VanillaICFE: Hidden Markov Models for the Assessment of
Chromosomal Alterations using High-throughput SNP Arrays

Robert Scharpf
April 21, 2009

Abstract

Chromosomal DNA is characterized by variation between individuals at the level of entire chro-
mosomes (e.g. aneuploidy in which the chromosome copy number is altered), segmental changes
(including insertions, deletions, inversions, and translocations), and changes to small genomic re-
gions (including single nucleotide polymorphisms). A variety of alterations that occur in chromo-
somal DNA, many of which can be detected using high density single nucleotide polymorphism
(SNP) microarrays, are linked to normal variation as well as disease and therefore of particular
interest. These include changes in copy number (deletions and duplications) and genotype (e.g. the
occurrence of regions of homozygosity). Hidden Markov models (HMM) are particularly useful for
detecting such abnormalities, modeling the spatial dependence between neighboring SNPs. Here,
we extend previous approaches that utilize HMM frameworks for inference in high throughput SNP
arrays by integrating copy number, genotype calls, and the corresponding measures of uncertainty
when available. Using simulated and experimental data, we demonstrate how confidence scores
control smoothing in a probabilistic framework.

1 Overview

This vignette describes how to fit a hidden Markov model to locus-level estimates of genotype or copy
number. This vignette does not describe how to preprocess, genotype, or estimate copy number. We
assume that locus-level estimates of genotype and/or copy number have been obtained by software such
as the R package crlmm (preferred). Several HMM implementations are now available for the joint
analysis of copy number and genotype, including QuantiSNP [2] and PennCNV [4].

Citing this software. Robert B Scharpf, Giovanni Parmigiani, Jonathan Pevsner, and Ingo Ruczin-
ski. Hidden Markov models for the assessment of chromosomal alterations using high-throughput SNP
arrays. Annals of Applied Statistics, 2(2):687-713, 2008.

2 Data organization

2.1 Basic data elements

The basic elements required for fitting the vanilla hidden Markov model in this vignette are
e a matrix of copy number estimates
e a matrix of genotype calls (represented as integers: 1=AA, 2=AB, 3=BB)

e a mapping of platform identifiers to physical position and chromosome

When available, uncertainty estimates of copy number and genotypes (CRLMM uncertainties) should
also be represented as matrices. As several platforms now have polymorphic and nonpolymorphic probes,
the dimensions of the genotype and copy number matrices do not necessarily coincide. However, for this
release of VanillaICE we do impose this requirement. The genotypes for the nonpolymorphic probes
can be represented as NAs. The assay data provided with this package contains the basic elements for
the HMM from an older Affymetrix platform (100k):

> library(VanillaICE)

> data(locusLevelData)

> copynumber <- locusLevelDatal[["copynumber"]]/100
> genotypes <- locusLevelDatal[["genotypes"]]

The copy number estimates provided in the example data were saved as [copy number estimate|*100 and
stored as an integer — we divided the estimates by 100 above to revert to the original scale. Genotypes
should be represented as an integer: 1= AA, 2 = AB, 3=BB. NA or the integer 4 can be used to
represent missing values. Confidence scores for the assay data are included in the locusLevelData, but
for now we ignore these.

Meta-data on the locus-level estimates are also required. In particular, we require a mapping of
the platform identifiers to the chromosome and physical position. The preferred representation for the
chromosome is an integer. Currently, the only supported chromosomes are 1-22, X, and Y.

> chromosome <- locusLevelData[["annotation"]][, "chromosome"]
> position <- locusLevelData[["annotation"]][, "position"]
> names (position) <- names(chromosome) <- rownames (locusLevelData[["annotation"]])

Other chromosomes could potentially be supported, but the user will be expected to obtain cen-
tromere start and stop sites for alternative chromosomes. For details on how chromosome annotation
should be organized, see

> require (SNPchip)

> data(chromosomeAnnotation, package = "SNPchip")

> all(c(identical (names(position), rownames (copynumber)), identical(names(position),
+ rownames (genotypes)), identical(colnames(genotypes), colnames (copynumber))))
[1] TRUE

