
GeneticsPed
April 19, 2010

check Check consistency of data in pedigree

Description

check performs a series of checks on pedigree object to ensure consistency of data.

Usage

check(x, ...)
checkId(x)

Arguments

x pedigree, object to be checked

... arguments to other methods, none for now

Details

checkId performs various checks on individuals and their ascendants. These checks are:

• idClass: all ids must have the same class

• idIsNA: individual can not be NA

• idNotUnique: individual must be unique

• idEqualAscendant: individual can not be equal to its ascendant

• ascendantEqualAscendant: ascendant can not be equal to another ascendant

• ascendantInAscendant: ascendant can not appear again as asescendant of other sex i.e. father
can not be a mother to someone else

• unusedLevels: in case factors are used for id presentation, there might be unused levels for
some ids - some functions rely on number of levels and a check is provided for this

checkAttributes is intended primarly for internal use and performs a series of checks on
attribute values needed in various functions. It causes stop with error messages for all given attribute
checks.

1

2 check

Value

List of more or less self-explanatory errors and "pointers" to these errors for ease of further work
i.e. removing errors.

Author(s)

Gregor Gorjanc

See Also

Pedigree

Examples

EXAMPLES BELLOW ARE ONLY FOR TESTING PURPOSES AND ARE NOT INTENDED
FOR USERS, BUT IT CAN NOT DO ANY HARM.

--- checkAttributes ---
tmp <- generatePedigree(5)
attr(tmp, "sorted") <- FALSE
attr(tmp, "coded") <- FALSE
GeneticsPed:::checkAttributes(tmp)
try(GeneticsPed:::checkAttributes(tmp, sorted=TRUE, coded=TRUE))

--- idClass ---
tmp <- generatePedigree(5)
tmp$id <- factor(tmp$id)
class(tmp$id)
class(tmp$father)
try(GeneticsPed:::idClass(tmp))

--- idIsNA ---
tmp <- generatePedigree(2)
tmp[1, 1] <- NA
GeneticsPed:::idIsNA(tmp)

--- idNotUnique ---
tmp <- generatePedigree(2)
tmp[2, 1] <- 1
GeneticsPed:::idNotUnique(tmp)

--- idEqualAscendant ---
tmp <- generatePedigree(2)
tmp[3, 2] <- tmp[3, 1]
GeneticsPed:::idEqualAscendant(tmp)

--- ascendantEqualAscendant ---
tmp <- generatePedigree(2)
tmp[3, 2] <- tmp[3, 3]
GeneticsPed:::ascendantEqualAscendant(tmp)

--- ascendantInAscendant ---
tmp <- generatePedigree(2)
tmp[3, 2] <- tmp[5, 3]
GeneticsPed:::ascendantInAscendant(tmp)
Example with multiple parents

Mrode 3

tmp <- data.frame(id=c("A", "B", "C", "D"),
father1=c("E", NA, "F", "H"),
father2=c("F", "E", "E", "I"),
mother=c("G", NA, "H", "E"))

tmp <- Pedigree(tmp, ascendant=c("father1", "father2", "mother"),
ascendantSex=c(1, 1, 2),
ascendantLevel=c(1, 1, 1))

GeneticsPed:::ascendantInAscendant(tmp)

--- unusedLevels ---
tmp <- generatePedigree(2, colClass="factor")
tmp[3:4, 2] <- NA
GeneticsPed:::unusedLevels(tmp)

Mrode Pedigree and data examples

Description

Various pedigree and data examples

Usage

data(Falconer5.1)
data(Mrode2.1)
data(Mrode3.1)

Format

Falconer5.1 is a rather complex (inbreed) pedigree example from book by Falconer and Mackay
(1996) - page 84 with 18 individuals and following columns:

sub individual

fat father

mot mother

Mrode2.1 is an extended pedigree example from book by Mrode (2005) - page 27 with 6 individ-
uals and following columns:

sub individual

fat father

mot mother

fam family

sex sex

gen generation

dtB date of birth

Mrode3.1 is a pedigree and data example from book by Mrode (2005) - page 43: it shows a
beef breeding scenario with 8 individuals (animals), where 5 of them have phenotypic records (pre-
weaning gain) and 3 three of them are without records and link others through the pedigree:

4 extend

calf calf

sex sex of a calf

sire father of a calf

dam mother of a calf

pwg pre-weaning gain of a calf in kg

References

Falconer, D. S. and Mackay, T. F. C. (1996) Introduction to Quantitative Genetics. 4th edition.
Longman, Essex, U.K. http://www.amazon.com/gp/product/0582243025

Mrode, R. A. (2005) Linear models for the prediction of animal breeding values. 2nd edition. CAB
International. ISBN 0-85199-000-2 http://www.amazon.com/gp/product/0851990002

Examples

data(Falconer5.1)
Pedigree(x=Falconer5.1, subject="sub", ascendant=c("fat", "mot"))

data(Mrode2.1)
Mrode2.1$dtB <- as.Date(Mrode2.1$dtB)
Pedigree(x=Mrode2.1, subject="sub", ascendant=c("fat", "mot"),

ascendantSex=c("M", "F"), family="fam", sex="sex",
generation="gen", dtBirth="dtB")

data(Mrode3.1)
Pedigree(x=Mrode3.1, subject="calf", ascendant=c("sire", "dam"),

ascendantSex=c("Male", "Female"), sex="sex")

extend Extend pedigree

Description

extend finds ascendants, which do not appear as individuals in pedigree and assigns them as
individuals with unknown ascendants in extended pedigree.

Usage

extend(x, ascendant=NULL, col=NULL, top=TRUE)

Arguments

x pedigree object

ascendant character, column names of ascendant(s), see details

col character, column name(s) of attribute(s), see details

top logical, add ascendants as individuals on the top or bottom of the pedigree

http://www.amazon.com/gp/product/0582243025
http://www.amazon.com/gp/product/0851990002

family 5

Details

Argument ascendant can be used to define, which ascendants will be extended. If ascendant=NULL,
which is the default, all ascendant columns in the pedigree are used. The same approach is used
with other pedigree attributes such as sex, generation, etc. with argument col. Use col=NA, if
none of the pedigree attributes should be extended.

Sex of “new” individuals is infered from attribute ascendantSex as used in Pedigree function.
Generation of “new” individuals is infered as minimal (generationOrder="increasing")
or maximal (generationOrder="decreasing") generation value in descendants - 1. See
Pedigree on this issue. Family values are extended with means of family.

Value

Extended pedigree, where all ascendants also appear as individuals with unknown ascendants and
infered other attributes such as sex, generation, etc. if this attributes are in the pedigree.

