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1 Overview

This package implements the Signaling Pathway Impact Analysis (SPTA) algorithm described in
Tarca et al.| (2009), Khatri et al.| (2007) and |Draghici et al.| (2007). SPIA uses the information from
a set of differentially expressed genes and their fold changes, as well as pathways topology in order
to assess the significance of the pathways in the condition under the study. The current version of
SPIA algorithm uses KEGG signaling pathway data. SPIA ready KEGG pathway data for homo
sapiens is included in the package and also available at
http://bioinformaticsprb.med.wayne.edu/SPIA/.

The pathways included for each organism are those containing only directed relations between
genes/proteins and no reactions.

2 Pathway analysis with SPIA package

This document provides basic introduction on how to use the SPIA package. For extended descrip-
tion of the methods used by this package please consult these references: |Tarca et al. (2009)); Khatri
et al.| (2007); Draghici et al.| (2007).

We demonstrate the functionality of this package using a colorectal cancer dataset obtained using
Affymetrix GeneChip technology and available through GEO (GSE4107). The experiment contains
10 normal samples and 12 colorectal cancer samples and is described by Hong et al. (2007). RMA
preprocessing of the raw data was performed using the affy package, and a two group moderated
t-test was applied using the limma package. The data frame obtained as an end result from the
function topTable in limma is used as starting point for preparing the input data for SPIA. This
data frame called top was made available in the colorectalcancer dataset included in the SPTA
package:

> library(SPIA)
> data(colorectalcancer)


http://bioinformaticsprb.med.wayne.edu/SPIA/

> options(digits = 3)
> head(top)

ID logFC AveEx
10738 201289_at 5.96 6.

18604  209189_at 5.14 7
11143 201694_s_at 4.15 7
10490 201041_s_at 2.43 9
10913 201464_x_at 1.53 8
11463  202014_at 1.43 5

For SPIA to work, we need a vector with log2 fold changes between the two groups for all the
genes considered to be differentially expressed. The names of this vector must be Entrez gene
IDs. The following lines will add one additional column in the top data frame annotating each
affymetrix probeset to an Entrez ID. Since there may be several probesets for the same Entrez 1D,
there are two easy ways to obtain one log fold change per gene. The first option is to use the fold
change of the most significant probeset for each gene, while the second option is to average the log
fold-changes of all probestes of the same gene. In the example below we used the former approach.
The genes in this example are called differentially expressed provided that their FDR p-value is
less than 0.05. The following lines start with the top data frame and produce two vectors that are

required as input by spia function

library(hgu133plus2.db)
x <- hgul33plus2ENTREZID

DE_Colorectal = tgl$logFC
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The DE_Colorectal is a vector containing the log2 fold changes of the genes found to be differ-
entially expressed between cancer and normal samples, and ALL_Colorectal is a vector with the
Entrez IDs of all genes profiled on the microarray. The names of the DE_Colorectal are the Entrez
gene IDs corresponding to the computed log fold-changes.

> DE_Colorectal[1:10]
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top$ENTREZ <- unlist(as.list(x[top$ID]))
top <- topl[!is.na(top$ENTREZ), ]
top <- top[!duplicated(top$ENTREZ), ]
tgl <- top[top$adj.P.Val < 0.05, ]

names (DE_Colorectal) <- as.vector (tgl1$ENTREZ)
ALL_Colorectal = top$ENTREZ
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5.96 5.14 4.15 2.43 1.53
> ALL_Colorectal[1:10]
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The SPTA algorithm takes as input the two vectors above and produces a table of pathways ranked
from the most to the least significant. This can be achieved by calling the spia function as follows:

> res = spia(de = DE_Colorectal, all = ALL_Colorectal, organism = "hsa",
+ nB = 2000, plots = FALSE, beta = NULL)
Done pathway 1 : MAPK signaling pathway..
Done pathway 2 : ErbB signaling pathway..
Done pathway 3 : Calcium signaling pathway..
Done pathway 4 : Cytokine-cytokine recepto..
Done pathway 5 : Neuroactive ligand-recept..
Done pathway 6 : Cell cycle..

Done pathway 7 : p53 signaling pathway..

Done pathway 8 : Regulation of autophagy..
Done pathway 9 : mTOR signaling pathway..
Done pathway 10 : Apoptosis..

Done pathway 11 : Wnt signaling pathway..
Done pathway 12 : Notch signaling pathway..
Done pathway 13 : Hedgehog signaling pathwa..
Done pathway 14 : TGF-beta signaling pathwa..
Done pathway 15 : Axon guidance..

