
Model Based Analysis of Tiling Arrays

The rMAT package.

Charles Cheunga∗and Raphael Gottardo†and Arnaud Droit‡

April 29, 2009

A step-by-step guide in the analysis of tiling array data using the rMAT
package in R

Contents

I Licensing 3

II Introduction 3

III Loading the rMAT Package 4

IV Loading in the data 4

V Reading BPMAP and CEL files 4

VI Normalization 6

VII Finding the Enriched Regions 6

∗cykc@interchange.ubc.ca
†raphael.gottardo@ircm.qc.ca
‡arnaud.droit@ircm.qc.ca

1

1 Creating an Ensembl annotation graphic 7

2 Plotting a Gene 8

3 Overlay for enriched regions 8

VIII Appendix: Installing rMAT 9

2

Part I

Licensing

Under the Artistic license 2.0, you are free to use and redistribute this soft-
ware. However, we ask you to cite the following paper if you use this software
for publication.

W. E. Johnson, Li, W., Meyer, C. A., Gottardo, R., Carroll, J. S.,
Brown, M., and Liu, X. S. (2006). Model-based analysis of tiling-
arrays for ChIP-chip. PNAS 103:12457-12462.

Part II

Introduction

In our guide, we include examples of code that we hope will help you when
using the rMAT package. The examples are kept at the basic level for ease
of understanding. Some of the options in the functions have been set by de-
fault. To learn more about the exact parameters and usage of each function,
you may type help(FUNCTION_NAME) of the function of interest in R after
the rMAT package is loaded.

The probe sequence information of an Affymetrix tiling array is stored
in the .BPMAP file, while the corresponding expression values (intensity
signals) of each experiment is stored separately in each .CEL file. The
BPMAP file contains different sequences that describe different contents in
the array. For instance, the first sequence may contain probes from chro-
mosome 1 while the second sequence may contain probes from chromosome
2. Each probe would include information such as its Perfect Match base
pair sequence (ie. AGCTTCGAAGCTTCGAAGCTTCGAG), location on
chromosome, X and Y coordinates, etc. The CEL file does not know any-
thing about the design of the array; it is just a file with columns such as
X coordinate, Y coordinate, expression value, and other auxiliary columns.
For each array experiment (ie. mock, treated with reagent X, treated with
reagent Y), we have one CEL file. These two type of files are stored in a
binary format and require a parser (reader) to read its content meaningfully.
The common goal in analyzing this type of data is to find activities (DNA-
protein interaction, transcription, etc) in specific chromosomal regions. This

3

package focus on detecting DNA-protein interactions from ChIP-chip exper-
iments. Though, many of the functions are more general than that. The
steps in analyzing the tiling array data are as follows.

Part III

Loading the rMAT Package

To load the rMAT package in R, we type

> library(rMAT)

Part IV

Loading in the data

The next step in a typical analysis is to load in data from Affymetrix CEL
files. The data used in this example are available in this package in inst/doc
folder.
In this documentation, the path for the data are : /rMAT/inst/doc folder.

Part V

Reading BPMAP and CEL files

Reading the design of tiling array

The first step in analyzing tiling array data is to understand the content of
the data. To understand the design, we would explore the header section of
the BPMAP file using the function ReadBPMAPAllSeqHeader. ReadBPMA-
PAllSequence takes in the filename of the BPMAP file as an argument. The
filename is formatted as a string literal (characters) in unix path format and
stored in the variable BPMAPFile, which is then used by ReadBPMA-
PAllSeqHeader to specify which BPMAP file to read.

> pwd <- ""

> path <- system.file("doc/Sc03b_MR_v04_10000.bpmap", package = "rMAT")

> bpmapFile = paste(pwd, path, sep = "")

> seqHeader <- ReadBPMAPAllSeqHeader(bpmapFile)

4

Specifying the filenames

From the above header content, the information we want to obtain is the
direct mapping from sequence number to chromosome number. Sequence
number is stored in the seqNum column while chromosome number can be
read from the Name column, which describes the content of the sequence.
We would like to read the BPMAP and CEL files and merge them by X and
Y coordinate so information such as probe sequence and location along the
chromosome would pair up with the corresponding expression value.
We have already specified the location of the BPMAP file in BPMAP-
File variable, so now let’s specify the location of the CEL files. Because
BPMAPCelParser allows us to parse multiple CEL files simultaneously, we
can store the location of multiple files in a vector using c() each separate
by "," .

