
An Introduction to IRanges

Michael Lawrence, Patrick Aboyoun, Hervé Pagès

June 10, 2009

1 Introduction

The IRanges package is designed to represent sequences, ranges representing indices along those sequences,
and data related to those ranges. In this vignette, we will rely on simple, illustrative example datasets,
rather than large, real-world data, so that each data structure and algorithm can be explained in an intuitive,
graphical manner. We expect that packages that apply IRanges to a particular problem domain will provide
vignettes with relevant, realistic examples.

2 Sequences

The IRanges package is primarily interested in the representation, manipulation and analysis of sequences.
A sequence is mathematically defined as an ordered list of objects, or elements. It differs from a set in that
order matters and the same element can appear multiple times.

IRanges supports the use of R vectors to represent sequences, and we also formally define a virtual class
Sequence, the derivatives of which convey the sequence semantic of ordered elements. There are currently
two Sequence implementations in IRanges: Rle, which compresses a sequence through run-length encoding,
and XSequence, which refers to its data through an external pointer. XSequence and its derivatives are
considered low-level infrastructure and, as such, will not be covered by this vignette.

We begin our demonstration by loading the IRanges package.

> library(IRanges)

2.1 Run Length Encoding

The Rle class represents a run-length encoded (compressed) sequence of logical , integer , numeric, complex ,
character , or raw values.

> set.seed(0)

> lambda <- c(rep(0.001, 4500), seq(0.001, 10, length = 500),

+ seq(10, 0.001, length = 500))

> x <- Rle(rpois(1e+07, lambda))

> y <- Rle(rpois(1e+07, lambda[c(251:length(lambda),

+ 1:250)]))

> x

'numeric' Rle instance of length 10000000 with 1510219 runs
Lengths: 780 1 208 1 1599 1 883 1 1038 1 ...
Values : 0 1 0 1 0 1 0 1 0 1 ...

> y

1



'numeric' Rle instance of length 10000000 with 1511351 runs
Lengths: 1003 1 413 1 896 1 161 1 1788 3 ...
Values : 0 1 0 1 0 1 0 1 0 1 ...

> head(runValue(x))

[1] 0 1 0 1 0 1

> head(runLength(x))

[1] 780 1 208 1 1599 1

> x > 0

'logical' Rle instance of length 10000000 with 197127 runs
Lengths: 780 1 208 1 1599 1 883 1 1038 1 ...
Values : FALSE TRUE FALSE TRUE FALSE TRUE ...

> x + y

'numeric' Rle instance of length 10000000 with 1957707 runs
Lengths: 780 1 208 1 13 1 413 1 896 1 ...
Values : 0 1 0 1 0 1 0 1 0 1 ...

> x > 0 | y > 0

'logical' Rle instance of length 10000000 with 210711 runs
Lengths: 780 1 208 1 13 1 413 1 896 1 ...
Values : FALSE TRUE FALSE TRUE FALSE TRUE ...

> range(x)

[1] 0 26

> sum(x > 0 | y > 0)

[1] 2105185

> log1p(x)

'numeric' Rle instance of length 10000000 with 1510219 runs
Lengths: 780 1 208 1 1599 1 883 1 1038 1 ...
Values : 0 0.693 0 0.693 0 ...

> cor(x, y)

[1] 0.5739224

> shiftApply(249:251, y, x, FUN = function(x, y) var(x,

+ y)/(sd(x) * sd(y)))

[1] 0.8519138 0.8517324 0.8517725

2



2.2 Sequence Extraction

It is often necessary to extract a sequence from another, in analogous manner to ordinary vector extraction
or subsetting. A simple operation is to select a list of consecutive elements from a sequence. This is the
purpose of the subseq function.

Mathematically, a subsequence is slightly more general: selected elements need only to be in the same
order, not consecutive. We can generalize this further to sequence extraction, where the order of the elements
is no longer fixed. As the order constraint is rarely broken, we will use the term subsequence to represent
the result of sequence extraction. The most general way to describe such a subsequence would be a vector
of indices into the sequence. As it is common to extract consecutive values from the sequence, the indices
are usually more efficiently encoded as a list of ranges, i.e. a vector of start positions and a parallel vector
of widths.

The general interface for extracting subsequences is seqextract, which is supported by all Sequence
objects, as well as ordinary vectors.

3 Lists

3.1 Basic operations

One often wants to organize and manipulate multiple sequences simultaneously. We could place multiple Rle
instances, for example, into a list. However, a list is too generic; it does not confer any information about
the specific class of its elements. There is no type safety, and it is not possible to define methods specifically
for homogeneous lists with elements of a particular class. For example, for a list of Rle objects, we may wish
to define a method that retrieves the run values for each element, without special type checking. To enable
this, we define a specific collection class, RleList , for storing Rle objects.

In fact, we have done the same for many of the other classes in IRanges, as well as the base atomic
vectors (raw, logical, integer, numeric, complex and character). All of the collection classes derive from the
virtual class ListLike, the derivatives of which are all obligated to support two basic list operations: element
extraction and length retrieval.

Most collection types, including RleList , derive from TypedList , a ListLike derivative that implements
the requisite operations, as well as a number of additional features. These include familiar list functions,
such as c and lapply.

3.2 Annotated Lists

Often when one has a collection of objects, there is a need to attach metadata that describes the collection in
some way. The AnnotatedList class extends TypedList to add two metadata components: an ordinary list to
hold arbitary objects, called metadata, and elementMetadata, a data frame with one row per element and
any number of columns. Many of the high-level list objects in IRanges (described later) are AnnotatedList
objects.

