
The segment function to fit a piecewise constant

curve

Wolfgang Huber

April 21, 2009

Contents

1 A simple example 1

2 More testing of the change-point estimates on simulated
data 4

3 Model selection on simulated data 4

1 A simple example

The problem of segmenting a series of numbers into piecewise constant seg-
ments occurs in multiple application areas. Two examples are

• arrayCGH data, where the segments correspond to regions of copy
number gain, loss, or no change.

• tiling microarray data for transcription profiling, where the segments
correspond to transcripts. Here we assume that the probe effects
(which lead to different fluorescence intensities even for the same mRNA
abundance) have been normalized away, so that all probes for the same
unique target sequence have approximately, and in expectation, the
same fluorescence.

To demonstrate the algorithm, let us generate simulated data:

> genData = function(lenx, nrSeg, nrRep = 1, stddev = 0.1) {

+ x = matrix(as.numeric(NA), nrow = lenx, ncol = nrRep)

+ cp = sort(sample(1:floor(lenx/15), nrSeg - 1) * 15)

1



+ cpb = c(1, cp, lenx + 1)

+ s = 0

+ for (j in 2:length(cpb)) {

+ sel = cpb[j - 1]:(cpb[j] - 1)

+ s = (0.5 + runif(1)) * sign(rnorm(1)) + s

+ x[sel, ] = rnorm(length(sel) * nrRep, mean = s, sd = stddev)

+ }

+ return(list(x = x, cp = cp))

+ }

> set.seed(4711)

> lenx = 1000

> nrSeg = 10

> gd = genData(lenx, nrSeg)

> plot(gd$x, pch = ".")

> abline(v = gd$cp, col = "blue")

0 200 400 600 800 1000

−
4

−
3

−
2

−
1

0

Index

gd
$x

Figure 1: A simulated data example with 10 segments. Their estimated
locations are shown with blue vertical lines

The result is shown in Figure 1. We can use the function segment to recon-
struct the change-points from the data in gd$x alone.

2



> library("tilingArray")

> maxseg = 12

> maxk = 500

> seg = segment(gd$x, maxk = maxk, maxseg = maxseg)

> seg

Object of class 'segmentation':
Data matrix: 1000 x 1
Change point estimates for number of segments S = 1:12
Selected S = NA

> seg@breakpoints[nrSeg + (-1:1)]

[[1]]
estimate

[1,] 150
[2,] 180
[3,] 240
[4,] 315
[5,] 570
[6,] 825
[7,] 885
[8,] 960

[[2]]
estimate

[1,] 150
[2,] 180
[3,] 240
[4,] 315
[5,] 555
[6,] 570
[7,] 825
[8,] 885
[9,] 960

[[3]]
estimate

[1,] 150
[2,] 180

3



[3,] 240
[4,] 315
[5,] 555
[6,] 570
[7,] 825
[8,] 882
[9,] 885
[10,] 960

> gd$cp

[1] 150 180 240 315 555 570 825 885 960

We see that the 10-th element of the list segbreakpoints exactly recon-
structs the change-points gd$cp that were used in the simulation.

The parameters maxseg and maxk are the maximum number of seg-
ments and the maximum length per segment. The algorithm finds for
each value of k from 1 to maxseg the best segmentation under the re-
striction that no individual segment be longer than maxk. In the paper
of Picard et al. [1] and in their software, maxk is implicitely set to the
number of data points length(x). I have introduced this parameter to
reduce the algorithm’s complexity. The complexity of Picard’s software
is length(x)*length(x) in memory and length(x)*length(x)*maxcp in
time, the complexity of the segment function is length(x)*maxk in mem-
ory and length(x)*maxk*maxcp in time. As I am applying it to data with
length(x) ≈ 105 and maxk ≈ 250, the difference can be substantial.

2 More testing of the change-point estimates on
simulated data

Here is a little for-loop that generates data using random parameters and
checks whether segment can reconstruct them.

> for (i in 1:20) {

+ gd = genData(lenx, nrSeg)

+ seg = segment(gd$x, maxk = maxk, maxseg = maxseg)

+ stopifnot(seg@breakpoints[[nrSeg]][, "estimate"] == gd$cp)

+ }

4



3 Model selection on simulated data

In this section we show that the BIC works pretty well for finding the correct
number of segments (parameter S in the paper) if the data are generated
by the model.

> nrSeg = 22

> gd = genData(lenx, nrSeg, nrRep = 2, stddev = 1/3)

> s = segment(gd$x, maxk = lenx, maxseg = as.integer(nrSeg * 2.5))

Plot the segmented data (Figure 2a)

> par(mai = c(1, 1, 0.1, 0.01))

> plot(row(gd$x), gd$x, pch = ".")

and the log likelihoods and the penalized log likelihoods. This is similar to
what is done in the segmentation.Rnw vignette for real data. and call it it:

> par(mai = c(1, 1, 0.1, 0.01))

> plotPenLL(s)

The result is shown in Figure 2b.

> which.max(logLik(s, penalty = "AIC"))

[1] 27

> which.max(logLik(s, penalty = "BIC"))

[1] 22

References

[1] A statistical approach for CGH microarray data analysis.
Franck Picard, Stephane Robin, Marc Lavielle, Christian Vaisse,
Gilles Celeux, Jean-Jacques Daudin. Rapport de recherche
No. 5139, Mars 2004, Institut National de Recherche en In-
formatique et en Automatique (INRIA), ISSN 0249-6399.
http://www.inapg.fr/ens rech/mathinfo/recherche/mathematique/outil.html

5



0 200 400 600 800 1000

−
3

−
2

−
1

0
1

2

row(gd$x)

gd
$x

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 10 20 30 40 50

−
10

00
−

90
0

−
80

0
−

70
0

S

(p
en

al
iz

ed
) 

lo
g 

lik
el

ih
oo

d

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●
●●●●●●●●●●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

log  L
log  L~AIC

log  L~BIC

Figure 2: a) simulated data example with nrSeg=22 segments and verti-
cal lines representing the fitted model with S =22, selected by maximum
log LBIC. b) log-likelihood log L, penalized likelihoods log L̃AIC and log L̃BIC.

6


