dilution)
gn <- geneNames(Dilution)
pps <- probeset(Dilution, gn[1])[[1]]

pps.pmonly <- pmcorrect.pmonly(pps)
pps.subtractmm <- pmcorrect.subtractmm(pps)
pps.mas5 <- pmcorrect.mas(pps)

}

ppsetApply Apply a function over the ProbeSets in an AffyBatch

Description

Apply a function over the ProbeSets in an AffyBatch

Usage

ppsetApply(abatch, FUN, genenames = NULL, ...)

ppset.ttest(ppset, covariate, pmcorrect.fun = pmcorrect.pmonly, ...)

Arguments

abatch an object inheriting from AffyBatch.

ppset an object of class ProbeSet.

covariate the name a covariate in the slot phenoData.
pmcorrect.fun

a function to correct PM intensities.

FUN a function working on a ProbeSet.

genenames a list of Affymetrix probesets ids to work with. All probe set ids used when
NULL.

... optional parameters to the function FUN.

Value

Returns a list of objects, or values, as returned by the function FUN for each ProbeSet it
processes.

probeMatch-methods 45

Author(s)

Laurent Gautier <laurent@cbs.dtu.dk>

See Also

ProbeSet-class

Examples

ppset.ttest <- function(ppset, covariate, pmcorrect.fun = pmcorrect.pmonly, ...) {
probes <- do.call("pmcorrect.fun", list(ppset))
my.ttest <- function(x) {
y <- split(x, get(covariate))
t.test(y[[1]], y[[2]])$p.value

}
r <- apply(probes, 1, my.ttest)
return(r)

}
##this takes a long time - and rowttests is a good alternative
eg: rt = rowttests(exprs(Dilution), Dilution$liver)
Not run:

data(Dilution)
all.ttest <- ppsetApply(Dilution, ppset.ttest, covariate="liver")

End(Not run)

probeMatch-methods Methods for accessing perfect matches and mismatches

Description

Methods for perfect matches and mismatches probes

Methods

object = AffyBatch All the perfect match (pm) or mismatch (mm) probes on the arrays the object
represents are returned.

object = ProbeSet The pm or mm of the object are returned.

probeNames-methods Methods for accessing the Probe Names

Description

Methods for accessing Probe Names

Methods

object = Cdf an accessor function for the name slot.
object = probeNames returns the probe names associated with the rownames of the intensity ma-

trices one gets with the pm and mm methods.

46 ProbeSet-class

ProbeSet-class Class ProbeSet

Description

A simple class that contains the PM and MM data for a probe set from one or more samples.

Objects from the Class

Objects can be created by applying the method probeset to instances of AffyBatch.

Slots

id: Object of class "character" containing the probeset ID.

pm: Object of class "matrix" containing the PM intensities. Columns represent samples and
rows the different probes.

mm: Object of class "matrix" containing the MM intensities.

Methods

colnames signature(x = "ProbeSet"): the column names of the pm matrices which are
the sample names

express.summary.stat signature(x = "ProbeSet", pmcorrect = "character",
summary = "character"): applies a summary statistic to the probe set.

sampleNames signature(object = "ProbeSet"): the column names of the pmmatrices
which are the sample names.

Note

More details are contained in the vignette.

See Also

probeset, AffyBatch-class

Examples

if (require(affydata)) {
data(Dilution)
ps <- probeset(Dilution, geneNames(Dilution)[1:2])
names(ps)
print(ps[[1]])

}

ProgressBarText-class 47

ProgressBarText-class
Class "ProgressBarText"

Description

A class to handle progress bars in text mode.

Objects from the Class

Objects can be created by calls of the form new("ProgressBarText", steps).

Slots

steps: Object of class "integer". The total number of steps the progress bar should represent.

barsteps: Object of class "integer". The size of the progress bar.

internals: Object of class "environment". For internal use.