> pathCEL <- system.file("doc/Swr1WTIP_Short.CEL", package = "rMAT")

> arrayFile <- paste(pwd, c(pathCEL), sep = "")

Calling BPMAPCelParser

We are now ready to call the BPMAPCelParser.

> ScSet <- BPMAPCelParser(bpmapFile, arrayFile, verbose = FALSE,

+ groupName = "Sc")

groupeName corresponding to the genome name used. In this example,
we specefied saccharomyces cerevisiae genome (Sc)

This function returns an object of class tilingSet containing all necessary
information: probe sequences, genomic positions, chromosomes as well as
the probe intensities.

The list of vectors of the merged data are now stored in ScSet. Let’s
explore the (partial) content of ScSet.

> summary(ScSet)

Genome interrogated: Sc03b_MR_v04_10000
Chromosome(s) interrogated: 1
Sample name(s): Swr1WTIP_Short
The total number of probes is: 10000
Preprocessing Information
- Transformation: log
- Normalization: none

5

We are now ready to normalize the raw data. Normalization is a proce-
dure to transform raw data into the so-called normalized expression data so
expression values from different tiling arrays can be compared.

Part VI

Normalization

The NormalizeProbes function allows users to normalize expression values of
different experiments with one command, as long as all those experiments use
the same BPMAP tiling design file. We can load these raw expression values
in batch using cbind(). NormalizeProbes also requires users to specify the
sequence vector. In this case, it is a vector of characters containing the
25 base pair sequence of each probe. (Right now, Normalization works for
reading 25mer only.)

For a complete list of parameters for NormalizeProbes, please refer to
help(NormalizeProbes). We are now ready to run the command.

> ScSetNorm <- NormalizeProbes(ScSet, method = "MAT", robust = FALSE,

+ all = FALSE, standard = TRUE, verbose = FALSE)

The user can choose from ”MAT”, or ”PairBinned”normalization method.
byeThe Pair option also takes into account of the interaction between adja-
cent pairs along the probe as covariates for linear regression.

The output in this example is saved in ScSetNorm.
Let’s explore the (partial) content of ScSetNorm.

> summary(ScSetNorm)

Genome interrogated: Sc03b_MR_v04_10000
Chromosome(s) interrogated: 1
Sample name(s): Swr1WTIP_Short
The total number of probes is: 10000
Preprocessing Information
- Transformation: log
- Normalization: MAT standardized

6

Part VII

Finding the Enriched Regions

After normalization, we are ready to find enriched regions. We can adjust
the threshold for detection of enriched regions. A higher threshold provides
a stricter criterion and thus less regions are expected. A higher threshold
value also means that the enriched regions would be shorter on average.
Please note that the threshold for MATScore with control and without con-
trol can be very different because with control the expression values from
the Immunoprecipated data is subtracted from the that of the Control. The
generated list of MAT enriched regions will be written to a file defined by
parameter output if it is specified. For more details about the overall pro-
cedure please refer to the paper cited above.

For a comprehensive list of parameters you can adjust in MATScore,
please refer to help(MATScore). Another note is that if FDR is used, thresh-
old should be set in the range between 0 and 1.

> ScScore <- MATScore(ScSetNorm, cName = NULL, dMax = 600, nProbesMin = 8,

+ dMerge = 300, method = "score", threshold = 5, verbos = TRUE,

+ bedName = "MyBedFile")

** Calculating MAT Scores **
** Finished processing 10000 probes on 1 arrays **
** Number of Enriched regions is 1 **
** Creating bed file **

1 Creating an Ensembl annotation graphic

rMAT results can benefit from integreated visualisation of the genomic infor-
mation. We have decided to use the GenomeGraphs package.This package
uses the biomaRt package to deliver queries to Ensembl e.g. gene/transcript
structures to viewports of the grid package, resulting in genomic information
plotted together with your data.

To load the GenomeGraphs package in R, we type

> library(GenomeGraphs)

7

http://www.bioconductor.org/packages/2.2/bioc/html/GenomeGraphs.html

2 Plotting a Gene

If one wants to plot annotation information from Ensembl then you need
to connect to Ensembl BioMArt using the useMart function of the biomaRt
package.

> mart <- useMart("ensembl", dataset = "scerevisiae_gene_ensembl")

If you are interested in plotting a whole gene region, you should create a
GeneRegion object. In the example below we will retrieve the genes of the
chromsome (I) between 1 and 200000. We added a genomic axis as well to
give us the base positions.