The assay data elements should be ordered by chromosome and physical position:

> ordering <- order(chromosome, position)

> chromosome <- chromosome [ordering]

> position <- position[ordering]

> genotypes <- genotypes[ordering, , drop = FALSE]
> copynumber <- copynumber [ordering, , drop = FALSE]

2.2 Using Biobase-derived classes

A principal advantage of using classes instead of matrices is that the assay data elements are bound
to the meta-data on the samples and loci. In this section, we show how the above assay data and
meta-data can be encapsulated in a single object. The classes required for this operation are defined
in the oligoClasses package available at BioConductor. These class definitions are all extensions of
eSet. The methods for manipulating eSets in the R package Biobase are now available to us. We will
instantiate these objects in two-steps: (i) instantiate an object that contains the locus-level meta-data
and (ii) instantiate an object that contains the assay-data and the meta-data.

For (i), the AnnotatedDataFrame class defined in the Biobase package is used as a container for the
meta-data on the locus-level summaries:

> require(oligoClasses)

> locusAnnotation <- data.frame(list(chromosome = chromosome, position = position),

+ row.names = names (chromosome))

> featuredata <- new("AnnotatedDataFrame", data = locusAnnotation,

+ varMetadata = data.frame(labelDescription = colnames(locusAnnotation)))

> stopifnot(all(c("chromosome", "position") Jinj, varLabels(featuredata)))

The labels ’chromosome’ and ’position’ are controlled vocabularies for the locus-level metadata that are
later required when fitting the HMM. For (ii), three options are possible and depend on the assay data
available:

1. SnpCallSet (genotypes-only)

> new("SnpCallSet", calls = genotypes, phenoData = annotatedDataFrameFrom(genotypes,
+ byrow = FALSE), featureData = featuredata)

2. SnpCopyNumberSet (copy number-only)

> new("SnpCopyNumberSet", copyNumber = copynumber, phenoData = annotatedDataFrameFrom(copynumber,

+ byrow = FALSE), featureData = featuredata)
3. oligoSnpSet (genotypes and copy number)

> locusset <- new("oligoSnpSet", copyNumber = copynumber, calls = genotypes,
+ phenoData = annotatedDataFrameFrom(copynumber, byrow = FALSE),
+ featureData = featuredata)

Successfully instantiating an object of the class ensures that the assay data elements and the meta-
data are consistent, greatly simplifying operations such as subsetting and reordering. For instance, the
assay data and meta-data can be ordered by chromosome and physical position with one line of R code:

> locusset <- locusset[order (chromosome(locusset), position(locusset)),

+]

3 Fitting the Vanilla HMM

We use the Vanilla HMM to smooth the locus-level summaries as a function of physical position when
confidence estimates of the assay data are unavailable. In Section 3.1, Biobase-derived class represen-
tations from the previous section and pre-defined wrappers for fitting a basic HMM are implemented.
In Section 3.2, we reproduce the results from Section 3.1 but in a step-by-step fashion using only the
matrices and vectors that were created in Section 2.1 (no classes). The step-by-step code in Section
2.1 is a useful guide for those wishing to alter the number of states in the HMM or develop other
adaptations.

3.1 Using Biobase-derived classes

The objective of developing classes is to facilitate the process of fitting an HMM and to more effectively
keep the assay- and meta-data bound in one object. The following code uses classes to arrive at the
same HMM predictions as above. The starting point is the R object locusset created as indicated
in Section 2.2. This object may be any one of the following classes: SnpCallSet, SnpCopyNumberSet,
oligoSnpSet. Note that we could repeat the steps of parameterizing the HMM with transition- and
emission-probabilities as described above, using the accessor methods chromosome, position, copy-
Number, and calls to access the meta- or assay-data. We provide a convenience wrapper for fitting

the Vanilla HMM, vanilla, that computes the transition probabilities and emission probabilities. For
oligoSnpSet objects, the hidden states are assumed to be hemizygous deletion, normal, ROH, and
amplification (in this order).