Methods

close signature(con = "ProgressBarText"): Terminate the progress bar (i.e. print
what needs to be printed). Note that closing the instance will ensure the progress bar is plotted
to its end.

initialize signature(.Object = "ProgressBarText"): initialize a instance.

open signature(con = "ProgressBarText"): Open a progress bar (i.e. print things).
In the case open is called on a progress bar that was ’progress’, the progress bar is resumed
(this might be useful when one wishes to insert text output while there is a progress bar run-
ning).

updateMe signature(object = "ProgressBarText"): Update the progress bar (see
examples).

Author(s)

Laurent

Examples

f <- function(x, header = TRUE) {
pbt <- new("ProgressBarText", length(x), barsteps = as.integer(20))

open(pbt, header = header)

for (i in x) {
Sys.sleep(i)
updateMe(pbt)

}
close(pbt)

}

if too fast on your machine, change the number
x <- runif(15)

48 read.affybatch

f(x)
f(x, header = FALSE)

'cost' of the progress bar:
g <- function(x) {
z <- 1
for (i in 1:x) {
z <- z + 1

}
}
h <- function(x) {

pbt <- new("ProgressBarText", as.integer(x), barsteps = as.integer(20))
open(pbt)
for (i in 1:x) {
updateMe(pbt)

}
close(pbt)

}

system.time(g(10000))
system.time(h(10000))

read.affybatch Read CEL files into an AffyBatch

Description

Read CEL files into an Affybatch.

Usage

read.affybatch(..., filenames = character(0),
phenoData = new("AnnotatedDataFrame"),
description = NULL,
notes = "",
compress = getOption("BioC")$affy$compress.cel,
rm.mask = FALSE, rm.outliers = FALSE, rm.extra = FALSE,
verbose = FALSE,sd=FALSE, cdfname = NULL)

ReadAffy(..., filenames=character(0),
widget=getOption("BioC")$affy$use.widgets,
compress=getOption("BioC")$affy$compress.cel,
celfile.path=NULL,
sampleNames=NULL,
phenoData=NULL,
description=NULL,
notes="",
rm.mask=FALSE, rm.outliers=FALSE, rm.extra=FALSE,
verbose=FALSE,sd=FALSE, cdfname = NULL)

read.affybatch 49

Arguments

... file names separated by comma.

filenames file names in a character vector.

phenoData an AnnotatedDataFrame object, a character of length one, or a data.frame.

description a MIAME object.

notes notes.

compress are the CEL files compressed?

rm.mask should the spots marked as ’MASKS’ set to NA?

rm.outliers should the spots marked as ’OUTLIERS’ set to NA?

rm.extra if TRUE, then overrides what is in rm.mask and rm.oultiers.

verbose verbosity flag.

widget a logical specifying if widgets should be used.

celfile.path a character denoting the path ReadAffy should look for cel files.

sampleNames a character vector of sample names to be used in the AffyBatch.

sd should the standard deviation values in the CEL file be read in? Since these are
typically not used default is not to read them in. This also save lots of memory.

cdfname used to specify the name of an alternative cdf package. If set to NULL, then the
usual cdf package based on Affymetrix’s mappings will be used.

Details

ReadAffy is a wrapper for read.affybatch that permits the user to read in phenoData, MI-
AME information, and CEL files using widgets. One can also define files where to read phenoData
and MIAME information.

If the function is called with no arguments ReadAffy() all the CEL files in the working directory
are read and put into an AffyBatch. However, the arguments give the user great flexibility.

If phenoData is a character vector of length 1, the function read.AnnotatedDataFrame is
called to read a file of that name and produce the AnnotationDataFrame object with the sample
metadata. If phenoData is a data.frame, it is converted to an AnnotatedDataFrame. If it
is NULL and widget=FALSE (widget=TRUE is not currently supported), then a default object
of class AnnotatedDataFrame is created, whose pData is a data.frame with rownames being
the names of the CEL files, and with one column sample with an integer index.