Author(s)

Gregor Gorjanc

See Also

Pedigree, family, geneticGroups???

Examples

--- Toy example ---
ped <- generatePedigree(nId=5, nGeneration=4, nFather=1, nMother=2)
ped <- ped[10:20,]
ped[5, "father"] <- NA # to test robustnes of extend on NA
extend(ped)
extend(ped, top=FALSE)

Extend only ascendant and their generation
extend(ped, col="generation")
extend(ped, col=c("generation", "sex"))

--- Bigger example ---
ped <- generatePedigree(nId=1000, nGeneration=10, nFather=100,

nMother=500)
nrow(ped)
Now keep some random individuals
ped <- ped[unique(sort(round(runif(n=nrow(ped)/2, min=1,

max=nrow(ped))))),]
nrow(ped)
nrow(extend(ped))

family Find families (lines) in the pedigree

6 family

Description

family classifies individuals in the pedigree to distinct families or lines. Two individuals are
members of one family if they have at least one common ascendant. family<- provides mean to
properly add family information into the pedigree.

Usage

family(x)
family(x, col=NULL) <- value

Arguments

x pedigree object

col character, column name in x for family

value family values for individuals in the pedigree

Details

col provides a mean to name or possibly also rename family column with user specified value, say
"familia" in Spanish. When col=NULL, which is default, "family" is used.

Value

A vector of family values (integers)

Author(s)

Gregor Gorjanc

See Also

Pedigree

Examples

Two families examples
ped <- data.frame(id=c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11),

father=c(0, 0, 0, 0, 0, 0, 5, 1, 3, 8, 7),
mother=c(0, 0, 0, 0, 0, 0, 6, 2, 4, 9, 10),

generation=c(1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4))
ped <- Pedigree(ped, unknown=0, generation="generation")
family(ped)

After break we get two families
ped1 <- removeIndividual(ped, individual=11)
family(ped1)

Subsetting can also be used
family(ped[1:10,])
family(ped[7:10,])

Pedigree need not be sorted in advance
ped2 <- ped[sample(1:10),]
family(ped2)

isFounder 7

Assign family values to pedigree
family(ped) <- family(ped)
ped
family(ped, col="familia") <- family(ped)
ped

isFounder Founder and non-founder individuals in the pedigree

Description

isFounder classifies individuals in the pedigree as founders (base) or non-founders (non-base
individuals).

Usage

isFounder(x, col=attr(x, ".ascendant"))

Arguments

x pedigree object

col character, which columns should be checked, see examples

Details

By definition founders do not have any known ascendants, while the opossite is the case for non-
founders i.e. they have at least one known ascendant.

FIXME: any relation with founderGeneSet in GeneticsBase

Value

Boolean vector.

Author(s)

Gregor Gorjanc

See Also

Pedigree

Examples

ped <- generatePedigree(nId=5)
isFounder(ped)
Based only on fathers
isFounder(ped, col=c("father"))
Works also only on a part of a pedigree
isFounder(ped[1:5,])

8 geneContribution

geneContribution Gene contribution or proportion of genes in pedigree by individual

Description

geneContribution calculates gene contribution as proportion of genes in pedigree by individ-
ual with higher number of descendants will have higher values.

Usage

geneContribution(x, relative=TRUE)

Arguments

x pedigree

relative logical, should results be presented relative to number of individuals in the pedi-
gree

Value

Gene contribution values i.e. higher the values higher the contribution of genes by particular in-
dividual in the pedigree. When relative=FALSE, values represent number of individuals (in
conceptually additive manner i.e. 0.5 + 0.75 = 1.25 individual) in the pedigree that carry genes of a
particular individual. With relative=TRUE, values represent the same result as ratios to all indi-
viduals in the pedigree. Value 0 indicates that individual did not pass its genes to next generations.

Author(s)

Gregor Gorjanc

See Also

Pedigree

Examples

ped <- generatePedigree(nId=5, nGeneration=4, nFather=1, nMother=2)
geneContribution(ped)
geneContribution(ped, relative=FALSE)
geneContribution(ped[5:15,]) ## needs [method

More than one father example
ped <- data.frame(id=c(1, 2, 3, 4, 5, 6, 7),

father1=c(0, 0, 0, 2, 1, 1, 2),
father2=c(0, 0, 0, 0, 0, 2, 0),
mother=c(0, 0, 0, 0, 3, 3, 3),

generat=c(1, 1, 1, 2, 2, 2, 2))
ped <- Pedigree(ped, ascendant=c("father1", "father2", "mother"),

ascendantSex=c(1, 1, 2), ascendantLevel=c(1, 1, 1),
unknown=0, generation="generat")

geneContribution(ped)

generatePedigree 9

generatePedigree Generate Pedigree example

Description

generatePedigree creates nonoverlapping pedigree example, which can be used for demos
and code testing.

Usage

generatePedigree(nId, nGeneration=3, nFather=round(nId/3),
nMother=nId - nFather, start=1, generationOrder="increasing",
colClass="integer")

Arguments

nId integer, number of individuals per generation, at least 2

nGeneration integer, number of generations

nFather integer, number of fathers per generation

nMother integer, number of mothers per generation

start first generation value
generationOrder

character, generation value is "increasing" or "decreasing" through generations

colClass character, class for columns: "integer" or "factor"

Value

An extended, sorted and possibly coded pedigree object with following columns: id, father, mother,
generation and sex.

Author(s)

Marcos Rico Gutierrez (author of MATLAB code) and Gregor Gorjanc (R implementation)

References

Rico Gutierrez, M. (1999) Los modelos lineales en la mejora genetica animal. Ediciones Peninsular.
ISBN 84-605-9910-8.

See Also

Pedigree

Examples

generatePedigree(5)
generatePedigree(nId=5, nGeneration=4, nFather=1, nMother=2)
generatePedigree(nId=5, nGeneration=4, nFather=1, nMother=2,

start=0, generationOrder="decreasing")
generatePedigree(nId=100, nGeneration=20, nFather=10, nMother=50)

10 generation

generation Calculate generation value

Description

generation calculates generation value of individuals in given pedigree. generation<- pro-
vides a way to properly add generation information into the pedigree.