\

(brks <- hmm(object = locusset, states = c("hemDel", "normal",
"ROH", "amplification"), mu = c(1, 2, 2, 3), probs = c(0.999,
0.7, 0.999, 0.7), takeLog = TRUE))

+ +

sample chr start end nbases nprobes state
1 NA06993 1 836727 49545039 48708313 997 normal
2 NA06993 1 49597810 54409755 4811946 102 ROH
3 NA06993 1 54498950 69838068 15339119 902 normal
4 NA06993 1 69854466 73153900 3299435 202 amplification
5 NA06993 1 73174070 120928505 47754436 2502 normal
6 NA06993 1 143619946 174814292 31194347 1295 normal
7 NA06993 1 174815096 176800780 1985685 100 hemDel
8 NA06993 1 176800844 216239917 39439074 1900 normal
9 NA06993 1 216286002 217872810 1586809 99 hemDel
10 NAO6993 1 217892177 238302668 20410492 901 normal
11 NAO6993 1 238319943 238417864 97922 5 hemDel
12 NAO6993 1 238429864 246860994 8431131 160 normal
13 NAO6993 2 836727 7285897 6449171 100 normal

To obtain the matrix of predicted states for each locus, set returnSegments to FALSE:

A\

fit2 <- hmm(object = locusset, states = c("hemDel", "normal",
"ROH", "amplification"), mu = c(1, 2, 2, 3), probs = c(0.999,
0.7, 0.9999, 0.7), takeLog = TRUE, returnSegments = FALSE)

+ +

An example of how one may visualize the segmentation:

show(plot (locusset [chromosome (locusset) == 1, 1))

fit2[fit2 == 3] <- 2

fit2[fit2 == 4] <- 3

lines(position(locusset) [chromosome (1ocusset) == 1], fit2[chromosome(locusset) ==
1, 1)

rohRegion <- as.integer(brks[brks$§state == "ROH",][c("start",
"end")])

abline(v = rohRegion, col = "royalblue", 1ty = 2)

legend("topright", 1ty = c(1, 2), col = c("black", "royalblue"),
legend = c("CN state", "ROH boundary"), bty = "n")

+ VV+V +VYViVYyYy

10

g — CN state

--- ROH boundary
6 —
4 —

copy number
N

3.1.1 Extracting intermediate objects

To extract intermediate objects that were created by the hmm wrapper, one may pass an environment
to store the intermediate objects that are created prior to fitting the HMM.

> env <- new.env()
> fit2 <- hmm(object = locusset, states = c("hemDel", "normal",

+ "ROH", "amplification"), mu = c(1, 2, 2, 3), probs = c(0.999,
+ 0.7, 0.9999, 0.7), takeLog = TRUE, returnSegments = FALSE,
+ envir = env)
> 1s(env)
[1] "arm" "emission" "emission.cn" "emission.gt"
[5] "ice" "initialP" "locusset" "mu"
[9] "probs" "returnSegments" "states" "takeLog"
[13] "TAUP" "transitionPr" "verbose"

3.2 Step by step

We now go through the previous example step-by-step without using Biobase-derived classes or wrap-
pers. While we reproduce the results in the previous section, one may modify any of these step (for
instance, to expand the of hidden states). The basic elements of the HMM are

1 hidden states
2 initial state probabilities
3 transition probabilities

4 emission probabilities

Items (1) and (4) depend critically on the software that was used for obtaining the locus-level
estimates and the scientific goals of the analysis.

3.2.1 Hidden states

In this section we discuss specification of the parameters for the hidden states. We assume that condi-
tional on the underlying state the copy number estimates and genotypes are independent [3].

Copy number. There are two important considerations when specifying the hidden copy number
states. First, the scale of the locus-level estimates are dependent on the preprocessing software. For in-
stance, the BeadStudio software for the Illumina platform provides logR ratios, whereas crimm provides
an absolute estimate of copy number. Secondly, the data source is important. Integer copy number
states are not appropriate when mixtures of different cell populations are present. Mixtures of cell pop-
ulations can be diagnosed and the admixture estimated by visual inspection. For instance, a genomic
region containing copy number estimates between 1 and 2 on the absolute scale with heterozygous
genotype calls interspersed suggest a mixture of cell populations. Therefore, plot your data.