AllButCelsForReadAffy is an internal function that gets called by ReadAffy. It gets all the
information except the cel intensities.

description is read using read.MIAME. If a character is given, then it tries to read the file
with that name to obtain a MIAME instance. If left NULL but widget=TRUE, then widgets are
used. If left NULL and widget=FALSE, then an empty instance of MIAME is created.

Value

An AffyBatch object.

Author(s)

Ben Bolstad <bmb@bmbolstad.com> (read.affybatch), Laurent Gautier, and Rafael A. Irizarry
(ReadAffy)

50 read.probematrix

See Also

AffyBatch

Examples

if(require(affydata)){
celpath <- system.file("celfiles", package="affydata")
fns <- list.celfiles(path=celpath,full.names=TRUE)

cat("Reading files:\n",paste(fns,collapse="\n"),"\n")
##read a binary celfile
abatch <- ReadAffy(filenames=fns[1])
##read a text celfile
abatch <- ReadAffy(filenames=fns[2])
##read all files in that dir
abatch <- ReadAffy(celfile.path=celpath)

}

read.probematrix Read CEL file data into PM or MM matrices

Description

Read CEL data into matrices.

Usage

read.probematrix(..., filenames = character(0),
phenoData = new("AnnotatedDataFrame"),
description = NULL,
notes = "",
compress = getOption("BioC")$affy$compress.cel,
rm.mask = FALSE, rm.outliers = FALSE, rm.extra = FALSE,
verbose = FALSE, which = "pm", cdfname = NULL)

Arguments

... file names separated by comma.
filenames file names in a character vector.
phenoData a AnnotatedDataFrame object.
description a MIAME object.
notes notes.
compress are the CEL files compressed?
rm.mask should the spots marked as ’MASKS’ set to NA?
rm.outliers should the spots marked as ’OUTLIERS’ set to NA?
rm.extra if TRUE, overrides what is in rm.mask and rm.oultiers.
verbose verbosity flag.
which should be either "pm", "mm" or "both".
cdfname Used to specify the name of an alternative cdf package. If set to NULL, the usual

cdf package based on Affymetrix’s mappings will be used.

rma 51

Value

A list of one or two matrices. Each matrix is either PM or MM data. No AffyBatch is created.

Author(s)

Ben Bolstad <bmb@bmbolstad.com>

See Also

AffyBatch, read.affybatch

rma Robust Multi-Array Average expression measure

Description

This function converts an AffyBatch object into an ExpressionSet object using the robust
multi-array average (RMA) expression measure.

Usage

rma(object, subset=NULL, verbose=TRUE, destructive=TRUE, normalize=TRUE,
background=TRUE, bgversion=2, ...)

Arguments

object an AffyBatch object.

subset a character vector with the the names of the probesets to be used in expression
calculation.

verbose logical value. If TRUE, it writes out some messages indicating progress. If
FALSE nothing should be printed.

destructive logical value. If TRUE, works on the PM matrix in place as much as possible,
good for large datasets.

normalize logical value. If TRUE, normalize data using quantile normalization.

background logical value. If TRUE, background correct using RMA background correction.

bgversion integer value indicating which RMA background to use 1: use background simi-
lar to pure R rma background given in affy version 1.0 - 1.0.2 2: use background
similar to pure R rma background given in affy version 1.1 and above

... further arguments to be passed (not currently implemented - stub for future use).

Details

This function computes the RMA (Robust Multichip Average) expression measure described in
Irizarry et al Biostatistics (2003).

Note that this expression measure is given to you in log base 2 scale. This differs from most of the
other expression measure methods.

Please note that the default background adjustment method was changed during the lead up to the
Bioconductor 1.2 release. This means that this function and expresso should give results that
directly agree.