Usage

generation(x, start=1, generationOrder=NULL)
generation(x, generationOrder=NULL, col=NULL) <- value

Arguments

x pedigree object

start first generation value
generationOrder

character, should be generation values "increasing" or "decreasing" through gen-
erations, see details

col character, column name in x for generation

value generation values for individuals in the pedigree

Details

Generation value for founders is set to value start, which is by default 1, while other individuals
get it according to:

Gs = max(G1a + G2a + ...Gna) + 1

where G represents generation value for s - individual, a - ascendant e.g. father and mother, where
n=2. N might be higher if there are multiple ascendants i.e. this function can also handle pedigrees
with higher order ascendants e.g. grandfather.

generationOrder can be used to define "increasing" or "decreasing" order of generation values.
If this argument is NULL, which is default, then this information is taken from the pedigree - see
Pedigree for more on this issue.

col provides a way to name or possibly also rename generation column with user specified value,
say "generazione" in Italian. When col=NULL, which is default, "generation" is used.

Value

A vector of generation values (integers)

Author(s)

Gregor Gorjanc

See Also

Pedigree

gpi 11

Examples

Nonoverlapping pedigree
ped <- generatePedigree(nId=5, nGeneration=4, nFather=1, nMother=2)
ped$generation1 <- generation(ped)
ped

Overlapping Pedigree
ped <- data.frame(id=c(1, 2, 3, 4, 5, 6, 7),

father=c(0, 0, 2, 2, 2, 4, 4),
mother=c(0, 0, 1, 0, 3, 3, 5),

dtBirth=c(2, 1, 3, 4, 5, 6, 7))
ped <- Pedigree(ped, unknown=0, dtBirth="dtBirth")
generation(ped) <- generation(ped)

Overlapping pedigree + one individual (4) comes late in pedigree and
has no ascendants
ped <- data.frame(id=c(1, 2, 3, 4, 5, 6, 7),

father=c(0, 0, 2, 0, 2, 4, 4),
mother=c(0, 0, 1, 0, 3, 3, 5),

dtBirth=c(2, 1, 3, 2, 5, 6, 7))
ped <- Pedigree(ped, unknown=0, dtBirth="dtBirth")
generation(ped)
generation(ped, generationOrder="decreasing",

col="generazione") <- generation(ped, generationOrder="decreasing")

gpi Genotype probability index

Description

gpi calculates Genotype Probability Index (GPI), which indicates the information content of geno-
type probabilities derived from segregation analysis.

Usage

gpi(gp, hwp)

Arguments

gp numeric vector or matrix, individual genotype probabilities

hwp numeric vector or matrix, Hard-Weinberg genotype probabilities

Details

Genotype Probability Index (GPI; Kinghorn, 1997; Percy and Kinghorn, 2005) indicates informa-
tion that is contained in multi-allele genotype probabilities for diploids derived from segregation
analysis, say Thallman et. al (2001a, 2001b). GPI can be used as one of the criteria to help identify
which ungenotyped individuals or loci should be genotyped in order to maximise the benefit of
genotyping in the population (e.g. Kinghorn, 1999).

gp and hwp arguments accept genotype probabilities for multi-allele loci. If there are two alleles
(1 and 2), you should pass vector of probabilities for genotypes (11 and 12) i.e. one value for
heterozygotes (12 and 21) and always skipping last homozygote. With three alleles this vector

12 gpi

should hold probabilities for genotypes (11, 12, 13, 22, 23) as also shown bellow and in examples.
hwp and gpLong2Wide functions can be used to ease the setup for gp and hwp arguments.

2 alleles: 1 and 2
11 12
--> no. dimensions = 2

3 alleles: 1, 2, and 3
11 12 13

22 23
--> no. dimensions = 5

...

5 alleles: 1, 2, 3, 4, and 5
11 12 13 14 15

22 23 24 25
33 34 35

44 45
--> no. dimensions = 14

In general, number of dimensions (k) for n alleles is equal to:

k = (n ∗ (n + 1)/2)− 1.

If you have genotype probabilities for more than one individual, you can pass them to gp in a matrix
form, where each row represents genotype probabilities of an individual. In case of passing matrix
to gp, hwp can still accept a vector of Hardy-Weinberg genotype probabilities, which will be used
for all individuals due to recycling. If hwp also gets a matrix, then it must be of the same dimension
as that one passed to gp.

Value

Vector of N genotype probability indices, where N is number of individuals

Author(s)

Gregor Gorjanc R code, documentation, wrapping into a package; Andrew Percy and Brian P.
Kinghorn Fortran code

References

Kinghorn, B. P. (1997) An index of information content for genotype probabilities derived from seg-
regation analysis. Genetics 145(2):479-483 http://www.genetics.org/cgi/content/
abstract/145/2/479

Kinghorn, B. P. (1999) Use of segregation analysis to reduce genotyping costs. Journal of Animal
Breeding and Genetics 116(3):175-180 http://dx.doi.org/10.1046/j.1439-0388.1999.
00192.x

Percy, A. and Kinghorn, B. P. (2005) A genotype probability index for multiple alleles and hap-
lotypes. Journal of Animal Breeding and Genetics 122(6):387-392 http://dx.doi.org/10.
1111/j.1439-0388.2005.00553.x

http://www.genetics.org/cgi/content/abstract/145/2/479
http://www.genetics.org/cgi/content/abstract/145/2/479
http://dx.doi.org/10.1046/j.1439-0388.1999.00192.x
http://dx.doi.org/10.1046/j.1439-0388.1999.00192.x
http://dx.doi.org/10.1111/j.1439-0388.2005.00553.x
http://dx.doi.org/10.1111/j.1439-0388.2005.00553.x

gpi 13

Thallman, R. M. and Bennet, G. L. and Keele, J. W. and Kappes, S. M. (2001a) Efficient compu-
tation of genotype probabilities for loci with many alleles: I. Allelic peeling. Journal of Animal
Science 79(1):26-33 http://jas.fass.org/cgi/reprint/79/1/34

Thallman, R. M. and Bennet, G. L. and Keele, J. W. and Kappes, S. M. (2001b) Efficient compu-
tation of genotype probabilities for loci with many alleles: II. Iterative method for large, complex
pedigrees. Journal of Animal Science 79(1):34-44 http://jas.fass.org/cgi/reprint/
79/1/34

See Also

hwp and gpLong2Wide

Examples

--- Example 1 from Percy and Kinghorn (2005) ---
No. alleles: 2
No. individuals: 1
Individual genotype probabilities:
Pr(11, 12, 22) = (.1, .5, .4)
##
Hardy-Weinberg probabilities:
Pr(1, 2) = (.75, .25)
Pr(11, 12, (.75^2, 2*.75*.25,
22) = .25^2)
= (.5625, .3750,
.0625)

gp <- c(.1, .5)
hwp <- c(.5625, .3750)
gpi(gp=gp, hwp=hwp)