> chrl <- annotation[, "chromosome"] == 1
> plot(annotation[chrl, "position"], copynumber[chrl, 1], pch = ".",
+ cex = 2, col = "grey60")

If genotypes are available, color-code by the diallelic genotype call.

> plot(annotation[chrl, "position"], copynumber([chrl, 1], pch = ".",
+ cex = 2, col = "grey60")

> het <- genotypes[, 1] == 2

> points(annotation[chrl & 'het, "position"], copynumber[chrl &

+ 'het, 1], pch = ".", cex = 2, col = "royalblue")

> points(annotation[chrl & het, "position"], copynumber[chrl &

+ het, 1], pch = ".", cex = 2, col = "red")

>

abline(h = 1:3)

While the locusLevelData is based on HapMap samples, alterations were simulated to have integer
copy number states. Therefore, in the code chunk below we specify an integer copy number for the
hidden states hemizygous deletion (hemDel: copy number < 1), normal (copy number 2 and typical
heterozygosity), region of homozygosity (ROH: copy number 2 and unusually low heterozygosity), and
amplification (copy number >= 3).

> states <- c("hemDel", "normal", "ROH", "amplification")
> copynumberStates <- c(1, 2, 2, 3)

Genotypes In the absence of confidence scores for the genotype calls, the parameters needed for the
hidden states for the genotypes is the probability that the true genotype is homozygous conditional on
the underlying state.

> probs <- ¢(0.999, 0.7, 0.999, 0.7)
> names (probs) <- states

One may expand the number of hidden states to include > 3 copies and homozygous deletions, perform
simple gain/loss analyses using copy number only, or assess regions of homozygosity with genotypes
only.

3.2.2 Initial state probabilities.

The only requirement for specifying the initial state probabilities is that the probabilities sum to 1.
Here, we assume a prior: that the states are equally likely:

> initialP <- (rep(1, length(states)))/length(states)

3.2.3 Transition probabilities.

Our HMM uses locus-specific transition probabilities that are calculated as a function of the physical
distance between loci. Specifically, the probability that the locus at position ¢ — 1 is not informative
for the locus at position ¢ is calculated as 1 — e~% | where C is a constant specified by the user and
d is the physical distance between locus ¢ and locus t — 1. The default for C' is 1 x 10% and can be
specified by the TAUP argument to the function transitionProbability to acheive a desired amount
of sensitivity and specificity. Larger values of TAUP decreases the probability of transitioning to other
states, and therefore provides a more smooth fit. In particular, transitionProbability (i) transforms
the physical distance between adjacent loci to an estimate of the genomic distance and (ii) adds an
‘arm’ variable to the annotation matrix.

> tau <- transitionProbability(chromosome = chromosome, position = position,
+ TAUP = 1e+08)
> table(taul, "arm"])

0 1 2
4705 4460 100

> str(tau)

num [1:9265, 1:4] 1111111111
- attr(*, "dimnames")=List of 2
..$: NULL

..$: chr [1:4] "chromosome" "

position" "arm" "transitionPr"

The values for arm indicate that the HMM will be fit independently to three separate segments of the
supplied data, corresponding to arms 1p, 1q, and 2p. By default this function uses the chromosome
annotation provided by the R package SNPchip for the centromere coordinates and will work only for
chromosomes 1-22, X, and Y.

3.2.4 Emission probabilities

Copy number Skip to Genotypes if copy number estimates are not available.

One attractive feature of HMMs for smoothing copy number estimates as a function of the physical
position is that uncertainty estimates can be incorporated into the emission probabilities. While un-
certainty estimates for copy number and genotype calls can improve both the sensitivity and specificity
for detecting chromosomal alterations [3], these estimates are not always available. However, we can
develop ad-hoc estimates of the uncertainty provided a reasonable number of samples are available.