52 .setAffyOptions

Value

An ExpressionSet

Author(s)

Ben Bolstad <bmb@bmbolstad.com>

References

Rafael. A. Irizarry, Benjamin M. Bolstad, Francois Collin, Leslie M. Cope, Bridget Hobbs and Ter-
ence P. Speed (2003), Summaries of Affymetrix GeneChip probe level data Nucleic Acids Research
31(4):e15

Bolstad, B.M., Irizarry R. A., Astrand M., and Speed, T.P. (2003), A Comparison of Normalization
Methods for High Density Oligonucleotide Array Data Based on Bias and Variance. Bioinformatics
19(2):185-193

Irizarry, RA, Hobbs, B, Collin, F, Beazer-Barclay, YD, Antonellis, KJ, Scherf, U, Speed, TP (2003)
Exploration, Normalization, and Summaries of High Density Oligonucleotide Array Probe Level
Data. Biostatistics .Vol. 4, Number 2: 249-264

See Also

expresso

Examples

if (require(affydata)) {
data(Dilution)
eset <- rma(Dilution)

}

.setAffyOptions ~~function to set options ~~

Description

~~ Set the options for the package

Usage

.setAffyOptions(affy.opt = NA)

Arguments

affy.opt A list structure of options. If NA, the default options are set.

Details

See the vignettes to know more. This function could disappear in favor of a more general one the
package Biobase.

SpikeIn 53

Value

The function is used for its side effect. Nothing is returned.

Author(s)

Laurent

Examples

affy.opt <- getOption("BioC")$affy

.setAffyOptions(affy.opt)

SpikeIn SpikeIn Experiment Data: ProbeSet Example

Description

This ProbeSet represents part of SpikeIn experiment data set.

Usage

data(SpikeIn)

Format

SpikeIn is ProbeSet containing the PM and MM intensities for a gene spiked in at differ-
ent concentrations (given in the vector colnames(pm(SpikeIn))) in 12 different arrays.

Source

This comes from an experiments where 11 different cRNA fragments have been added to the hy-
bridization mixture of the GeneChip arrays at different pM concentrations. The 11 control cRNAs
were BioB-5, BioB-M, BioB-3, BioC-5, BioC-3, BioDn-5 (all E. coli), CreX-5, CreX-3 (phage P1),
and DapX-5, DapX-M, DapX-3 (B. subtilis) The cRNA were chosen to match the target sequence
for each of the Affymetrix control probe sets. For example, for DapX (a B. subtilis gene), the 5’,
middle and 3’ target sequences (identified by DapX-5, DapX-M, DapX-3) were each synthesized
separately and spiked-in at a specific concentration. Thus, for example, DapX-3 target sequence
may be added to the total hybridization solution of 200 micro-liters to give a final concentration of
0.5 pM.

For this example we have the PM and MM for BioB-5 obtained from the arrays where it was
spiked in at 0.0, 0.5, 0.75, 1, 1.5, 2, 3, 5, 12.5, 25, 50, and 150 pM.

For more information see Irizarry, R.A., et al. (2001) http://biosun01.biostat.jhsph.
edu/~ririzarr/papers/index.html

http://biosun01.biostat.jhsph.edu/~ririzarr/papers/index.html
http://biosun01.biostat.jhsph.edu/~ririzarr/papers/index.html

54 tukey.biweight

summary Probe Set Summarizing Functions

Description

These were used with the function express, which is no longer part of the package. Some are
still used by the generateExprVal functions, but you should avoid using them directly.

See Also

expresso

tukey.biweight One-step Tukey’s biweight

Description

One-step Tukey’s biweight on a matrix.

Usage

tukey.biweight(x, c = 5, epsilon = 1e-04)

Arguments

x a matrix.

c tuning constant (see details).

epsilon fuzzy value to avoid division by zero (see details).

Details

The details can be found in the given reference.

Value

a vector of values (one value per column in the input matrix).

References

Statistical Algorithms Description Document, 2002, Affymetrix.

See Also

pmcorrect.mas and generateExprVal.method.mas

whatcdf 55

whatcdf Find which CDF corresponds

Description

Find which kind of CDF corresponds to a CEL file.

Usage

whatcdf(filename, compress = getOption("BioC")$affy$compress.cel)

Arguments

filename a ’.CEL’ file name.
compress logical (file compressed or not).