--- Example 1 from Percy and Kinghorn (2005) extended ---
No. alleles: 2
No. individuals: 2
Individual genotype probabilities:
Pr_1(11, 12, 22) = (.1, .5, .4)
Pr_2(11, 12, 22) = (.2, .5, .3)

(gp <- matrix(c(.1, .5, .2, .5), nrow=2, ncol=2, byrow=TRUE))
gpi(gp=gp, hwp=hwp)

--- Example 2 from Percy and Kinghorn (2005) ---
No. alleles: 3
No. individuals: 1
Individual genotype probabilities:
Pr(11, 12, 13, (.1, .5, .0,
22, 23 = .4, .0,
33) .0)
##
Hardy-Weinberg probabilities:
Pr(1, 2, 3) = (.75, .25, .0)
Pr(11, 12, 13, (.75^2, 2*.75*.25, .0,
22, 23, = 0.25^2, .0,
33) .0)
= (.5625, .3750, .0
.0625, .0,

http://jas.fass.org/cgi/reprint/79/1/34
http://jas.fass.org/cgi/reprint/79/1/34
http://jas.fass.org/cgi/reprint/79/1/34

14 hwp

.0)

gp <- c(.1, .5, .0, .4, .0)
hwp <- c(.5625, .3750, .0, .0625, .0)
gpi(gp=gp, hwp=hwp)

--- Example 3 from Percy and Kinghorn (2005) ---
No. alleles: 5
No. individuals: 1
Hardy-Weinberg probabilities:
Pr(1, 2, 3, 4, 5) = (.2, .2, .2, .2, .2)
Pr(11, 12, 13, ...) = (Pr(1)^2, 2*Pr(1)+Pr(2), 2*Pr(1)*Pr(3), ...)
##
Individual genotype probabilities:
Pr(11, 12, 13, ...) = gp / 2
Pr(12) = Pr(12) + .5

(hwp <- rep(.2, times=5) %*% t(rep(.2, times=5)))
hwp <- c(hwp[upper.tri(hwp, diag=TRUE)])
(hwp <- hwp[1:(length(hwp) - 1)])
gp <- hwp / 2
gp[2] <- gp[2] + .5
gp

gpi(gp=gp, hwp=hwp)

--- Simulate gp for n alleles and i individuals ---
n <- 3
i <- 10

kAll <- (n*(n+1)/2) # without -1 here!
k <- kAll - 1
if(require("gtools")) {
gp <- rdirichlet(n=i, alpha=rep(x=1, times=kAll))[, 1:k]
hwp <- as.vector(rdirichlet(n=1, alpha=rep(x=1, times=kAll)))[1:k]
gpi(gp=gp, hwp=hwp)

}

hwp Utility functions for gpi()

Description

gpLong2Wide changes data.frame with genotype probabilities in long form (one genotype per
row) to wide form (one individual per row) for use in gpi.

hwp calculates genotype probabilities according to Hardy-Weinberg law for use in gpi.

Usage

gpLong2Wide(x, id, genotype, prob, trim=TRUE)
hwp(x, trim=TRUE)

inbreeding 15

Arguments

x data.frame for gpLong2Wide, genotype for hwp

id character, column name in x holding individual identifications

genotype character, column name in x holding genotypes

prob character, column name in x holding genotype probabilities

trim logical, remove last column (for gpLong2Wide) or value (for hwp) of a result

Details

Hardy-Weinberg probabilities for a gene with two alleles A and B, with probabilities Pr(A) and
Pr(B) are:

• Pr(AA) = Pr(A)2

• Pr(AB) = 2 ∗ Pr(A) ∗ Pr(A)

• Pr(BB) = Pr(B)2

Value

gpLong2Wide returns a matrix with number of rows equal to number of individuals and number
of columns equal to number of possible genotypes.

hwp returns a vector with Hardy-Weinberg genotype probabilities.

Author(s)

Gregor Gorjanc

See Also

gpi, genotype, expectedGenotypes

Examples

if(require(genetics)) {
gen <- genotype(c("A/A", "A/B"))
hwp(x=gen)
hwp(x=gen, trim=FALSE)

}

inbreeding Inbreeding coefficient

Description

inbreeding calculates inbreeding coefficients of individuals in the pedigree

Usage

inbreeding(x, method="meuwissen", sort=TRUE, names=TRUE, ...)

16 inbreeding

Arguments

x pedigree object

method character, method of calculation "tabular", "meuwissen" or "sargolzaei", see de-
tails

sort logical, for the computation the pedigree needs to be sorted, but results are sorted
back to original sorting (sort=TRUE) or not (sort=FALSE)

names logical, should returned vector have names; this can be used to get leaner re-
turned object

... arguments for other methods

Details

Coefficient of inbreeding (F) represents probability that two alleles on a loci are identical by descent
(Wright, 1922; Falconer and Mackay, 1996). Wright (1922) showed how F can be calculated but
his method of paths is not easy to wrap in a program. Calculation of F can also be performed using
tabular method for setting the additive relationship matrix (Henderson, 1976), where Fi = Aii − 1.
Meuwissen and Luo (1992) and VanRaden (1992) developed faster algorithms for F calculation.
Wiggans et al. (1995) additionally explains method in VanRaden (1992). Sargolzaei et al. (2005)
presented yet another fast method.

Take care with sort=FALSE, names=FALSE. It is your own responsibility to assure proper
handling in this case.

Value

A vector of length n with inbreeding coefficients, where n is number of subjects in x

Author(s)

Gregor Gorjanc and Dave A. Henderson

References

Falconer, D. S. and Mackay, T. F. C. (1996) Introduction to Quantitative Genetics. 4th edition.
Longman, Essex, U.K. http://www.amazon.com/gp/product/0582243025

Henderson, C. R. (1976) A simple method for computing the inverse of a numerator relationship
matrix used in prediction of breeding values. Biometrics 32(1):69-83

Meuwissen, T. H. E. and Luo, Z. (1992) Computing inbreeding coefficients in large populations.
Genetics Selection and Evolution 24:305-313

Sargolzaei, M. and Iwaisaki, H. and Colleau, J.-J. (2005) A fast algorithm for computing inbreeding
coefficients in large populations. Journal of Animal Breeding and Genetics 122(5):325–331 http:
//dx.doi.org/10.1111/j.1439-0388.2005.00538.x

VanRaden, P. M. (1992) Accounting for inbreeding and crossbreeding in genetic evaluation for
large populations. Journal of Dairy Science 75(11):3136-3144 http://jds.fass.org/cgi/
content/abstract/75/11/3136

