
MLInterfaces : towards uniform behavior of machine
learning tools in R

VJ Carey, J Mar, R Gentleman

October 3, 2009

1 Introduction

We define machine learning methods as data based algorithms for prediction. Given data
D, a generic machine learning procedure MLP produces a function ML = MLP(D). For
data D’ with structure comparable to D, ML(D’) is a set of predictions about elements
of D’.

To be slightly more precise, a dataset D is a set of records. Each record has the
same structure, consisting of a set of features (predictors) and one or more predictands
(classes or responses of interest, to be predicted). MLP uses features, predictands, and
tuning parameter settings to construct the function ML. ML is to be a function from
features only to predictands.

There are many packages and functions in R that provide machine learning proce-
dures. They conform to the abstract setup described above, but with great diversity in
the details of implementation and use. The input requirements and the output objects
differ from procedure to procedure.

Our objective in MLInterfaces is to simplify the use and evaluation of machine learn-
ing methods by providing specifications and implementations for a uniform interface.
(The tune procedures in e1071 also pursue more uniform interface to machine learning
procedures.) At present, we want to simplify use of machine learning with microar-
ray data, assumed to take the form of ExpressionSets. The present implementation
addresses the following concerns:

• simplify the selection of the predictand from ExpressionSet structure;

• simplify (in fact, require) decomposition of input data into training and test set,
with output emphasizing test set results;

• provide a uniform output structure.

The output structures currently supported are subclasses of a general class MLOutput ,
described in Section ?? below.

1

To give a flavor of the current implementation, we perform a few runs with different
machine learning tools. We will use 60 genes drawn arbitrarily from Golub’s data.

> library(MLInterfaces)

> library(golubEsets)

> data(Golub_Merge)

> smallG <- Golub_Merge[200:259,]

> smallG

ExpressionSet (storageMode: lockedEnvironment)

assayData: 60 features, 72 samples

element names: exprs

phenoData

sampleNames: 39, 40, ..., 33 (72 total)

varLabels and varMetadata description:

Samples: Sample index

ALL.AML: Factor, indicating ALL or AML

...: ...

Source: Source of sample

(11 total)

featureData

featureNames: D13627_at, D13628_at, ..., D16469_at (60 total)

fvarLabels and fvarMetadata description: none

experimentData: use 'experimentData(object)'
pubMedIds: 10521349

Annotation: hu6800

Here is how k-nearest neighbors is used to get predictions of ALL status, using the first
40 records as the training set:

> krun = MLearn(ALL.AML ~ ., smallG, knnI(k = 1), 1:40)

> krun

MLInterfaces classification output container

The call was:

MLearn(formula = ALL.AML ~ ., data = smallG, .method = knnI(k = 1),

trainInd = 1:40)

Predicted outcome distribution for test set:

ALL AML

22 10

Summary of scores on test set (use testScores() method for details):

Min. 1st Qu. Median Mean 3rd Qu. Max.

1 1 1 1 1 1

2

The confuMat method computes the confusion matrix resulting from applying the trained
model to the reserved test data:

> confuMat(krun)

predicted

given ALL AML

ALL 18 3

AML 4 7

Additional parameters can be supplied as accepted by the target procedure in package
class . To use a neural net in the same context (with fewer genes to simplify the summary
below)

> set.seed(1234)

> nns <- MLearn(ALL.AML ~ ., smallG[1:10,], nnetI, trainInd = 1:40,

+ size = 2, decay = 0.01, maxit = 250)

weights: 25

initial value 27.327352

iter 10 value 25.018790

iter 20 value 21.799662

iter 30 value 19.267699

iter 40 value 14.859899

iter 50 value 10.836288

iter 60 value 8.196922

iter 70 value 8.182311

iter 80 value 7.381528

iter 90 value 7.291806

iter 100 value 7.204848

iter 110 value 7.185043

iter 120 value 7.159077

iter 130 value 6.803327

iter 140 value 6.779275

iter 150 value 6.778553

iter 160 value 6.778405

iter 170 value 6.778377

iter 180 value 6.778356

iter 190 value 6.778342

iter 190 value 6.778342

iter 190 value 6.778342

final value 6.778342

converged

3

> nns

MLInterfaces classification output container

The call was:

MLearn(formula = ALL.AML ~ ., data = smallG[1:10,], .method = nnetI,

trainInd = 1:40, size = 2, decay = 0.01, maxit = 250)

Predicted outcome distribution for test set:

ALL AML

24 8

Summary of scores on test set (use testScores() method for details):

[1] 0.2690627

> confuMat(nns)

predicted

given ALL AML

ALL 18 3

AML 6 5

2 Usage

The basic call sequence for supervised learning for ExpressionSets is

MLearn(formula, data, learnerSchema, trainInd, ...)