Details

Information concerning the corresponding CDF file seems to be found in CEL files. This allows us
to try to link CDF information automatically.

Value

a character with the name of the CDF.

See Also

getInfoInAffyFile, read.celfile

xy2indices Functions to convert indices to x/y (and reverse)

Description

Functions to convert indices to x/y (and reverse)

Usage

xy2indices(x, y, nr = NULL, cel = NULL, abatch = NULL, cdf = NULL, xy.offset = NULL)
indices2xy(i, nr = NULL, cel = NULL, abatch = NULL, cdf = NULL, xy.offset = NULL)

Arguments

x X position for the probes.
y Y position for the probes.
i indices in the AffyBatch for the probes.
nr total number of Xs on the chip.
cel a corresponding object of class Cel.
abatch a corresponding object of class AffyBatch.
cdf character - the name of the corresponding cdf package.
xy.offset an eventual offset for the XY coordinates. See Details.

56 xy2indices

Details

The probes intensities for given probe set ids are extracted from an AffyBatch object using the
indices stored in the corresponding cdfenv.

The parameter xy.offset is there for compatibility. For historical reasons, the xy-coordinates
for the features on Affymetrix chips were decided to start at 1 (one) rather than 0 (zero). One can
set the offset to 1 or to 0. Unless the you _really_ know what you are doing, it is advisable to let
it at the default value NULL. This way the package-wide option xy.offset is always used.

Value

A vector of indices or a two-columns matrix of Xs and Ys.

Warning

Even if one really knows what is going on, playing with the parameter xy.offset could be risky.
Changing the package-wide option xy.offset appears much more sane.

Author(s)

L.

See Also

indexProbes

Examples

if (require(affydata)) {
data(Dilution)
pm.i <- indexProbes(Dilution, which="pm", genenames="AFFX-BioC-5_at")[[1]]
mm.i <- indexProbes(Dilution, which="mm", genenames="AFFX-BioC-5_at")[[1]]

pm.i.xy <- indices2xy(pm.i, abatch = Dilution)
mm.i.xy <- indices2xy(mm.i, abatch = Dilution)

image(Dilution[1], transfo=log2)
plot the pm in red
plotLocation(pm.i.xy, col="red")
plotLocation(mm.i.xy, col="blue")

}

Index

∗Topic aplot
plotLocation, 41

∗Topic character
cleancdfname, 10
list.celfiles, 23

∗Topic classes
AffyBatch-class, 1
ProbeSet-class, 46
ProgressBarText-class, 47

∗Topic datasets
cdfenv.example, 9
SpikeIn, 53

∗Topic hplot
AffyRNAdeg, 4
barplot.ProbeSet, 6
MAplot, 24
mva.pairs, 29
pairs.AffyBatch, 39
plot.ProbeSet, 42
plotDensity, 40

∗Topic interface
expressoWidget, 13

∗Topic manip
.setAffyOptions, 52
affy-options, 4
affy.scalevalue.exprSet, 6
AffyRNAdeg, 4
bg.adjust, 7
bg.correct, 8
expresso, 11
fit.li.wong, 14
generateExprSet-method, 16
generateExprVal, 19
generateExprVal.method.avgdiff,

17
generateExprVal.method.playerout,

18
justRMA, 21
mas5, 28
mas5calls, 25
merge.AffyBatch, 29
normalize-methods, 34
normalize.constant, 30

normalize.contrasts, 31
normalize.invariantset, 32
normalize.qspline, 35
normalize.quantiles, 36
normalize.quantiles.robust,

37
pmcorrect, 43
ppsetApply, 44
read.affybatch, 48
read.probematrix, 50
rma, 51
summary, 54
tukey.biweight, 54
whatcdf, 55
xy2indices, 55