Wiggans, G. R. and VanRaden, P. M. and Zuurbier, J. (1995) Calculation and use of inbreeding co-
efficients for genetic evaluation of United States dairy cattle. Journal of Dairy Science 78(7):1584-
1590 http://jds.fass.org/cgi/content/abstract/75/11/3136

Wright, S. (1922) Coefficients of inbreeding and relationship. American Naturalist 56:330-338

http://www.amazon.com/gp/product/0582243025
http://dx.doi.org/10.1111/j.1439-0388.2005.00538.x
http://dx.doi.org/10.1111/j.1439-0388.2005.00538.x
http://jds.fass.org/cgi/content/abstract/75/11/3136
http://jds.fass.org/cgi/content/abstract/75/11/3136
http://jds.fass.org/cgi/content/abstract/75/11/3136

model.matrix.Pedigree 17

See Also

Pedigree, relationshipAdditive, kinship and geneFlowT

Examples

data(Mrode2.1)
Mrode2.1$dtB <- as.Date(Mrode2.1$dtB)
x2.1 <- Pedigree(x=Mrode2.1, subject="sub", ascendant=c("fat", "mot"),

ascendantSex=c("M", "F"), family="fam", sex="sex",
generation="gen", dtBirth="dtB")

fractions(inbreeding(x=x2.1))

Compare the speed
ped <- generatePedigree(nId=25)
system.time(inbreeding(x=ped))
system.time(inbreeding(x=ped, method="sargolzaei")) # not yet implemented
system.time(inbreeding(x=ped, method="tabular"))

model.matrix.Pedigree
Model matrix for individuals with and without records

Description

model.matrix for pedigree creates design matrix (Z) for individuals with and without records.
Used mainly for educational purposes.

Usage

S3 method for class 'Pedigree':
model.matrix(object, y, id, left=TRUE, names=TRUE,

...)

Arguments

object Pedigree

names logical, should returned matrix have row/colnames; this can be used to get leaner
matrix

y numeric, vector of (phenotypic) records

id vector of subjects for y

left logical, bind columns of individuals without records to left (left=TRUE) or
right (left=FALSE) side of Z

... arguments passed to model.matrix

Value

A model matrix of n ∗ q dimension, where n is number of records in y and q is number of subjects
in the pedigree

18 nIndividual

Author(s)

Gregor Gorjanc

See Also

Pedigree, relationshipAdditive, inverseAdditive and model.matrix

Examples

data(Mrode3.1)
(x <- Pedigree(x=Mrode3.1, subject="calf", ascendant=c("sire", "dam"),

ascendantSex=c("Male", "Female"), sex="sex"))
model.matrix(object=x, y=x$pwg, id=x$calf)

nIndividual Number of individuals in a pedigree

Description

nIndividual returns number of individuals (individuals and/or ascendants) in a pedigree object.

Usage

nIndividual(x, col=NULL, extend=TRUE, drop=TRUE)

Arguments

x pedigree

col character, which id column should be the source: "id" (default) or particular
ascendant i.e. "father" and "mother"

extend logical, extend pedigree

drop logical, drop unused levels in case factors are used

Details

FIXME - this will change a lot!!!! There is always one additional level in levels in case factors are
used to represent individuals in a pedigree as described in Pedigree. However, nlevels.Pedigree
prints out the number of levels actually used to represent individuals i.e. level unknown is not in-
cluded into the result.

Author(s)

Gregor Gorjanc

See Also

summary.Pedigree, extend

Pedigree 19

Examples

Deafult example
ped <- generatePedigree(5)
nIndividual(ped)

Other id columns
nIndividual(ped, col="father")
nIndividual(ped, col="mother")

Remove individuals with unknown fathers - FIXME
ped <- ped[!is.na(ped, col="father"),]
nIndividual(ped)
nIndividual(ped, extend=FALSE)

Pedigree Pedigree

Description

Pedigree function creates a pedigree object

Usage

Pedigree(x, subject="id", ascendant=c("father", "mother"),
ascendantSex=c(1, 2), ascendantLevel=c(1, 1), unknown=NA, sex=NA,
dtBirth=NA, generation=NA, family=NA, generationOrder="increasing",
check=TRUE, sort=FALSE, extend=FALSE, drop=TRUE, codes=FALSE)

Arguments

x data.frame or matrix

subject character, column name in x for subjects

ascendant character, column name(s) in x for ascendants

family character, column name in x for family

ascendantSex integer orcharacter, sex of ascendant(s); see details
ascendantLevel

integer, generation level of ascendant(s); see details

unknown vector or list, uknown representation of identification and other data in the pedi-
gree; see details

sex character, column name in x for sex

dtBirth character, column name in x for date of birth

generation character, column name in x for generation
generationOrder

character, generation value is "increasing" or "decreasing" through generations;
see details

check logical, check for common errors

20 Pedigree

sort logical, sort pedigree

extend logical, extend pedigree

drop logical, drop unused levels if factors are used

codes logical, code individuals into integers

Details

FIXME: study geneSet class

Pedigree can be one source of information on genetic relationship between relatives. Take for
example the following pedigree:

paternal paternal maternal maternal
grandfather grandmother grandfather grandmother

| | | |
------------- -------------

| |
father mother

|
subject

This information can be stored in a data.frame as

mother maternal grandfather maternal grandmother
father paternal grandfather paternal grandmother
subject father mother

There is considerable variability in terminology between as well as within various fields of genetics.
We use the following terms throughout the help and code: individual (any individual in a pedigree),
subject (individual whose pedigree is given i.e. individuals in the first column in upper data.frame),
ascendant and descendant. Additionally, family, sex, dtBirth and generation are used for additional
data in the pedigree. Their meaning should be clear. For these, argument col is usually used in
function calls.

family TODO

ascendantSex can be used to define sex of ascendant(s); for example c("Male", "Female") or
c("M", "F") or even c(1, 2) for father and mother or c(2, 1, 1) for mother and two possible fathers
or c(1, 1) for father and maternal father etc. This data is needed only for the structure of the class
and defaults should be ok for the majority. But you need to make sure that data defined here must
be in accordance with values in sex column.

ascendantLevel can be used to define generation level of ascendant(s) in relation to a subject;
for example c(1, 1) for father and mother or c(1, 1, 1) for mother and two possible fathers or c(1, 2)
for father and maternal father etc. This data is needed only for the structure of the class and defaults
should be ok for the majority.

There is no need for as.integer TODO in arguments ascendantLevel as this is done inter-
nally.

unknown TODO

Sex TODO

Pedigree 21

Date of birth TODO

generationOrder defines in which order are generation values: "increasing" if values in-
crease from ascendants to descendants and "decreasing" if values decrease from ascendants to de-
scendants.

check, sort, extend, and codes are actions on the pedigree and have their own help pages.

