Basic Functions of AnnBuilder

Jianhua Zhang
February 4, 2009

(©2003 Bioconductor

1 Introduction

This vignette is an overview of some of the functions that can be used to build an
annotation data package. The purpose of this vignette is to provide guidance for users
who are comfortable using the data package building procedures described in ABPrimer
but would like to have more freedom in building customized data packages. First time
users of AnnBuilder are suggested to go through the ABPrimer vignette before trying
the code here.

Functions contained by AnnBuilder include:

library(AnnBuilder)
pkgpath <- .find.package("AnnBuilder")
docFiles <- file.path(pkgpath, c("TITLE", "DESCRIPTION", "INDEX"))

headers <- c("", "Description:\n\n", "Index:\n\n")

footers <- c("\n", "\n", "")

for (i in which(file.exists(docFiles))) {
writeLines(headers[i], sep = "")
writeLines(readLines(docFiles[i]))
writeLines(footers[i], sep = "")

}

AnnBuilder relies on these functions to build annotation data packages by extracting
data from the following potential public data repositories.

e Entrez Gene (ftp://ftp.ncbi.nlm.nih.gov/gene/DATA) to obtain mappings to
Gene IDs and annotation data.

e UniGene(ftp://ftp.ncbi.nih.gov/repository/UniGene/Homo_sapiens/Hs.data.

gz) to obtain mappings to LocusLink ids from ESTs

ftp://ftp.ncbi.nlm.nih.gov/gene/DATA
ftp://ftp.ncbi.nih.gov/repository/UniGene/Homo_sapiens/Hs.data.gz
ftp://ftp.ncbi.nih.gov/repository/UniGene/Homo_sapiens/Hs.data.gz

e GoldenPath(http://www.genome.ucsc.edu/goldenPath/14nov2002/database).
Two data files (refLink.txt.gz and refGene.txt.gz) are used to obtain chromosomal
location and orientation data

e Gene Ontology("http://www.godatabase.org/dev/database/archive/latest/
go_200506-termdb.rdf-xml.gz") to obtain gene ontology terms and relationships
among terms.

e KEGG(ftp://ftp.genome.ad. jp/pub/kegg/pathway/organisms) to obtain path-
way and enzyme data for genes. Several data files may be used depending on the
organism of interest.

HomoloGene A data file provided by ftp://ftp.ncbi.nih.gov/pub/old/HomoloGene/ will be
used to extract mappings between LocusLink ids and HomoloGene ids.

The urls with date components may change when the maintainers update the data.
However, AnnBuilder has the ability to figure out the latest updates and use the corre-
sponding data for annotation as long as the current path structure of the urls remain.
Source data will be downloaded from the urls given.

Each of the public data repositories is represented as an object of a S4 class. Common
methods for an object include readData that reads in data line by line and parseData
that parses data based on the instructions given in a segment of Perl code. In both
cases, data are downloaded from the source url and then processed locally.

As data from the aforementioned data sources are usually large, truncated versions of
the corresponding data will be used to ensure reasonable speed. These files have already
been stored in Bioconductor web site. Thus, the source urls will be different for a real
annotation project.

Getting Source Data

Suppose we are interested in annotating genes on Affymetrix HG_U95av2 gene chip. A
file containing a column for Affymetrix probe ids and another for mappings to GenBank
accession numbers can be produced based on the data file provided by Affymetrix and
then used as the base to extract annotation data from different data sources. The base
file has to be saved as a text file with the two columns separated by a delimiter (e. g.

a tab - 7). Here we just create a truncated one on the fly and store it in the current
working directory.

geneNMap <- matrix(c("32468_f_at", "D90278;M16652", "32469_at", "L0O0693",
"32481_at", "ALO31663", "33825_at", "X68733",
"35730_at", "X03350", "36512_at", "L32179",
"38912_at", "D90042", "38936_at", "M16652",
"39368_at", "AL031668"), ncol = 2, byrow = TRUE)
write.table(geneNMap, file = "geneNMap", sep = "\t", quote = FALSE,
row.names = FALSE, col.names = FALSE)

http://www.genome.ucsc.edu/goldenPath/14nov2002/database
 "http://www.godatabase.org/dev/database/archive/latest/go_200506-termdb.rdf-xml.gz"
 "http://www.godatabase.org/dev/database/archive/latest/go_200506-termdb.rdf-xml.gz"
ftp://ftp.genome.ad.jp/pub/kegg/pathway/organisms
ftp://ftp.ncbi.nih.gov/pub/old/HomoloGene/