∗Topic math
hlog, 20

∗Topic methods
debug.affy123, 11
probeMatch-methods, 45
probeNames-methods, 45

∗Topic models
fit.li.wong, 14
normalize, 39

∗Topic smooth
loess.normalize, 23
normalize.loess, 33

∗Topic utilities
cdfFromBioC, 9

.setAffyOptions, 52
[,AffyBatch-method

(AffyBatch-class), 1
[<-,AffyBatch-method

(AffyBatch-class), 1
[[,AffyBatch-method

(AffyBatch-class), 1
$.AffyBatch (AffyBatch-class), 1

affy-options, 4
affy.scalevalue.exprSet, 6, 12, 28
AffyBatch, 8, 11, 12, 16, 17, 28–34, 37, 38,

40–42, 50, 51, 55
AffyBatch (AffyBatch-class), 1
AffyBatch,ANY (AffyBatch-class), 1

57

58 INDEX

AffyBatch-class, 5, 25, 29–31, 35, 46
AffyBatch-class, 1
AffyRNAdeg, 4
AllButCelsForReadAffy

(read.affybatch), 48
AnnotatedDataFrame, 21, 22, 49, 50
avdiff (summary), 54

barplot, 7
barplot,ProbeSet-method

(ProbeSet-class), 46
barplot.ProbeSet, 6
bg.adjust, 7, 8
bg.correct, 8
bg.correct,AffyBatch,character-method

(AffyBatch-class), 1
bg.correct.rma, 7, 8
bg.parameters (bg.adjust), 7
bgcorrect (expresso), 11
bgcorrect.methods

(normalize-methods), 34
boxplot, 2
boxplot,AffyBatch-method

(AffyBatch-class), 1

cdfenv.example, 9
cdfFromBioC, 9
cdfFromEnvironment (cdfFromBioC),

9
cdfFromLibPath (cdfFromBioC), 9
cdfName (AffyBatch-class), 1
cdfName,AffyBatch-method

(AffyBatch-class), 1
checkValidFilenames

(AffyBatch-class), 1
cleancdfname, 10
close,ProgressBarText-method

(ProgressBarText-class), 47
col,AffyBatch-method

(AffyBatch-class), 1
colnames,ProbeSet-method

(ProbeSet-class), 46
computeExprSet, 12
computeExprSet

(generateExprSet-method),
16

computeExprSet,AffyBatch,character,character-method
(AffyBatch-class), 1

concentrations (SpikeIn), 53

debug.affy123, 11
dim,AffyBatch-method

(AffyBatch-class), 1

environment, 9
eSet, 1, 3
express.summary.stat

(generateExprVal), 19
express.summary.stat,ProbeSet,character,character-method

(ProbeSet-class), 46
express.summary.stat-methods

(generateExprVal), 19
express.summary.stat.methods

(generateExprVal), 19
ExpressionSet, 6, 12, 16, 22, 28, 51, 52
expresso, 11, 14, 16, 17, 28, 37, 51, 52, 54
expressoWidget, 13
exprs,AffyBatch-method

(AffyBatch-class), 1
exprs<-,AffyBatch,ANY-method

(AffyBatch-class), 1

featureNames,AffyBatch-method
(AffyBatch-class), 1

featureNames<-,AffyBatch-method
(AffyBatch-class), 1

fit.li.wong, 12, 14, 18

geneNames (AffyBatch-class), 1
geneNames,AffyBatch-method

(AffyBatch-class), 1
geneNames<- (AffyBatch-class), 1
geneNames<-,AffyBatch,ANY-method

(AffyBatch-class), 1
generateExprSet-methods, 18
generateExprSet-method, 16
generateExprSet-methods

(generateExprSet-method),
16

generateExprSet.methods
(generateExprSet-method),
16

generateExprVal, 19
generateExprVal.method.avgdiff,

17
generateExprVal.method.liwong

(generateExprVal.method.avgdiff),
17

generateExprVal.method.mas, 54
generateExprVal.method.mas

(generateExprVal.method.avgdiff),
17

generateExprVal.method.medianpolish
(generateExprVal.method.avgdiff),
17

generateExprVal.method.playerout,
18, 18

INDEX 59

getCdfInfo (AffyBatch-class), 1
getCdfInfo,AffyBatch-method

(AffyBatch-class), 1

hist,AffyBatch-method
(AffyBatch-class), 1

hlog, 20

image (AffyBatch-class), 1
image,AffyBatch-method

(AffyBatch-class), 1
indexProbes, 56
indexProbes (AffyBatch-class), 1
indexProbes,AffyBatch,character-method