Done pathway 16 : VEGF signaling pathway..
Done pathway 17 : Focal adhesion..

Done pathway 18 : ECM-receptor interaction..
Done pathway 19 : Cell adhesion molecules (..
Done pathway 20 : Adherens junction..

Done pathway 21 : Tight junction..

Done pathway 22 : Gap junction..

Done pathway 23 : Complement and coagulatio..
Done pathway 24 : Antigen processing and pr..
Done pathway 25 : Toll-like receptor signal..
Done pathway 26 : Jak-STAT signaling pathwa..
Done pathway 27 : Natural killer cell media..
Done pathway 28 : T cell receptor signaling..
Done pathway 29 : B cell receptor signaling..
Done pathway 30 : Fc epsilon RI signaling p..
Done pathway 31 : Leukocyte transendothelia..
Done pathway 32 : Circadian rhythm..

Done pathway 33 : Long-term potentiation..
Done pathway 34 : Long-term depression..

Done pathway 35 : Olfactory transduction..
Done pathway 36 : Taste transduction..

Done pathway 37 : Regulation of actin cytos..
Done pathway 38 : Insulin signaling pathway..
Done pathway 39 : GnRH signaling pathway..
Done pathway 40 : Melanogenesis..
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res$Name =
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: Small cell lung cancer..
Non-small cell lung cance..

65

66 :
67 :
68 :
69 :

70
71

Adipocytokine signaling p..
Type II diabetes mellitus..
: Type I diabetes mellitus..
Maturity onset diabetes o..

Alzheimer's disease..
Parkinson's disease..

Amyotrophic lateral scler..
: Huntington's disease..
Dentatorubropallidoluysia..
Vibrio cholerae infection..
Epithelial cell signaling..
Pathogenic Escherichia co..

Colorectal cancer..
Renal cell carcinoma..
Pancreatic cancer..
Endometrial cancer..
Glioma..

Prostate cancer..
Thyroid cancer..

Basal cell carcinoma..
Melanoma. .

Bladder cancer..

Chronic myeloid leukemia..

Acute myeloid leukemia..

Asthma. .

Autoimmune thyroid diseas..
Systemic lupus erythemato..
: Allograft rejection..
: Graft-versus—host disease..

substr(res$Name, 1, 10)

\%

res[1:15, ]

Name
Parkinson'
Alzheimer'
Focal adhe
ECM-recept
Axon guida
Colorectal
MAPK signa
Wnt signal
Regulation
10 Renal cell

© 00 N O O WN =

ID pSize NDE tA pNDE
05012 109 59 -12.605 1.94e-15
05010 149 71 ~-7.062 1.75e-14
04510 181 65 62.900 3.12e-07
04512 76 26 19.778 2.32¢-03
04360 119 47 7.630 5.95e-07
05210 78 26 7.257 3.48¢-03
04010 254 73  5.493 3.93e-04
04310 142 43 -8.217 1.93e-03
04810 197 57 8.073 1.35e-03
05211 64 21 ~-7.692 9.90e-03
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pPERT

.038000
.151000
.000005
.000005
.399000
.047000
.485000
.213000
.361000
.088000
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.81e-15
.12e-14
.40e-11
.23e-07
.86e-06
.59e-03
.82e-03
.61e-03
.20e-03
.01e-03

DWWk, P, 0w, W

pGFdr

.94e-13
.15e-12
.01e-09
.85e-06
.32e-05
.80e-02
.80e-02
.12e-02
.22e-02
.84e-02



11 Dentatorub 05050 14 8 -0.894 2.26e-03 0.629000 1.08e-02 6.75e-02
12 Notch sign 04330 45 17 3.612 4.04e-03 0.510000 1.48e-02 8.51e-02
13 Circadian 04710 9 6 0.000 2.93e-03 1.000000 2.00e-02 9.27e-02
14 Tight junc 04530 123 37 1.871 4.32e-03 0.682000 2.01e-02 9.27e-02
15 Apoptosis 04210 85 24 -15.471 3.94e-02 0.075000 2.01e-02 9.27e-02
pGFWER Status
.94e-13 Inhibited
.29e-12 Inhibited
.04e-09 Activated
.54e-05 Activated
.66e-04 Activated
.10e-01 Activated
.26e-01 Activated
.49e-01 Inhibited
.90e-01 Activated
.84e-01 Inhibited
.42e-01 Inhibited
.00e+00 Activated
.00e+00 Inhibited
.00e+00 Activated
.00e+00 Inhibited
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If the plots argument is set to TRUE in the function call above, a plot like the one shown in Figure
is produced for each pathway on which there are differentially expressed genes. These plots are
saved in a pdf file in the current directory.