To obtain emission probabilities, we provide the matrix of copy number estimates and the location
parameter for the hidden states (mu). The object mu should have length equal to the number of hidden
states. If the hidden states are locus-specific, one may specify mu as a matrix with rows corresponding
to loci and columns corresponding to states.

> copynumberStates <- c(1, 2, 2, 3)
> emission.cn <- copynumberEmission(copynumber = copynumber, states = states,
+ mu = copynumberStates, takeLog = TRUE, verbose = TRUE)

> copynumberStates <- matrix(c(1, 2, 2, 3), nrow(copynumber), length(states),
+ byrow = TRUE)

> emission.cn2 <- copynumberEmission(copynumber = copynumber, states = states,
+ mu = copynumberStates, takeLog = TRUE)

> stopifnot(identical (emission.cn, emission.cn2))

> dim(emission.cn)

[1] 9265 1 4

The third dimension of the array returned by copynumberEmission corresponds to the number of
hidden states. The copy number and location parameter (mu) must be supplied on the same scale. For
instance, in the above code chuck the copy number estimates and mu are on the scale of copy number.
These estimates/parameters are both log-transformed within the body of the function by setting the
argument takeLog to TRUE. Again, the emission probabilities are calculated under the assumption that
the estimates, or a suitable transformation, are approximately Normal. Hence, in the simulated data
we check that the middle 90% is approximately Gaussian.

> par(pty = "s", las = 1)

> qqnorm(log2(copynumber), cex = 0.6)
> qqline(log2(copynumber))

> abline(v = c(-1.645, 1.645))

Normal Q-Q Plot

Sample Quantiles
|_\
|

Theoretical Quantiles

When true uncertainty estimates for the copy number are not available, copy number outliers are
more likely to result in extreme emission probabilities than can influence the HMM segmentation. There
are several approaches to reducing the influence of outliers on the HMM segmentation: (i) improved
uncertainty estimates (preferred), (ii) increase TAUP for the transition probabilities, (iii) threshold the
emission probabilities, and (iv) threshold extreme values for the copy number estimates. For example,

> emission.cn[emission.cn[, , 2] < -10, , 2] <- -10

copynumberEmission estimates the scale parameter for the Normal distribution from the supplied
data using the median absolute deviation (MAD). However, different standard deviations can be supplied
by the user with the argument sds. The supplied sds must be of the same dimension as the copy
number matrix. The following discussion elaborates briefly on the default procedure used to estimate
the standard deviations.

In the example dataset, we have only one sample and no estimates of the copy number uncertainty.
Therfore, we obtain a robust estimate of the copy number standard deviation across SNPs and use this
as a rough estimate of the uncertainty. As the log-transformed copy number estimates are more nearly
Gaussian, we calculate a robust estimate of the standard deviation using the median absolute deviation
(MAD) on the log scale:

> cn.sds <- VanillaICE:::robustSds (copynumber, takeLog = TRUE)
> dim(cn.sds)

[1] 9265 1

When multiple samples are available (e.g., 10 or more), SNP-specific estimates of the copy number
uncertainty can be obtained by scaling an estimate of the variability across samples by a sample-specific
estimate of noise. In the following code chunk, we simulate a matrix of copy number for 200 samples
and then compute a robust SNP-specific estimate of the standard deviation.

> CT <- matrix(sample(copynumber, 100 * 200, replace = TRUE), 100,
+ 200)
> sds <- VanillalICE:::robustSds(CT, takeLog = TRUE)

The robustSds function returns a SNP-specific matrix of standard deviations provided that the
copy number matrix has at least 3 samples. The preferred approach when the sample size is small (say,
less than 10), is to develop SNP-specific estimates of the variance on a larger reference set, such as
HapMap, using the same software, and then scale these estimates by a measure of the sample variance.

Genotypes. Proceed to Fitting the hidden Markov model if genotypes estimates are not available.
If genotypes were estimated using the CRLMM or oligo and confidence estimates are available, see
Section 4.