> genomeAxis <- makeGenomeAxis(add53 = TRUE, add35 = TRUE)

> minbase <- 1

> maxbase <- 1e+05

> genesplus <- makeGeneRegion(start = minbase, end = maxbase, strand = "+",

+ chromosome = "I", biomart = mart)

> genesmin <- makeGeneRegion(start = minbase, end = maxbase, strand = "-",

+ chromosome = "I", biomart = mart)

We create a Generic Array for chromosome I only

> MatScore <- makeGenericArray(intensity = as.matrix(ScScore@score[ScScore@featureChromosome ==

+ "chr1"]), probeStart = ScScore@featurePosition[ScScore@featureChromosome ==

+ "chr1"], dp = DisplayPars(size = 1, color = "black", type = "l"))

3 Overlay for enriched regions

Overlays can be used to look enriched regions of the plot.

> featurePositionForRegion <- ScScore@featurePosition[ScScore@featureChromosome ==

+ "chr1" & ScScore@featurePosition < maxbase & ScScore@featurePosition >

+ minbase]

> regIndexForRegion <- ScScore@regIndex[ScScore@featureChromosome ==

+ "chr1" & ScScore@featurePosition < maxbase & ScScore@featurePosition >

+ minbase]

> RegionUnique <- unique(regIndexForRegion[regIndexForRegion >

+ 0])

> rectList <- vector("list", length(RegionUnique))

8

> for (i in 1:length(RegionUnique)) {

+ m <- min(featurePositionForRegion[regIndexForRegion == RegionUnique[i]])

+ M <- max(featurePositionForRegion[regIndexForRegion == RegionUnique[i]])

+ rectList[i] <- makeRectangleOverlay(start = m, end = M, region = c(1,

+ 4), dp = DisplayPars(color = "green", alpha = 0.1))

+ }

> gdPlot(list(score = MatScore, `Gene +` = genesplus, Position = genomeAxis,

+ `Gene -` = genesmin), minBase = minbase, maxBase = maxbase,

+ labelCex = 1, overlays = rectList)

Part VIII

Appendix: Installing rMAT

To build the rMAT package from source, make sure that the following is
present in your system:

• GNU Scientific Library (GSL)

• Basic Linear Algebra Subprograms (BLAS)

• a C compiler

GSL can be downloaded at http://www.gnu.org/software/gsl/. In
addition, the package uses BLAS to perform basic vector and matrix oper-
ations. Please go to http://www.netlib.org/blas/faq.html#5 for a list
of optimized BLAS libraries for a variety of computer architectures. For
instance, Mac users may use the built-in vecLib framework, while users of
Intel machines may use the Math Kernel Library (MKL). A C compiler is
needed to build the package as the core of the rMAT function is coded in C.

For the package to be installed properly you might have to type the fol-
lowing command before installation:

export LD_LIBRARY_PATH=’/path/to/GSL/:/path/to/BLAS/’:$LD_LIBRARY_PATH

which will tell R where your GSL and BLAS libraries (see below for more
details about BLAS libraries) are. Note that this might have already been
configured on your system, so you might not have to do so. In case you need
to do it, you might consider copying and pasting the line in your .bashrc
so that you do not have to do it every time.

Now you are ready to install the package:

9

http://www.gnu.org/software/gsl/
http://www.netlib.org/blas/faq.html#5

R CMD INSTALL rMAT_x.y.z.tar.gz

The package will look for a BLAS library on your system, and by default
it will choose gslcblas, which is not optimized for your system. To use an
optimized BLAS library, you can use the --with-blas argument which will
be passed to the configure.ac file. For example, on a Mac with vecLib
pre-installed the package may be installed via:

R CMD INSTALL rMAT_x.y.z.tar.gz --configure-args="--with-blas=’-
framework vecLib’"

On a 64-bit Intel machine which has MKL as the optimized BLAS library,
the command may look like:

R CMD INSTALL rMAT_x.y.z.tar.gz --configure-args="--with-blas=’-
L/usr/local/mkl/lib/em64t/ -lmkl -lguide -lpthread’"

where /usr/local/mkl/lib/em64t/ is the path to MKL.
If you prefer to install a prebuilt binary, you need GSL for successful

installation.

10

	I Licensing
	II Introduction
	III Loading the rMAT Package
	IV Loading in the data
	V Reading BPMAP and CEL files
	VI Normalization
	VII Finding the Enriched Regions
	Creating an Ensembl annotation graphic
	Plotting a Gene
	Overlay for enriched regions

	VIII Appendix: Installing rMAT