We can see that the file has two columns for Affymetrix probe ids and the matching
GenBank accession numbers:

geneNMap

The first step to annotating these probe ids in the base file is to map them to Entrez
Gene ids and then use mapped gene ids as the point of linkage to other annotation data
provided by various data sources. As Affymetrix probe ids (probes for other platform as
well) may be mapped to gene ids through Entrez Gene and UniGene (and other sources),
each of which can be complementary to each other, we may want to get the mappings
from all the available sources and then combine the results to ensure completeness.
Annbuilder has a unifying mechanism that allows users to unify mapping information
from different sources to obtained a combined result that is assumed to be more reliable.

In this vignette, we first would like to map the probes to Entrez Gene ids using data
from both Entrez Gene and UniGene. The following code creates objects for Entrez Gene
and UniGene with parsers needed to parse the source data file for mapping Affymetrix
probe ids in baseF to gene ids.

makeSrcInfo()
srcObjs <- list()
eglrl <-

"http://www.bioconductor.org/datafiles/wwwsources"
uglrl <-
"http://www.bioconductor.org/datafiles/wwwsources/Ths.data.gz"
eg <- EG(srcUrl = egUrl, parser = file.path(pkgpath, "scripts",
"gbLLParser"), baseFile = "geneNMap", accession = "T1ll_tmpl.gz",
built = "N/A", fromWeb = TRUE)
ug <- UG(srcUrl = ugUrl, parser = file.path(pkgpath,
"scripts", "gbUGParser"), baseFile = "geneNMap",
organism = "Homo sapiens", built = "N/A", fromWeb = TRUE)
srcObjs[["eg"]] <- eg
srcObjs[["ug"]] <- ug
\begin{verbatim}

Again, the urls used in the example are for demonstration purpose

only. eg and ug objects also take a parser as an argument. A parser is

a segment of a Perl script that contains instructions on how the data

source will be parsed and how the output will be generated. Please

refer to the documents for pubRepo for detailed information on parsers

and the objects for various public data repositories. The parser for eg used in the exs

Each object has a function named parserData that can be invoked to obtain the parsed de
should be set to FALSE if the source data has been stored locally. The

3

following code needs human intervention under windows and is therefore
turned off. Copying the code chunk and then pasting into an R session under
windows should work.

\begin{verbatim}
This portion only runs interactively under Windows (copy/paste)
if (.Platform$0S.type != "windows"){

11Mapping <- parseData(eg, eg@accession)

colnames (11Mapping) <- c("PROBE", "EG")

ugMapping <- parseData(ug)

colnames (ugMapping) <- c("PROBE", "UG")
}

The parsed data from LocusLink and UniGene are:

This portion only runs after the previous code has been
executed under windows

if (.Platform$0S.type != "windows"){
11Mapping
ugMapping

b

Please note the differences between the mappings from the two sources and some of
the Affymetrix probe ids can be mapped to multiple Gene ids and ”;” is used to separate
multiple mappings in such cases.

The mappings obtained from the two sources are then unified to obtain a compre-
hensive mapping between Affymetrix probe ids and gene ids. The unified mappings are
saved in a file show below:

This portion only runs interactively under Windows (copy/paste)

base <- matrix(scan("geneNMap", what = "", sep = "\t", quote = "",
quiet = TRUE), ncol = 2, byrow = TRUE)

colnames(base) <- c("PROBE", "ACC")

merged <- merge(base, 1llMapping, by = "PROBE", all.x = TRUE)

merged <- merge(merged, ugMapping, by = "PROBE", all.x = TRUE)

unified <- AnnBuilder:::resolveMaps(merged, trusted = c("EG", "UG"),

srcs = c("EG", "UG"))
unified

In the above code, "EG” has been identified as the trusted source meaning that when
the two sources provide conflicting mappings, the one from Entrez Gene will be used.
The unified mapping has four columns with the first one for Affymetrix probe ids, second
for GenBank accession numbers, third for mappings to gene ids, and forth for the number
of sources that agreed with the mappings.

read.table(unified, sep = "\t", header = FALSE)

The unified mappings can then be used as the base file to parse the data from Entrez
Gene to obtain annotation data for each of the Affymetrix probe ids. To do so, we
need to assign a new parser that processes the data from Entrez to get annotation data
including gene name, chromosomal location, and so on. Again, the parser works for the
example only.