As copy number estimates are typically very noisy, genotype calls can potentially provide increased
power to identify small regions of hemizygous deletions. In addition, the genotypes can be used to
identify unusually long regions of homozygosity (ROH). In our experience, sequences of 70 - 100 ho-
mozygous genotypes are not uncommon and likely represent normal regions of the genome with fairly
uniform haplotype structure. Emission probabilities for the Vanilla HMM are estimated from a Bernoulli
with state-specific probabilities of a homozygous genotype call as specified in Section 3.2.1.

> emission.gt <- genotypeEmission(genotypes = genotypes, states = states,
+ probHomCall = probs)

If any of the genotype calls are missing and missingness is not independent of the underlying hidden
state, one may specify the probability of a missing genotype calls for each hidden state (probMissing).
By default, the HMM will assume that missing genotype calls are independent of the underlying hidden
state. In particular, this assumption may not be reasonable for homozygous deletions.

Conditional on the hidden state, we assume that the copy number and genotype are independent.
Therefore, the emission probabilities for an HMM that models the copy number and genotypes jointly
are computed by adding the emission probabilities (log-scale) for copy number and genotype:

> emission <- emission.gt + emission.cn

If assay data for only genotypes or only copy number is available, the emission probability is simply
the genotype or copy number emission probabilities, respectfully.

3.2.5 Viterbi algorithm.

The sequence of states that maximizes the likelihood is obtained by the Viterbi algorithm. Note that
the argument arm to this function is a factor indicating the chromosomal arms — the Viterbi algorithm
is computed for independently for each chromosomal arm.

> fit <- viterbi(initialStateProbs = log(initialP), emission = emission,
+ tau = taul, "transitionPr"], arm = taul, "arm"])
> table(fit)

fit
1 2 3 4
204 8757 102 202

> breaks(x = fit, states = states, position = taul, "position"],

+ chromosome = tau[, "chromosome"], sampleNames = colnames (copynumber))
sample chr start end nbases nprobes state
1 NA06993 1 836727 49545039 48708313 997 normal
2 NA06993 1 49597810 54409755 4811946 102 ROH
3 NA06993 1 54498950 69838068 15339119 902 normal
4 NA06993 1 69854466 73153900 3299435 202 amplification
5 NA06993 1 73174070 120928505 47754436 2502 normal
6 NA06993 1 143619946 174814292 31194347 1295 normal
7 NA06993 1 174815096 176800780 1985685 100 hemDel
8 NA06993 1 176800844 216239917 39439074 1900 normal
9 NAO06993 1 216286002 217872810 1586809 99 hemDel
10 NA06993 1 217892177 238302668 20410492 901 normal
11 NA06993 1 238319943 238417864 97922 5 hemDel
12 NA06993 1 238429864 246860994 8431131 160 normal
13 NA06993 2 836727 7285897 6449171 100 normal

4 Integretating Confidence Estimates (ICE): Extending CRLMM

In this section, we illustrate how one may fit an HMM that incorporates confidence esimates of the
SNP-level summaries for the genotype calls. To reduce the amount of repeated code, we will use the
Biobase-derived classes to illustrate this approach. We will instantiate an object of class oligoSnpSet
as described in Section 2.2, however we will also store the CRLMM confidence scores (represented as
an integer).

10

> copynumber <- locusLevelDatal[["copynumber"]]/100

> crlmmConfidence <- locusLevelData[["crlmmConfidence"]]

> genotypes <- locusLevelDatal[["genotypes"]]

> fd <- locusLevelData[["annotation"]]

> featuredata <- new("AnnotatedDataFrame", data = data.frame(fd),

+ varMetadata = data.frame(labelDescription = colnames(fd)))