Individuals can be stored as either integer, numeric or factor TODO. In any case all id columns must
have the same class and this is automatically checked. Argument drop can be used to drop unused
levels, if factors are used.

as.Pedigree.* FIXME as.*.Pedigree FIXME

Object of Pedigree class is a data.frame with columns that can be divided into core columns (sub-
ject, ascendant(s), sex, dtBirth and generationTODO) and possibly other columns such as data on
phenotype and genotype and other subject attributes, for example factors and covariates TODO.
Class name starts in upper case i.e. “Pedigree” and not “pedigree”, due to name clash with similar
function in kinship package.

Additionally, the following attributes are set on pedigree:

• .subjectcharacter, column name of subject identification in pedigree

• .ascendantcharacter, column name(s) of ascendant(s) identification in pedigree

• .familycharacter, column name of family identification in pedigree

• .ascendantSexinteger, sex of ascendant(s)

• .ascendantLevelinteger, generation level of ascendant(s)

• .sexcharacter, column name of subject’s sex

• .dtBirthcharacter, column name of subject’s date of birth

• .generationcharacter, column name of subject’s generation

• .generationOrdercharacter, generation value is "increasing" or "decreasing" through genera-
tions

• .colClasscharacter, storage class for id columns: "integer", "numeric" or "factor"

• .checkedlogical, is pedigree checked for common errors

• .sortedlogical, is pedigree sorted; by TODO

• .extendedlogical, is pedigree extended

• .codedlogical, is pedigree coded

• .unknownlist, uknown representation for individual identification and other data in the pedi-
gree; names of the list are c(".id", ".family", ".sex", ".dtBirth", ".generation")

Value

Pedigree object as described in the details

Author(s)

Gregor Gorjanc

See Also

check, sort, and extend provide help on pedigree utility functions. There is also pedigree
in kinship package

22 prune

Examples

data(Mrode2.1)
Mrode2.1$dtB <- as.Date(Mrode2.1$dtB)
x2.1 <- Pedigree(x=Mrode2.1, subject="sub", ascendant=c("fat", "mot"),

ascendantSex=c("M", "F"), family="fam", sex="sex",
generation="gen", dtBirth="dtB")

if (FALSE) {
How to handle different pedigree types
* multiple parents
ped2 <- ped
ped2$father1 <- ped$father
ped2$father2 <- ped$father
ped2$father <- NULL
ped2 <- as.data.frame(ped2)
str(Pedigree(ped2, ascendant=c("father1", "father2", "mother"),

ascendantSex=c(1, 1, 2), ascendantLevel=c(1, 1, 1)))

* different level of parents
ped3 <- as.data.frame(ped)
ped3$m.grandfather <- ped3$mother
ped3$mother <- NULL
str(Pedigree(ped3, ascendant=c("father", "m.grandfather"),

ascendantSex=c(1, 1), ascendantLevel=c(1, 2)))
}

prune Prune pedigree

Description

prune removes noninformative individuals from a pedigree. This process is usually called trim-
ming or pruning. Individuals are removed if they do not provide any ancestral ties between other
individuals. It is possible to add some additional criteria. See details.

Usage

prune(x, id, father, mother, unknown=NA, testAdd=NULL, verbose=FALSE)

prune 23

Arguments

x data.frame, pedigree data

id character, individuals’s identification column name

father character, father’s identification column name

mother character, mother’s identification column name

unknown value(s) used for representing unknown parent in x

testAdd logical, additional criteria; see details

verbose logical, print some more info

Details

NOTE: this function does not yet work with Pedigree class.

There are always some individuals in the pedigree that jut out. Usually this are older individuals
without known ancestors, founders. If such individuals have only one (first) descendant and no
phenotype/genotype data, then they do not give us any additional information and can be safely
removed from the pedigree. This process resembles cutting/pruning the branches of a tree.

By default prune iteratively removes individuals from the pedigree (from top to bottom) if:

• they are founders, have both ancestors i.e. father and mother unknown and

• have only one or no (first) descendants i.e. children

If there is a need to take into account availability of say phenotype/genotype data or any other
information, argument testAdd can be used. Value of this argument must be logical and with
length equal to number of rows in the pedigree. The easiest way to achieve this is to merge any
data to the pedigree and then to perform a test, which will return logical values. Note that value of
TRUE in testAdd means to remove an individual - this function is removing individuals! To keep
an individual without known parents and one or no children, value of testAdd must be FALSE
for that particular individual. Take a look at the examples.

There are various conventions on representing unknown/missing ancestors, say 0. R’s default is
to use NA. If other values than NA are present, argument unknown can be used to convert un-
known/missing values to NA.

It is assumed that pedigree is in extended form i.e. that each father and mother has each own record
as an individual. Otherwise error is returned with information on which parents do not appear as
individuals.

prune does not only remove lines for pruned individuals but also removes them from father
and mother columns.

Pruning is done from top to bottom of the pedigree i.e. from oldest individuals towards younger
ones. Take for example the following part of the pedigree in example section:

0 7

|
10 8

|
9

24 prune

Individual 7 is not removed since it has two (first) descendants i.e. 8 and 5 (not shown here). Con-
secutively, individuals 8 and 9 are also not removed from the pedigree. Individual 10 is removed,
since it has only one descendant. Why should individuals 8 and 9 and therefore also 7 stay in the
pedigree? Current behaviour is reasonable if pedigree is built in such a way that first individuals
with some phenotype or genotype data are gathered and then their pedigree is being built. Say,
individual 9 has pehnotype/genotype data and its pedigree is build and there is therefore no need to
remove such an individual. However, if pedigree is not built in such a way, then prunPedigree
function can not prune all noninformative individuals. Argument testAdd can not help with this
issue, since basic tests (founder and one or no first descendants) and testAdd are combined with
&.

Value

prune returns a data.frame with possibly fewer individuals. Read also the details.