An overall picture of the pathways significance according to both the over-representation evidence
and perturbations based evidence can be obtained with the function plotP and shown in Figure
In this plot, the horizontal axis represents the p-value (minus log of) corresponding to the prob-
ability of obtaining at least the observed number of genes (NDE) on the given pathway just by
chance. The vertical axis represents the p-value (minus log of) corresponding to the probability
of obtaining the observed total accumulation (tA) or more extreme on the given pathway just by
chance. The computation of pPERT is described in Tarca et al.|(2009). In Figure [2|each pathway
is shown as a bullet point, and those significant at 5% (set by the threshold argument in plotP)
after Bonferroni correction are shown in red.

SPIA algorithm is illustrated also using the Vessels dataset:

> data(Vessels)

> res <- spia(de = DE_Vessels, all = ALL_Vessels, organism = "hsa",
+ nB = 500, plots = FALSE, beta = NULL, verbose = FALSE)

> res$Name = substr(res$Name, 1, 10)

> res[1:15, ]

Name ID pSize NDE tA pNDE pPERT pG pGFdr pGFWER
1 Axon guida 04360 128 12 -6.019 0.000208 0.108 0.000263 0.0125 0.0163
2 Focal adhe 04510 199 16 -5.763 0.000123 0.292 0.000404 0.0125 0.0251
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Figure 1: Perturbations plot for colorectal cancer pathway (KEGG ID hsa:05210) using the col-
orectalcancer dataset. The perturbation of all genes in the pathway are shown as a function of
their initial log2 fold changes (left panel). Non DE genes are assigned 0 log2 fold-change. The null
distribution of the net accumulated perturbations is also given (right panel). The observed net
accumulation tA with the real data is shown as a red vertical line.



> plotP(res, threshold = 0.05)

SPIA two—-way evidence plot
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Figure 2: SPIA evidence plot for the colorectal cancer dataset. Each pathway is represented by one
dot. The pathways at the right of the red oblique line are significant after Bonferroni correction of
the global p-values, pG. The pathways at the right of the blue oblique line are significant after a
FDR correction of the global p-values, pG.



3 Neuroactiv 04080 255 18 -0.510 0.000247 0.512 0.001260 0.0209 0.0781

4 Notch sign 04330 45 4 6.143 0.034132 0.004 0.001351 0.0209 0.0838

5 Complement 04610 67 7 4.217 0.002325 0.244 0.004808 0.0563 0.2981

6 Graft-vers 05332 40 6 0.000 0.000710 1.000 0.005859 0.0563 0.3633

7 Regulation 04810 210 14 2.571 0.002001 0.424 0.006847 0.0563 0.4245

8 Type I dia 04940 42 6 0.000 0.000927 1.000 0.007400 0.0563 0.4588

9 Asthma 05310 29 5 0.000 0.001038 1.000 0.008167 0.0563 0.5063

10 Antigen pr 04612 86 7 1.679 0.009235 0.144 0.010137 0.0628 0.6285

11 Wnt signal 04310 1561 11 1.035 0.002986 0.668 0.014394 0.0811 0.8925

12 Allograft 05330 36 5 0.000 0.002815 1.000 0.019346 0.1000 1.0000

13 Leukocyte 04670 116 9 -0.834 0.004608 0.804 0.024444 0.1166 1.0000

14 Cytokine-c 04060 258 12 -2.527 0.052351 0.100 0.032732 0.1450 1.0000

15 Epithelial 05120 67 5 2.009 0.036325 0.168 0.037220 0.1518 1.0000
Status

1 Inhibited

2 Inhibited

3 Inhibited

4 Activated

5 Activated

6 Inhibited

7 Activated

8 Inhibited

9 Inhibited

10 Activated

11 Activated

12 Inhibited

13 Inhibited

14 Inhibited

15 Activated

Note that the results for these datasets my differ from the ones described in Tarca et al.| (2009) since

a) the pathways database used herein was updated and b) the default beta values were changed.