> (locusset2 <- new("oligoSnpSet", copyNumber = copynumber, calls = genotypes,

+ callsConfidence = crimmConfidence, phenoData = annotatedDataFrameFrom(copynumber,
+ byrow = FALSE), featureData = featuredata, annotation = "genomewidesnp6"))

oligoSnpSet (storageMode: lockedEnvironment)
assayData: 9265 features, 1 samples
element names: calls, callsConfidence, cnConfidence, copyNumber
experimentData: use 'experimentData(object)'
Annotation: genomewidesnp6
phenoData
An object of class "AnnotatedDataFrame"
sampleNames: NA06993
varLabels and varMetadata description: none

featureData
An object of class "AnnotatedDataFrame"
featureNames: SNP_A-1677174, SNP_A-1718890, ..., SNP_A-100 (9265 total)

varLabels and varMetadata description:
chromosome: chromosome
position: position
Annotation [1] "genomewidesnp6"

> locusset2 <- locusset2[order (chromosome (1ocusset2), position(locusset2)),

+]

The annotation slot must be specified so that the appropriate reference distribution will be loaded.
Supported Affymetrix platforms include genomewidesnp6, pd.mapping250k.nsp, and pd.mapping250k.sty.
When fitting the ICE HMM using the hmm wrapper, we again assume that the hidden states are hemizy-
gous deletion, normal, copy-neutral region of homozygosity, and amplification (in this order). Fitting
the ICE HMM using other states is possible, and one could follow the step-by-step approach outlined
in Section 3.2.

> fit3 <- hmm(object = locusset2, states = c("hemDel", "normal",

+ "ROH", "amplification"), mu = c(1, 2, 2, 3), takeLog = TRUE,
+ returnSegments = FALSE, ice TRUE)
>
+
+

brks <- hmm(object = locusset2, states = c("hemDel", '"normal",
"ROH", "amplification"), probs = c(0.05, 0.99, 0.7, 0.999),
mu = c(1, 2, 2, 3), takeLog = TRUE, ice = TRUE)

Here we plot one of the regions that has different breakpoints in the ICE and Vanilla HMMs.

i <- which(position(locusset2) >= 45 * 1e+06 & position(locusset2) <=
55 * 1e+06 & chromosome(locusset2) == 1)

gp <- plot(locusset2[i, 1)

gp$pch <- 21

gp$col <- "black"

gp$cex <- 0.9

vV VVV + VvV

11

> gp$ylim <- ¢(0.9, 6)
> gp$add.cytoband <- FALSE
> show(gp)
> fit3[fit3 == 3] <- 2
> fit3[fit3 == 4] <- 3
> lines(position(locusset2)[i], fit3[i, 1])
> rohRegion <- as.numeric(as.matrix(brks[brks$state == "ROH",][c("start",
+ "end")J))
> abline(v = rohRegion, col = "royalblue", 1ty = 2)
> legend("topright", 1ty = c(1, 2), col = c("black", "royalblue"),
+ legend = c("CN state", "ROH boundary"), bty = "o", bg = "white")
6 7 3 3 — CNstate
5 | ! 'l --- ROH boundary
‘- o 3 I
. 3 o L | LR
[} ° | ° " ° ! .
_g ° ., . O ° o 2% ° °,
5 . o, o @, e * Yo %
c o [o oﬂw: o o © S %! & 201
§ 2 - H A 3 2 ° o o i - le! L8 00&0‘40 Py
° A TS, Lo R N SUUEL
. . o % °© ° o c:o%oow ° . . ° 1 o ©° %5 °
O SR
1 1 s |
T T T T T
46 48 50 52 54
Mb Chr1

5 Appendix

5.1 Confidence scores for genotype calls.

We suggest using the CRLMM algorithm [1] for genotype calls. CRLMM (in the R package oligo) provides
confidence scores (Sgz) of the genotype estimates (GT) From 269 HapMap samples assayed on the
Affymetrix 50k Xba and Hind chips, we have a gold standard of the true genotype defined by the
consensus of the HapMap centers. We use kernal-based density estimates to obtain

£{ Suone | HOM,HOM }, f{ Sysy, | HOMHET }, f{ Syy | HET,HOM }, and f { S,y | HET, HET } (1)

separately for the Xba and Hind 50k chips. The first term in (1), for example, denotes the density of the

7

scores when the genotype is correctly called homozygous (HOM) and the true genotype is homozygous
(HOM). See [3] for a more complete description of the methods.