Author(s)

Gregor Gorjanc

See Also

Pedigree

Examples

Pedigree example
x <- data.frame(oseba=c(1, 9, 11, 2, 3, 10, 8, 12, 13, 4, 5, 6, 7, 14, 15, 16, 17),

oce=c(2, 10, 12, 5, 5, 0, 7, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0),
mama=c(3, 8, 13, 0, 4, 0, 0, 0, 0, 14, 6, 0, 0, 15, 16, 17, 0),
spol=c(2, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1),

generacija=c(1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 5, 6, 7, 8),
last=c(2, NA, 8, 4, 1, 6,NA, NA, NA, NA,NA,NA,NA, NA, NA, NA, NA))

Default case
prune(x=x, id="oseba", father="oce", mother="mama", unknown=0)

Use of additional test i.e. do not remove individual if it has
known value for "last"
prune(x=x, id="oseba", father="oce", mother="mama", unknown=0,

testAdd=is.na(x$last))

Use of other data
y <- data.frame(oseba=c(11, 15, 16),

last2=c(8.5, 7.5, NA))

x <- merge(x=x, y=y, all.x=TRUE)
prune(x=x, id="oseba", father="oce", mother="mama", unknown=0,

testAdd=is.na(x$last2))

relationshipAdditive 25

relationshipAdditive
Additive relationship matrix and its inverse

Description

relationshipAdditive creates additive relationship matrix, while inverseAdditive cre-
ates its inverse directly from a pedigree. kinship is another definition of relationship and is equal
to half of additive relationship.

Usage

relationshipAdditive(x, sort=TRUE, names=TRUE, ...)
inverseAdditive(x, sort=TRUE, names=TRUE, ...)
kinship(x, sort=TRUE, names=TRUE, ...)

Arguments

x Pedigree

sort logical, for the computation the pedigree needs to be sorted, but results are sorted
back to original sorting (sort=TRUE) or not (sort=FALSE)

names logical, should returned matrix have row/colnames; this can be used to get leaner
matrix

... arguments for other methods

Details

Additive or numerator relationship matrix is symetric and contains 1 + Fi on diagonal, where Fi is
an inbreeding coefficients (see inbreeding) for subject i. Off-diagonal elements represent nu-
merator or relationship coefficient bewteen subjects i and j as defined by Wright (1922). Henderson
(1976) showed a way to setup inverse of relationship matrix directly. Mrode (2005) has a very nice
introduction to these concepts.

Take care with sort=FALSE, names=FALSE. It is your own responsibility to assure proper
handling in this case.

Value

A matrix of n ∗ n dimension, where n is number of subjects in x

Author(s)

Gregor Gorjanc and Dave A. Henderson

26 removeIndividual

References

Henderson, C. R. (1976) A simple method for computing the inverse of a numerator relationship
matrix used in prediction of breeding values. Biometrics 32(1):69-83

Mrode, R. A. (2005) Linear models for the prediction of animal breeding values. 2nd edition. CAB
International. ISBN 0-85199-000-2 http://www.amazon.com/gp/product/0851990002

Wright, S. (1922) Coefficients of inbreeding and relationship. American Naturalist 56:330-338

See Also

Pedigree, inbreeding and geneFlowT

Examples

data(Mrode2.1)
Mrode2.1$dtB <- as.Date(Mrode2.1$dtB)
x2.1 <- Pedigree(x=Mrode2.1, subject="sub", ascendant=c("fat", "mot"),

ascendantSex=c("M", "F"), family="fam", sex="sex",
generation="gen", dtBirth="dtB")

(A <- relationshipAdditive(x2.1))
fractions(A)
solve(A)
inverseAdditive(x2.1)
relationshipAdditive(x2.1[3:6,])

Compare the speed
ped <- generatePedigree(nId=10, nGeneration=3, nFather=1, nMother=2)
system.time(solve(relationshipAdditive(ped)))
system.time(inverseAdditive(ped))

removeIndividual Remove individual from pedigree

Description

removeIndividual provides utility for removing individuals from a pedigree.

Usage

removeIndividual(x, individual, remove="all")

Arguments

x pedigree

individual vector of individuals

remove character, column names of id columns and/or "all", see details

http://www.amazon.com/gp/product/0851990002

sort.Pedigree 27

Details

Individuals passed to argument individual will be removed from the pedigree. If there is a
pedigree with individual "id" and two ascendants, say "father" and "mother", then one can pass any
combination of these three id columns or "all" for all of them in short to argument remove. In
case only "id" is passed to remove, individuals will be removed from the pedigree, but not from
ascendant id columns, which might be a matter of interest only if specified individuals show up as
ascendants for some other individuals. In case you want to remove an individual completely from
the pedigree "all" must be used.

Individuals in id column are removed via removal of the whole record from the pedigree. Individuals
in ascendant id columns are only replaced by attr(x, "unknown").

If founder is removed, attribute extended status is changed to FALSE.

Author(s)

Gregor Gorjanc

See Also

Pedigree

Examples

ped <- generatePedigree(3)
summary(ped)
removeIndividual(ped, individual=c(1, 3, 4), remove="father")
removeIndividual(ped, individual=c(1, 3, 4), remove=c("mother", "father"))
(ped <- removeIndividual(ped, individual=c(1, 3, 4), remove=c("all")))
summary(ped)

sort.Pedigree Sort pedigree

Description

Pedigree sort

Usage

S3 method for class 'Pedigree':
sort(x, decreasing=FALSE, na.last=TRUE, ..., by="default")

Arguments

x pedigree, object to be sorted

decreasing logical, sort order

na.last logical, control treatment of NAs; check order

... arguments passed to order, see details

by character, sort by "default", "pedigree", "generation", or "dtBirth" information,
see details

28 sort.Pedigree

Details

Sorting of the pedigree can be performed in different ways. Since pedigree can contain date of birth,
sorting by this would be the most obvious way and it would be the most detailed sort. However, there
might be the case that date of birth is not available for some or all individuals. Therefore, this func-
tion by default (when by="default") tries to figure out what would be the best way to perform
the sort. If date of birth is available for all individuals then date of birth is used for sorting. If not,
generation information is used, but only if it is known for all individuals (it should be more or less
easy to figure out the generation for all individuals in the pedigree CHECK). Again if not, sorting is
done via information in pedigree i.e. ascendants will precede descendants or vice versa. User can al-
ways define it’s own preference by argument by. When by="dtBirth" or by="generation"
sorting is performed via order and its arguments na.last and decreasing can be used. With
by="pedigree" argument decreasing has an effect.

Generation values can have different meaning i.e. values might either increase or decrease from as-
cendants to descendant with the same meaning. This information is stored in attribute generationOrder
(at the time of creating the pedigree object via Pedigree) and used for determining the order of
sorting if sorting is by generation. The output of the result might therefore be opposite of what user
might expect. If that is the case, use argument decreasing as defined in order. Look also into
examples bellow.

