Gene set enrichment analysis with topGO

Adrian Alexa, Jorg Rahnenfiihrer

April 21, 2009
http://www.mpi-sb.mpg.de/~alexa

Contents

1 Introduction
1.1 Step 1: Preparing the data
1.2 Step 2: Running the desired tests L

1.3 Step 3: Analysis of results L
2 Session Information

References

1 Introduction

This manuscript provides a quick tour into topGO. There is an accompanying document which provides
details on the functions used in this document as well as showing more advance functionality implemented
in the topGO package.

The topGO package is designed to work with different test statistics and with multiple GO graph algorithms,
see [Alexa, A., et al., 2006].

This section describes a simple working-session using topG0. There are only a handful of commands necessary
to perform a gene set enrichment analysis and we will be briefly presented them bellow.

A typical session can be divided into three steps:

1. Collection and preprocessing of the data. The list of genes and the correspondent gene’ score, the
criteria for selecting genes based on their scores and the gene-to-GO annotations are all collected to
form a suitable R object.

2. Using the object created in the first step the user can perform enrichment analysis using various
statistical tests and methods that deal with the GO topology.

3. Analysis of the results.

But before going through each of these steps we need to decide which biological question we want to answer.
This will most likely dictate which test statistic we need to use. The choice of the test is also restricted by
the data available at hand. The knowledge of the test will dictate the way the gene expression data needs
to be process. Here we will test for enrichment of GO terms with differentially expressed genes using the
Kolmogorov-Smirnov test and Fisher’s exact test as examples.

1.1 Step 1: Preparing the data

In this step a convenient R object of class topGOdata is created containing all the information required for
the remaining two steps. The user needs to provide a list of genes, GO annotations and a criteria for selecting
interesting genes.

In most cases we want to test enrichment of GO terms with differentially expressed genes. Thus, the starting
point is a list of genes and the respective p-values for differential expression. A toy example of a list of gene
identifiers and the respective p-values is provided by the geneList object.

> library(topGO)
> library(ALL)

> data(ALL)

> data(geneList)

The geneList data is based on an differential expression analysis of the ALL dataset. It contains just a
small number, 323, of genes with the corespondent p-values. For these genes we need GO annotations to be
able to form the gene groups. The information on where to find the GO annotations is stored in the ALL
object and its easily accessible.

> affyLib <- paste(annotation(ALL), "db", sep = ".")
> library(package = affyLib, character.only = TRUE)

The chip used in the experiment is the hgu95av2 from Affymetrix, as we can see from the affyLib object.
When we loaded the geneList object a function which will select the differentially expressed genes from the
list was also loaded under the name of topDiffGenes. For example using this function we can see that there
are 50 genes with a row p-value less than 0.01 out of a total of 323 genes.

> sum(topDiffGenes (genelist))

[1] 50

We now have all the data necessary to build on object of type topGOdata. This object will contain all
the gene identifiers and their score, the GO annotations, the GO hierarchical structure and all the other
information needed to perform the enrichment analysis.

> sampleGOdata <- new("topGOdata", description = "Simple session", ontology = "BP",
+ allGenes = genelList, geneSel = topDiffGenes, nodeSize = 10, annot = annFUN.db,
+ affyLib = affyLib)

A summary of the sampleGOdata object can be seen by typing the object name at the R prompt. Having
all the data stored into this object facilitates the access to identifiers, annotations and to obtain basic data
statics.

> sampleGOdata

1.2 Step 2: Running the desired tests

Once we have an object of class topGOdata we can start with the enrichment analysis. Since for each gene
we have a score and there is also a procedure to select interesting genes based on the scores we will use two
types of test statistics: Fisher’s exact test which is based on gene counts, and a Kolmogorov-Smirnov like
test which needs gene scores.

The function runTest is used to apply the specified enrichment test and method to the data. It has three
basic arguments. The first argument needs to be on object of class topGOdata. The second argument is
of type character and specifies which method for dealing with the GO graph structure will be used (this
argument is optional). And the third argument specifies the test statistic and is of type character.

First we perform a classical enrichment analysis by testing the over-representation of GO terms with differ-
entially expressed genes. In the classical case each GO category is tested independently.

> resultFisher <- runTest (sampleGOdata, algorithm = "classic", statistic = "fisher")
runTest returns an object of class topGOresult. A short summary of this object is shown bellow.
> resultFisher

Description: Simple session
Ontology: BP
'classic' algorithm with the 'fisher' test
408 GO terms scored: 33 terms with p < 0.01
Annotation data:
Annotated genes: 318
Significant genes: 50
Min. no. of genes annotated to a GO: 10
Nontrivial nodes: 365

Next we will test the enrichment using the Kolmogorov-Smirnov test. We will use the both the classic and
the elim methods.

> resultKS <- runTest(sampleGOdata, algorithm = "classic", statistic = "ks")
> resultKS.elim <- runTest (sampleGOdata, algorithm = "elim", statistic = "ks")

Please note that some statistical tests will not work with any method. The compatibility matrix between
the methods and statistical tests is shown in Table ?77.

The p-values computed by the runTest function are unadjusted for multiple testing. We do note advocate
against adjusting the p-values of the tested groups, but in many cases the an adjusted p-value can be
misleading.