12

gp <- plot(snpset[chromosome (snpset) == 1, 1)
lines(position(snpset) [chromosome (snpset) == 1], viterbiResults[chromosome (snpset) ==
1, D

gp$abline.v <- TRUE

allParameters <- unlist (snpPar(gp))
gp$col.predict[3] <- "white"
gp$hmm.ycoords <- ¢(0.7, 0.9)

show (gp)

V VVVV + VYV

5.2 More examples
5.2.1 Copy number only: assessing gain/loss

The method hmm has a different set of underlying hidden states depending on whether copy number
estimates, genotype calls, or both are available. When only copy number estimates are available, the
hidden states (for autosomes) are hemizygous or homozygous deletion (one or fewer copies), normal
(two copies), and amplification (three or more copies). The corresponding Biobase-derived class is
SnpCopyNumberSet.

5.2.2 Genotypes only: assessing ROH

When only genotype calls are available, the hidden states are loss and retention (ret) of heterozygosity.
We define loss to be a sequence of homozygous SNPs longer than what we would expect to observe by
chance. Note that many long stretches of homozygosity may occur as a result of a population sharing
a common underlying haplotype structure; loss predictions from an HMM fit to an indvidual do not

necessarily reflect the ’loss’ of an allele in that individual. The corresponding Biobase-derived class is
SnpCallSet.

5.3 Expanding the number of hidden states

Section is incomplete. For homozygous deletion, we specify a small value (less than 1) but greater than
zero to account for background fluorescence.

> states <- c("homozygousDeletion", "hemizygousDeletion", "normal",
+ "LOH", "3copyAmp", "4copyAmp")

>mu <- ¢(0.05, 1, 2, 2, 3, 4)

> probs <- ¢(0.99, 0.999, 0.99, 0.999, 0.99, 0.99)

> probMissing <- c¢(0.95, rep(0.5, 5))

5.4 Classes for segmented data
TODO

5.5 Plotting methods for segmented data classes
TODO

6 Session Information
The version number of R and packages loaded for generating the vignette were:

e R version 2.9.0 (2009-04-17), x86_64-unknown-1inux-gnu

13

Locale: LC_CTYPE=en_US;LC_NUMERIC=C;LC_TIME=en_US;LC_COLLATE=en_US;LC_MONETARY=C;LC_MESSAGES=en_US;

Base packages: base, datasets, graphics, grDevices, methods, stats, tools, utils

Other packages: Biobase 2.4.0, oligoClasses 1.6.0, SNPchip 1.8.0, VanillaICE 1.6.0

Loaded via a namespace (and not attached): Biostrings 2.12.0, IRanges 1.2.0

References

[1] Benilton Carvalho, Henrik Bengtsson, Terence P Speed, and Rafael A Irizarry. Exploration, normal-
ization, and genotype calls of high-density oligonucleotide SNP array data. Biostatistics, 8(2):485—
499, Apr 2007.

[2] Stefano Colella, Christopher Yau, Jennifer M Taylor, Ghazala Mirza, Helen Butler, Penny Clouston,
Anne S Bassett, Anneke Seller, Christopher C Holmes, and Jiannis Ragoussis. QuantiSNP: an
Objective Bayes Hidden-Markov Model to detect and accurately map copy number variation using
SNP genotyping data. Nucleic Acids Res, 35(6):2013-2025, 2007.

[3] Robert B Scharpf, Giovanni Parmigiani, Jonathan Pevsner, and Ingo Ruczinski. Hidden Markov
models for the assessment of chromosomal alterations using high-throughput SNP arrays. Annals
of Applied Statistics, 2(2):687-713, 2008.

[4] Kai Wang, Mingyao Li, Dexter Hadley, Rui Liu, Joseph Glessner, Struan F A Grant, Hakon Hakonar-
son, and Maja Bucan. Penncnv: an integrated hidden markov model designed for high-resolution

copy number variation detection in whole-genome snp genotyping data. Genome Res, 17(11):1665—
1674, Nov 2007.

14