The directed adjacency matrices of the graphs describing the different types of relations between
genes/proteins (such as activation or repression) used by SPIA are available in the extdata/hsaSPIA.RData
file for the homo sapiens organism. The types of relations considered by SPIA and the default weight

(beta coefficient) given to them are:

rel <- c("activation", "compound", "binding/association", "expression",
"inhibition", "activation_phosphorylation", "phosphorylation",
"indirect", "inhibition_phosphorylation", "dephosphorylation_inhibition",
"dissociation", "dephosphorylation", "activation_dephosphorylation",
"state'", "activation_indirect", "inhibition_ubiquination',
"ubiquination", "expression_indirect", '"indirect_inhibition",
"repression", "binding/association_phosphorylation", "dissociation_phosphorylation",
"indirect_phosphorylation")
beta = ¢(1, 0, 0, 1, -1, 1, 0, 0, -1, -1, 0, 0, 1, 0, 1, -1,

V + + + + 4+ + +V



+ o, 1, -1, -1, 0, 0, 0)
> names(beta) <- rel
> cbind(beta)

beta
activation 1
compound 0
binding/association 0
expression 1
inhibition -1
activation_phosphorylation 1
phosphorylation
indirect 0
inhibition_phosphorylation -1
dephosphorylation_inhibition -1
dissociation 0
dephosphorylation 0
activation_dephosphorylation 1
state 0
activation_indirect 1
inhibition_ubiquination -1
ubiquination 0
expression_indirect 1
indirect_inhibition -1
repression -1
binding/association_phosphorylation 0
dissociation_phosphorylation 0
indirect_phosphorylation 0

A 0 value for a given relation type results in discarding those type of relations from the analysis for
all pathways. The default values of beta can changed by the user at any time by setting the beta
argument of the spia function call.

Other organisms’ KEGG pathway data can be downloaded from http://bioinformaticsprb.med.
wayne.edu/SPIA as a "[org]SPTA.RData” file and copied into the extdata directory of the SPIA
package, and therefore make it available to the function spia.

The user has the ability to generate his own gene/protein relation data and put it in a list format
as the one shown in the hsaSPIA.RData file. In this file, each pathway data is included in a list:

> load(file = paste(system.file("extdata/hsaSPIA.RData", package = "SPIA")))
> names (path.info[["05210"]1])

[1] "activation" "compound"

[3] "binding/association" "expression"

[5] "inhibition" "activation_phosphorylation"
[7] "phosphorylation" "indirect"

[9] "inhibition_phosphorylation" "dephosphorylation_inhibition"
[11] "dissociation" "dephosphorylation"


http://bioinformaticsprb.med.wayne.edu/SPIA
http://bioinformaticsprb.med.wayne.edu/SPIA

[13]
[15]
[17]
[19]
[21]
[23]
[25]

"activation_dephosphorylation" "state"

"activation_indirect"
"ubiquination"
"indirect_inhibition"

"inhibition_ubiquination"
"expression_indirect"
"repression"

"binding/association_phosphorylation" "dissociation_phosphorylation"
"indirect_phosphorylation" "nodes"

"title"

"NumberOfReactions"

> path.info[["05210"]][["activation"]] [48:60, 55:60]

369

5894
673

5599
5601
5602
8312
8313
5900
5879
5880
5881
332

0 0 0 0

O O OO O OO OO O o o
ORr P P OOOOO O OO Oo
O O OO OO0k K, KL, OO
O O OO O0OO0OO0O K-, EKE, OO

0

O OO OO OO K, mFH»r OO

8313 5900 5879 5880 5881 332
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In the matrix above, only 0 and 1 values are allowed. 1 means the gene/protein given by the column
has a relation of type "activation” with the gene/protein given by the row of the matrix.

Using other R packages such as graph and Rgraphviz one can visualize the richness of gene/protein
relations of each type in each pathway. Firstly we load the required packages and create a function
that can be used to plot as a graph each type of relation of any pathway, as used by SPIA.

> library(graph)
> library(Rgraphviz)
> plotG <- function(B) {

+

+ + + + + + + + + + +

nnms <- NULL
colls <- NULL
mynodes <- colnames (B)
L <= 1ist()
n <- dim(B) [1]
for (i in 1:n) {
L[i] <- list(edges

= rownames (B) [abs (B[, i]) > 0])

if (sum(B[, i] !'=0) > 0) {
nnms <- c(nnms, paste(colnames(B)[i], rownames(B) [B[,
i] != 0], sep = """))

10



+ names (L) <- rownames(B)

+ g <- new('"graphNEL", nodes = mynodes, edgel = L, edgemode = "directed")
+ plot(g)

+ }

We plot then the "activation” relations in the ErbB signaling pathway, based on the hsaSPIA data.

> plotG(path.info[["04012"]] [["activation"]])
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Figure 3: Display of the "activation” relations in the ErbB signaling pathway, based on the hsaSPTA
data.

For more details on how to use the main function in this package use ”?spia”.
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