GO.ID Term Annotated Significant Expected Rank in classicFisher classicFisher classicKS elimKS

1 GO:0007067 mitosis 183 17 28.77 362 0.99993 2.9e-09 2.9e-09
2 GO:0051301 cell division 126 15 19.81 332 0.95458 9.6e-06 9.6e-06
3 GO:0000087 M phase of mitotic cell cycle 188 22 29.56 355 0.99391 7.9e-10 0.0019
4 GO:0022403 cell cycle phase 192 26 30.19 322 0.92925 2.6e-10 0.0041
5 GO:0000226 microtubule cytoskeleton organization 30 4 4.72 252 0.72881 0.0054 0.0054
6 GO:0019219 regulation of nucleobase, nucleoside, nu... 47 12 7.39 72 0.04216 0.0067 0.0067
7 GO:0050789 regulation of biological process 181 35 28.46 50 0.02882 0.0024 0.0075
8 GO:0032946 positive regulation of mononuclear cell ... 30 12 4.72 1 0.00062 0.0120 0.0120
9 GO:0050671 positive regulation of lymphocyte prolif... 30 12 4.72 2 0.00062 0.0120 0.0120
10 GO:0050794 regulation of cellular process 180 34 28.30 76 0.05189 0.0042 0.0131

Table 1: Significance of GO terms according to classic and elim methods.

1.3 Step 3: Analysis of results

After the enrichment tests are performed the researcher needs tools for analysing and interpreting the results.
GenTable is an easy to use function for analysing the most significant GO terms and the corresponding p-
values. For example, we want to see which are the top 10 significant GO terms identified by the elim method.
We also want to compare the ranks and the p-values of these GO terms in the case where the classic method
was employe used.

> allRes <- GenTable(sampleGOdata, classicFisher = resultFisher, classicKS = resultkS,
+ elimKS = resultKS.elim, orderBy = "elimKS", ranksOf = '"classicFisher",
+ topNodes = 10)

The GenTable function returns a data.frame containing the top topNodes GO terms identified by the elim
algorithm, see orderBy argument. The data.frame includes some statistics on the GO terms and the p-values
obtained from the methods passes as arguments. Table 1 shows the results.

For accessing the GO term’s p-values from a topGOresult object the user should use the score functions.
As a simple example, we look at the differences between the results of the classic and the elim methods in the
case of the Kolmogorov-Smirnov test. Due to the fact that there are few significant GO terms, 17 terms with
a p-value less than 0.01 in the classic method, one would expect that only few GO terms will have different
p-values between these two methods. This, of course, depends on the value of the cutoff parameter used by
the elim method.

> pValue.classic <- score(resultKS)
> pValue.elim <- score(resultKS.elim) [names(pValue.classic)]

> plot(pValue.classic, pValue.elim, xlab = "p-value classic", ylab = "p-value elim",
+ cex = 0.5)
o
< 7 e
e
K
«@ | - '
(=} .
-
el
K4

£ g 7 -
s e
L 3+ 4

o ./

e
o~ -~
o 7| 4
4
o 4 /
o
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

p-value classic

Figure 1: p-values scatter plot for the classic and elim methods.

We can see in Figure 1 that there are indeed few differences between the two methods. Some GO terms
witch are found significant by the classic method are less significant in the elim, as expected.

Another insightful way of looking at the results of the analysis is to investigate how the significant GO terms
are distributed over the GO graph. For the elim algorithm the subgraph induced by the 5 most significant
GO terms is plotted. In the plot, the significant nodes are represented as boxes. The plotted graph is the
upper induced graph generated by these significant nodes.

> showSigOfNodes (sampleGOdata, score(resultKS.elim), firstTerms = 5, useInfo = "all")

G0:0008150
biological_process
1.00000

50/318

G0:0009987
cellular process

50/316

G0:0007049
cell cycle
0.09963

30/205

G0:0016043
cellular component o...
0.82749

G0:0051301
cell division
9.62e-06

25/214 15/126

G0:0022402
cell cycle process
0000

G0:0000278
mitotic cell cycle

G0:0006996
organelle organizati...
0.74134

é6/194 2.6/194

20/194

G0:0022403
cell cycle phase
0.00414

\

G0:0000279
M phase
1.00000
22/188

G0:0007017
microtubule-based pr...
0.4420:

G0:0007010
cytoskeleton organiz...
0.52485
26/192

6/42 6/38

G0:0000226
microtubule cytoskel...
0.00545

G0:0048285
organelle fission

4/30 i7/183

G0:0000087
M phase of mitotic c...
.00187

G0:0000280
nuclear division
1.00000

22/188 171183

v

Figure 2: The subgraph induced by the top 5 GO terms identified by the elim algorithm for scoring GO terms for
enrichment. Rectangles indicate the 5 most significant terms. Rectangle color represents the relative significance,
ranging from dark red (most significant) to light yellow (least significant). Black arrows indicate is-a relationships
and red arrows part-of relationships. For each node, some basic information is displayed. The first two lines show
the GO identifier and a trimmed GO name. In the third line the raw p-value is shown. The forth line is showing
the number of significant genes and the total number of genes annotated to the respective GO term.

2 Session Information
The version number of R and packages loaded for generating the vignette were:

e R version 2.9.0 (2009-04-17), x86_64-unknown-1linux-gnu

Locale: LC_CTYPE=en_US;LC_NUMERIC=C;LC_TIME=en_US;LC_COLLATE=en_US;LC_MONETARY=C;LC_MESSAGES=en_U

Base packages: base, datasets, graphics, grDevices, grid, methods, stats, tools, utils

Other packages: ALL 1.4.4, AnnotationDbi 1.6.0, Biobase 2.4.0, DBI 0.2-4, GO.db 2.2.11, graph 1.22.0,
hgu95av2.db 2.2.11, Rgraphviz 1.22.0, RSQLite 0.7-1, SparseM 0.79, topGO 1.12.0, xtable 1.5-5

Loaded via a namespace (and not attached): cluster 1.11.13, lattice 0.17-22

References

[Alexa, A., et al., 2006] Alexa, A., et al. (2006). Improvined scoring of functional groups from gene expression
data be decorrelating go graph structure. Bioinformatics, 22(13):1600-1607.