The parameter formula is a standard R formula, with y~xz+ indicating that x and \verbz+
are predictors of response y. If data is a data.frame instance, then the formula has the
usual interpretation for R. If data is an ExpressionSet instance, then it is assumed
that the dependent variable is present in the pData component of phenoData, and the
variables on the RHS are found in the exprs component of assayData. If . is used
on the RHS, then all features in the exprs component are used as predictors. The
learnerSchema parameter is bound by instances of the learnerSchema class. Many ex-
amples are provided with MLInterfaces, see the page from help(MLearn) for a complete
list. Parameter trainInd is a numeric sequence isolating the samples to be used for
training; it may also be bound by an instance of xvalSpec to define a cross-validation of
a learning process (see section ??).

3 Classes

For input to MLearn, to define the procedure to be used, two major classes are defined:
learnerSchema, and xvalSpec.

4

> getClass("learnerSchema")

Class "learnerSchema" [package "MLInterfaces"]

Slots:

Name: packageName mlFunName converter

Class: character character function

> getClass("xvalSpec")

Class "xvalSpec" [package "MLInterfaces"]

Slots:

Name: type niter partitionFunc fsFun

Class: character numeric function function

For output, we have only the classifierOutput class:

> getClass("classifierOutput")

Class "classifierOutput" [package "MLInterfaces"]

Slots:

Name: testOutcomes testPredictions testScores trainOutcomes

Class: factor factor ANY factor

Name: trainPredictions trainScores fsHistory RObject

Class: factor ANY list ANY

Name: call embeddedCV learnerSchema

Class: call logical learnerSchema

4 Cross-validation

Instances of the xvalSpec class are bound to the trainInd parameter of MLearn to perform
cross-validation. The constructor xvalSpec can be used in line. It has parameters type
(only relevant to select ”LOO”, for leave-one out), niter (number of partitions to use),
partitionFunc (function that returns indices of members of partitions), fsFunc (function
that performs feature selection and returns a formula with selected features on right-hand
side).

5

The partitionFunc must take parameters data, clab, iternum. data is the usual data
frame to be supplied to the learner function. clab must be the name of a column in data.
Values of the variable in that column are balanced across cross-validation partitions.
iternum is used to select the partition elements as we iterate through cross validation.

• straight leave-one-out (LOO) – note the group parameter must be integer; it is
irrelevant for the LOO method.

> library(golubEsets)

> data(Golub_Merge)

> smallG <- Golub_Merge[200:250,]

> lk1 <- MLearn(ALL.AML ~ ., smallG, knnI(k = 1, l = 0), xvalSpec("LOO"))

> confuMat(lk1)

predicted

given AML ALL

ALL 10 37

AML 15 10

• Now do a random 8-fold cross-validation.

> ranpart = function(K, data) {

+ N = nrow(data)

+ cu = as.numeric(cut(1:N, K))

+ sample(cu, size = N, replace = FALSE)

+ }

> ranPartition = function(K) function(data, clab, iternum) {

+ p = ranpart(K, data)

+ which(p == iternum)

+ }

> lkran <- MLearn(ALL.AML ~ ., smallG, knnI(k = 1, l = 0), xvalSpec("LOG",

+ 8, partitionFunc = ranPartition(8)))

> confuMat(lkran)

predicted

given ALL AML

ALL 25 22

AML 7 18

• Now do an 8-fold cross-validation with approximate balance among groups with
respect to frequency of ALL and AML. The utility function balKfold.xvspec helps
for this.