Value

Sorted pedigree

Author(s)

Gregor Gorjanc

See Also

Pedigree and order

Examples

ped <- generatePedigree(nId=5)
ped <- ped[sample(1:nrow(ped)),]
sort(ped)
sort(ped, by="dtBirth") ## TODO
sort(ped, by="generation")
try(sort(ped, by="pedigree")) ## TODO

Sorting with decreasing generation values from ascendants to descendants
ped1 <- generatePedigree(nId=5, generationOrder="decreasing")
sort(ped1, by="generation")
sort(ped1, decreasing=TRUE, by="generation")
sort(ped1, decreasing=FALSE, by="generation")

Sorting with unknown values
ped[1, "generation"] <- NA
sort(ped, na.last=TRUE, by="generation")
sort(ped, na.last=FALSE, by="generation")
sort(ped, na.last=NA, by="generation")

summary.Pedigree 29

summary.Pedigree Pedigree summary

Description

summary.Pedigree reports TODO.

Usage

summary.Pedigree(object, ...)

Arguments

object pedigree object

... additional arguments for other methods (not used)

Details

TODO.

Value

TODO.

Author(s)

Gregor Gorjanc

See Also

Pedigree

Examples

ped <- generatePedigree(nId=5)
summary(ped)

geneFlowT Gene and gamete flow matrices

Description

geneFlowT and geneFlowTinv creates gene flow matrix (T) and its inverse (Tinv), while
gameteFlowM creates gamete flow matrix (M). mendelianSamplingD creates a mendelian
sampling covariance matrix (D).

30 geneFlowT

Usage

geneFlowT(x, sort=TRUE, names=TRUE, ...)
geneFlowTinv(x, sort=TRUE, names=TRUE, ...)
gameteFlowM(x, sort=TRUE, names=TRUE, ...)
mendelianSamplingD(x, matrix=TRUE, names=TRUE, ...)

Arguments

x Pedigree

sort logical, for the computation the pedigree needs to be sorted, but results are sorted
back to original sorting (sort=TRUE) or not (sort=FALSE)

names logical, should returned matrix have row/colnames; this can be used to get leaner
matrix

matrix logical, should returned value be a diagonal matrix or a vector

... arguments for other methods

Details

geneFlowT returns a matrix with coefficients that show the flow of genes from one generation
to the next one etc. geneFlowTinv is simply the inverse of geneFlowT, but calculated as
I −M , where M is gamete flow matrix with coefficients that represent parent gamete contribution
to their offspring. mendelianSamplingD is another matrix (D) for construction of relationship
additive matrix via decomposition i.e. A = TDT ′ (Henderson, 1976). Mrode (2005) has a very
nice introduction to these concepts.

Take care with sort=FALSE, names=FALSE. It is your own responsibility to assure proper
handling in this case.

Value

Matrices of n ∗ n dimension, with coeficients as described in the details, where n is number of
subjects in x

Author(s)

Gregor Gorjanc

References

Henderson, C. R. (1976) A simple method for computing the inverse of a numerator relationship
matrix used in prediction of breeding values. Biometrics 32(1):69-83

Mrode, R. A. (2005) Linear models for the prediction of animal breeding values. 2nd edition. CAB
International. ISBN 0-85199-000-2 http://www.amazon.com/gp/product/0851990002

See Also

Pedigree, relationshipAdditive, kinship and inbreeding

http://www.amazon.com/gp/product/0851990002

undocumented 31

Examples

data(Mrode2.1)
Mrode2.1$dtB <- as.Date(Mrode2.1$dtB)
x2.1 <- Pedigree(x=Mrode2.1, subject="sub", ascendant=c("fat", "mot"),

ascendantSex=c("M", "F"), family="fam", sex="sex",
generation="gen", dtBirth="dtB")

fractions(geneFlowT(x2.1))
fractions(geneFlowTinv(x2.1))
fractions(gameteFlowM(x2.1))
mendelianSamplingD(x2.1)

undocumented Undocumented functions

Description

These functions are undocumented. Some are internal and not intended for direct use. Some are not
yet ready for end users. Others simply haven’t been documented yet.

Index

∗Topic array
geneContribution, 8
geneFlowT, 29
inbreeding, 15
relationshipAdditive, 25

∗Topic attribute
check, 1

∗Topic datasets
Mrode, 3

∗Topic manip
extend, 4
generatePedigree, 9
generation, 10
Pedigree, 19
prune, 22
summary.Pedigree, 29

∗Topic misc
check, 1
extend, 4
family, 5
geneContribution, 8
geneFlowT, 29
generatePedigree, 9
generation, 10
gpi, 11
hwp, 14
inbreeding, 15
isFounder, 7
nIndividual, 18
Pedigree, 19
relationshipAdditive, 25
removeIndividual, 26
sort.Pedigree, 27
summary.Pedigree, 29
undocumented, 31

∗Topic models
model.matrix.Pedigree, 17

&, 24

as.character.Pedigree (Pedigree),
19

as.factor.Pedigree (Pedigree), 19
as.integer.Pedigree (Pedigree), 19
as.Pedigree (Pedigree), 19

check, 1, 21
checkId (check), 1
codes, 21

expectedGenotypes, 15
extend, 4, 21

Falconer (Mrode), 3
Falconer5.1 (Mrode), 3
family, 5, 5, 20
family<- (family), 5

gameteFlowM (geneFlowT), 29
geneContribution, 8
geneFlowT, 17, 26, 29
geneFlowTinv (geneFlowT), 29
generatePedigree, 9
generation, 10, 21
generation<- (generation), 10
genotype, 15
gpi, 11, 14, 15
gpLong2Wide, 12, 13
gpLong2Wide (hwp), 14

hwp, 12, 13, 14

inbreeding, 15, 25, 26, 30
inverseAdditive, 18
inverseAdditive

(relationshipAdditive), 25
is.Pedigree (Pedigree), 19
isFounder, 7

kinship, 17, 30
kinship (relationshipAdditive), 25

mendelianSamplingD (geneFlowT), 29
merge, 23
model.matrix, 17, 18
model.matrix.Pedigree, 17
Mrode, 3
Mrode2.1 (Mrode), 3
Mrode3.1 (Mrode), 3

nIndividual, 18

32

INDEX 33

order, 27, 28

Pedigree, 2, 5–10, 17, 18, 19, 24, 26–30
pedigree, 21
prune, 22

relationshipAdditive, 17, 18, 25, 30
removeIndividual, 26

sort, 21
sort.Pedigree, 27
summary.Pedigree, 29

undocumented, 31

	check
	Mrode
	extend
	family
	isFounder
	geneContribution
	generatePedigree
	generation
	gpi
	hwp
	inbreeding
	model.matrix.Pedigree
	nIndividual
	Pedigree
	prune
	relationshipAdditive
	removeIndividual
	sort.Pedigree
	summary.Pedigree
	geneFlowT
	undocumented
	Index