(AffyBatch-class), 1
indexProbes,AffyBatch,missing-method

(AffyBatch-class), 1
indexProbes,AffyBatch-method

(AffyBatch-class), 1
indices2xy (xy2indices), 55
initialize,AffyBatch-method

(AffyBatch-class), 1
initialize,ProgressBarText-method

(ProgressBarText-class), 47
intensity (AffyBatch-class), 1
intensity,AffyBatch-method

(AffyBatch-class), 1
intensity<- (AffyBatch-class), 1
intensity<-,AffyBatch-method

(AffyBatch-class), 1

just.rma (justRMA), 21
justRMA, 21

length,AffyBatch-method
(AffyBatch-class), 1

li.wong, 16
li.wong (fit.li.wong), 14
list.celfiles, 23
list.files, 23
loess, 24, 25, 30, 31, 33
loess.normalize, 23

ma.plot (MAplot), 24
maffy.normalize, 24, 31
maffy.subset, 24
mapCdfName (cleancdfname), 10
MAplot, 24
MAplot,AffyBatch-method (MAplot),

24
mas5, 28
mas5.detection (mas5calls), 25
mas5calls, 25

mas5calls,AffyBatch-method
(mas5calls), 25

mas5calls,ProbeSet-method
(mas5calls), 25

mas5calls.AffyBatch (mas5calls),
25

mas5calls.ProbeSet (mas5calls), 25
Mbox (MAplot), 24
Mbox,AffyBatch-method (MAplot), 24
medianpolish (summary), 54
merge.AffyBatch, 3, 29
MIAME, 21, 49, 50
mm (probeMatch-methods), 45
mm,AffyBatch-method

(AffyBatch-class), 1
mm,ProbeSet-method

(ProbeSet-class), 46
mm<- (probeMatch-methods), 45
mm<-,AffyBatch,ANY-method

(AffyBatch-class), 1
mm<-,ProbeSet,matrix-method

(ProbeSet-class), 46
mmindex (AffyBatch-class), 1
mmindex,AffyBatch-method

(AffyBatch-class), 1
mva.pairs, 25, 29

normalize, 3, 33, 35, 37, 38, 39
normalize,AffyBatch-method

(normalize-methods), 34
normalize-methods, 34
normalize.AffyBatch

(normalize-methods), 34
normalize.AffyBatch.constant

(normalize.constant), 30
normalize.AffyBatch.contrasts

(normalize.contrasts), 31
normalize.AffyBatch.invariantset

(normalize.invariantset),
32

normalize.AffyBatch.loess
(normalize.loess), 33

normalize.AffyBatch.qspline
(normalize.qspline), 35

normalize.AffyBatch.quantiles
(normalize.quantiles), 36

normalize.AffyBatch.quantiles.robust
(normalize.quantiles.robust),
37

normalize.constant, 30
normalize.contrasts, 31
normalize.invariantset, 32
normalize.loess, 33

60 INDEX

normalize.methods
(normalize-methods), 34

normalize.methods,AffyBatch-method
(normalize-methods), 34

normalize.qspline, 35
normalize.quantiles, 24, 36, 38
normalize.quantiles.robust, 37
normalizeBetweenArrays, 39
normalizeWithinArrays, 39

open,ProgressBarText-method
(ProgressBarText-class), 47

optim, 18

pairs, 30, 40
pairs.AffyBatch, 3, 39
par, 40
playerout.costfunction

(generateExprVal.method.playerout),
18

plot, 5, 41
plot.ProbeSet, 42
plotAffyRNAdeg (AffyRNAdeg), 4
plotDensity, 2, 40
plotLocation, 41
pm (probeMatch-methods), 45
pm,AffyBatch-method