6

> lk3 <- MLearn(ALL.AML ~ ., smallG, knnI(k = 1, l = 0), xvalSpec("LOG",

+ 8, partitionFunc = balKfold.xvspec(8)))

> confuMat(lk3)

predicted

given ALL AML

ALL 39 8

AML 8 17

5 Cross validation with feature selection

Stephen Henderson of UC London supplied infrastructure to allow embedding of feature
selection in the cross-validation process. These have been wrapped in fs.* closures that
can be passed in xvalSpec:

> data(iris)

> iris2 = iris[iris$Species %in% levels(iris$Species)[1:2],]

> iris2$Species = factor(iris2$Species)

> x1 = MLearn(Species ~ ., iris2, ldaI, xvalSpec("LOG", 3, balKfold.xvspec(3),

+ fs.absT(3)))

> fsHistory(x1)

[[1]]

[1] "Petal.Length" "Petal.Width" "Sepal.Length"

[[2]]

[1] "Petal.Length" "Petal.Width" "Sepal.Length"

[[3]]

[1] "Petal.Length" "Petal.Width" "Sepal.Width"

6 A sketch of a ‘doubt’ computation

The nnet function returns a structure encoding predicted probabilities of class occu-
pancy. We will use this to enrich the MLearn/nnetI output to include a“doubt”outcome.
As written this code will handle a two-class outcome; additional structure emerges with
more than two classes and some changes will be needed for such cases.

First we obtain the predicted probabilities (for the test set) and round these for
display purposes.

> predProb <- round(testScores(nns), 3)

We save the true labels and the predicted labels.

7

> truth <- as.character(smallG$ALL.AML[-c(1:40)])

> simpPred <- as.character(testPredictions(nns))

We create a closure that allows boundaries of class probabilities to be specified for
assertion of “doubt”:

> douClo <- function(pprob) function(lo, hi) pprob > lo & pprob <

+ hi

Evaluate the closure on the predicted probabilities, yielding a function of two arguments
(lo, hi).

> smallDou <- douClo(predProb)

Now replace the labels for those predictions that are very close to .5.

> douPred <- simpPred

> douPred[smallDou(0.48, 0.52)] <- "doubt"

The resulting modified predictions are in the fourth column:

> mm <- cbind(predProb, truth, simpPred, douPred)

> mm

truth simpPred douPred

7 "0.643" "ALL" "AML" "AML"

8 "0.045" "ALL" "ALL" "ALL"

9 "0.045" "ALL" "ALL" "ALL"

10 "0.045" "ALL" "ALL" "ALL"

11 "0.045" "ALL" "ALL" "ALL"

12 "0.94" "ALL" "AML" "AML"

13 "0.045" "ALL" "ALL" "ALL"

14 "0.045" "ALL" "ALL" "ALL"

15 "0.045" "ALL" "ALL" "ALL"

16 "0.045" "ALL" "ALL" "ALL"

17 "0.999" "ALL" "AML" "AML"

18 "0.045" "ALL" "ALL" "ALL"

19 "0.045" "ALL" "ALL" "ALL"

20 "0.045" "ALL" "ALL" "ALL"

21 "0.045" "ALL" "ALL" "ALL"

22 "0.045" "ALL" "ALL" "ALL"

23 "0.045" "ALL" "ALL" "ALL"

24 "0.045" "ALL" "ALL" "ALL"

25 "0.045" "ALL" "ALL" "ALL"

26 "0.045" "ALL" "ALL" "ALL"

8

27 "0.045" "ALL" "ALL" "ALL"

34 "0.999" "AML" "AML" "AML"

35 "0.999" "AML" "AML" "AML"

36 "0.045" "AML" "ALL" "ALL"

37 "0.045" "AML" "ALL" "ALL"

38 "0.045" "AML" "ALL" "ALL"

28 "0.045" "AML" "ALL" "ALL"

29 "0.045" "AML" "ALL" "ALL"

30 "0.045" "AML" "ALL" "ALL"

31 "0.999" "AML" "AML" "AML"

32 "0.999" "AML" "AML" "AML"

33 "0.947" "AML" "AML" "AML"

> table(mm[, "truth"], mm[, "simpPred"])

ALL AML

ALL 18 3

AML 6 5

> table(mm[, "truth"], mm[, "douPred"])

ALL AML

ALL 18 3

AML 6 5

9

	Introduction
	Usage
	Classes
	Cross-validation
	Cross validation with feature selection
	A sketch of a `doubt' computation