3.3 Advanced Notes

TypedList also provides some more advanced features. First, as its name suggests, subclasses of TypedList
can specify a type from which the class of each of its elements must inherit. For example, RleList directs
TypedList to ensure that all of its elements are Rle objects. One benefit of this type safety is that it allows
methods dispatching on RleList to assume that all of the elements are really of class Rle.

A second advanced feature of TypedList relates to its internal representation. Behind the scenes, TypedList
is simply an R list . By default, there is a one-to-one mapping between elements of the TypedList and elements
in the list . This is a simple design; however, it is not always ideal. If one has many, small objects, the
storage overhead, especially for S4 objects, would be relatively high. Our solution is to compress the list by

3



concatenating the elements together, if possible. This forms a single, long element that is virtually split by
the TypedList interface. A beneficial side effect of this approach is that unlisting (concatenating all of the
elements) is cheap, as it reduces to returning the internal representation.

4 Sequence Ranges

When analyzing sequences, we are often interested in specific segments, or consecutive subsequences, of the
sequence. It is not uncommon for an analysis task to focus only on the segments themselves, while ignoring
the underlying sequence values. A consecutive list of indices would be a simple way to select a consecutive
subsequence. However, a sparser representation would be a a range, a pairing of a start position and a width,
as used when extracting sequences with subseq and seqextract, above.

When analyzing subsequences in IRanges, each range is treated as an observation. The virtual Ranges
class represents lists of ranges, or, equivalently, sequences of consecutive integers. The most commonly used
implementation of Ranges is IRanges, which stores the starts and widths as ordinary integer vectors. To
construct an IRanges instance, we call the IRanges constructor. Ranges are normally specified by passing
two out of the three parameters: start, end and width (see /tmp/Rinst1032195089/IRanges/help/IRanges-
constructor for more information).

Accessing the starts, widths and ends is supported by every Ranges implementation.
For IRanges and some other Ranges derivatives, subsetting is also supported.

4.1 Normality

NormalIRanges

4.2 Lists of Ranges

RangesList IRangesList MaskCollection

4.3 Sequence Extraction

As Ranges objects encode subsequences, they may be used directly in sequence extraction. Note that when
a normal Ranges is given as the index, the result is a true subsequence, in the mathematical sense.

4.4 Transforming Ranges

Making ranges normal reduce

Making ranges disjoint disjoin, disjointBins

Adjusting starts, ends and widths shift * narrow threebands

Other transformations restrict reflect flank

4.5 Set Operations

gaps, pgaps setdiff, psetdiff union, punion intersect, pintersect

4.6 Finding Overlapping Ranges

RangesMatching RangesMatchingList IntervalTree
overlap, %in%

4



> toLatex(sessionInfo())

• R version 2.9.0 (2009-04-17), x86_64-unknown-linux-gnu

• Locale: LC_CTYPE=en_US;LC_NUMERIC=C;LC_TIME=en_US;LC_COLLATE=en_US;LC_MONETARY=C;LC_MESSAGES=en_US;LC_PAPER=en_US;LC_NAME=C;LC_ADDRESS=C;LC_TELEPHONE=C;LC_MEASUREMENT=en_US;LC_IDENTIFICATION=C

• Base packages: base, datasets, graphics, grDevices, methods, stats, tools, utils

• Other packages: IRanges 1.2.3

Table 1: The output of sessionInfo on the build system after running this vignette.

4.7 Finding Neighboring Ranges

nearest, precede, follow

4.8 Mapping Ranges Between Sequences

RangesMapping map

5 Sequence Views

When we extract a sequence with seqextract, we can pass multiple ranges, each selecting a single consecutive
subsequence. Those subsequences are extracted and concatenated into a single sequence. There are many
cases where the user wishes to avoid the concatenation step and instead treat each consecutive subsequence
as a separate element in a list.

While one could simply store each extracted sequence as an element in a list object like a TypedList ,
this is undesirable for a couple of reasons. First, the user often wants to preserve the original sequence and
declare a set of interesting regions as an overlay. This allows retrieving sequence values even after the ranges
have been adjusted. Another benefit of an overlay approach is performance: the sequence values need not
be copied.

For representing such an overlay, the IRanges package provides the virtual Views class, which derives
from Ranges but also stores a sequence. Each range is said to represent a view onto the sequence.

Here, we will demonstrate the RleViews class, where the sequence is of class Rle. Other Views imple-
mentations exist, such as XStringViews in the Biostrings package.

5.1 Manipulating Views

5.2 Aggregating Views

6 Data Sets

XDataFrame XDataFrameList SplitXDataFrameList

7 Sequence Ranges with Data Sets

RangedData RangedDataList

7.1 Applying Over Spaces

RDApplyParams FilterRules

5


	Introduction
	Sequences
	Run Length Encoding
	Sequence Extraction

	Lists
	Basic operations
	Annotated Lists
	Advanced Notes

	Sequence Ranges
	Normality
	Lists of Ranges
	Sequence Extraction
	Transforming Ranges
	Set Operations
	Finding Overlapping Ranges
	Finding Neighboring Ranges
	Mapping Ranges Between Sequences

	Sequence Views
	Manipulating Views
	Aggregating Views

	Data Sets
	Sequence Ranges with Data Sets
	Applying Over Spaces