(AffyBatch-class), 1
pm,ProbeSet-method

(ProbeSet-class), 46
pm<- (probeMatch-methods), 45
pm<-,AffyBatch,ANY-method

(AffyBatch-class), 1
pm<-,ProbeSet,matrix-method

(ProbeSet-class), 46
pmcorrect, 43
pmcorrect.mas, 54
pmcorrect.methods

(normalize-methods), 34
pmindex (AffyBatch-class), 1
pmindex,AffyBatch-method

(AffyBatch-class), 1
ppset.ttest (ppsetApply), 44
ppsetApply, 44
probeMatch (probeMatch-methods),

45
probeMatch-methods, 45
probeNames (probeNames-methods),

45
probeNames,AffyBatch-method

(AffyBatch-class), 1
probeNames-methods, 45

probeNames<-
(probeNames-methods), 45

probes (AffyBatch-class), 1
probes,AffyBatch-method

(AffyBatch-class), 1
ProbeSet, 3, 17, 43, 44, 53
probeset, 46
probeset (AffyBatch-class), 1
probeset,AffyBatch-method

(AffyBatch-class), 1
ProbeSet-class, 45
ProbeSet-class, 46
ProgressBarText-class, 47

qspline-normalize
(normalize.qspline), 35

read.affybatch, 1, 22, 48, 51
read.AnnotatedDataFrame, 22, 49
read.MIAME, 22, 49
read.probematrix, 50
ReadAffy, 1
ReadAffy (read.affybatch), 48
rma, 22, 37, 51
row,AffyBatch-method

(AffyBatch-class), 1

sampleNames,ProbeSet-method
(ProbeSet-class), 46

se.exprs,AffyBatch-method
(AffyBatch-class), 1

se.exprs<-,AffyBatch-method
(AffyBatch-class), 1

show,AffyBatch-method
(AffyBatch-class), 1

show,ProbeSet-method
(ProbeSet-class), 46

smoothScatter, 25
SpikeIn, 53
summary, 54
summaryAffyRNAdeg (AffyRNAdeg), 4

tukey.biweight, 54
tukeybiweight (summary), 54

upDate.bgcorrect.methods
(normalize-methods), 34

upDate.express.summary.stat.methods
(generateExprVal), 19

upDate.generateExprSet.methods
(generateExprSet-method),
16

upDate.normalize.AffyBatch.methods
(normalize-methods), 34

INDEX 61

upDate.pmcorrect.methods
(normalize-methods), 34

updateMe (ProgressBarText-class),
47

updateMe,ProgressBarText-method
(ProgressBarText-class), 47

updateObject,AffyBatch-method
(AffyBatch-class), 1

whatcdf, 55

xy2indices, 55

	AffyBatch-class
	affy-options
	AffyRNAdeg
	affy.scalevalue.exprSet
	barplot.ProbeSet
	bg.adjust
	bg.correct
	cdfenv.example
	cdfFromBioC
	cleancdfname
	debug.affy123
	expresso
	expressoWidget
	fit.li.wong
	generateExprSet-method
	generateExprVal.method.avgdiff
	generateExprVal.method.playerout
	generateExprVal
	hlog
	justRMA
	list.celfiles
	loess.normalize
	MAplot
	mas5calls
	mas5
	merge.AffyBatch
	mva.pairs
	normalize.constant
	normalize.contrasts
	normalize.invariantset
	normalize.loess
	normalize-methods
	normalize.qspline
	normalize.quantiles
	normalize.quantiles.robust
	normalize
	pairs.AffyBatch
	plotDensity
	plotLocation
	plot.ProbeSet
	pmcorrect
	ppsetApply
	probeMatch-methods
	probeNames-methods
	ProbeSet-class
	ProgressBarText-class
	read.affybatch
	read.probematrix
	rma
	.setAffyOptions
	SpikeIn
	summary
	tukey.biweight
	whatcdf
	xy2indices
	Index