This portion only runs interactively under Windows (copy/paste)

if (.Platform$0S.type !'= "windows"){
parser(eg) <- file.path(.path.package("AnnBuilder"),
"scripts", "llParser")

baseFile(eg) <- unified
annotation <- parseData(eg, eg@accession, ncol = 14)
colnames (annotation) <- c("PROBE", "ACCNUM", "LOCUSID", "UNIGENE",
"GENENAME", "SYMBOL","CHR", "MAP",
"PMID", "GRIF", "SUMFUNC", "GO",
"OMIM", "REFSEQ")
b

The annotation data obtained has 12 columns for the elements indicated by the
column names. Let us view the chromosomal number of the Affymetrix probe ids.

annotation[,c("PROBE", "LOCUSID")]

Other annotation data can be obtained from other sources. In this vignette, we try
to get data from GoldenPath for chromosomal location and orientation and Gene Ontol-
ogy for ontology terms and relations among terms. As usual, we create the objects with
truncated data from Bioconductor rather than the actual web site. Two source data
files (Tlink.txt.gz and TGene.txt.gz) have to be downloaded/unzipped from Golden-
Path (http://www.genome.ucsc.edu/goldenPath/10april2003/database/)) in order
to obtain the chromosome location data. We only have to provide the url under unix as
the system knows how to get the latest version of the two files.

gpUrl <- "http://www.bioconductor.org/datafiles/wwwsources/"

goUrl <- "http://www.bioconductor.org/datafiles/wwwsources/Tgo.xml"
gp <- GP(srcUrl = gpUrl, organism = "Homo sapiens", fromWeb = TRUE)
go <- GO(srcUrl = goUrl, fromWeb = TRUE)

To get the chromosomal data from GoldenPath with the actual url, one only needs
to call a function called getStrand by typing "strand <- getStrand(gp)” where gp is the
object for goldenPath with correct url. In this vignette, however, we take a somewhat
different approach to get the data as we are using a truncated set of data from a dummy.

http://www.genome.ucsc.edu/goldenPath/10april2003/database/

strand <- getChroLocation(srcUrl(gp), gpLinkNGene(TRUE))
The data processed are then merged with the annotation we previously obtained.
annotation <- merge(annotation, strand, by = "LOCUSID", all.x = TRUE)

To generate an R data package containing the annotation data, we first create an
empty package and then populate the package with data and F fucntions.

pkgName <- "test"
pkgPath <- getwd()
createEmptyDPkg("test", getwd(), force = TRUE)
annotation <- as.matrix(annotation)
writeAnnData2Pkg(annotation, pkgName, pkgPath)
revNames <- intersect(colnames(annotation),
c("PMID", "PATH", "ENZYME"))
if (length(revNames) !'= 0){
writeReverseMap (annotation[, c("PROBE", revNames)],
pkgName, pkgPath)

The data package is stored in the current working directory under the name texttttest.
list.files(file.path(getwd(), "test"))

As can be seen, the data package contains all the required elements of a normal R
package and can be installed in the same way as an R package. The annotation data are
all stored as rda files in the data directory.

list.files(file.path(getwd(), "test", "data"))

Each of the rda files contains key and value pairs with the key being Affymetrix
probe ids and value being the annotation element in this case.

The last step is to write the needed documentations and statistic data for quality
control purpose. The following code can be used to generate the required documentations
for the data package. Some part of the code may fail as the urls used may subject to
changes by maintainers of the web sits in the future.

repList <- getRepList("all", srcObjs)

repList [["PKGNAME"]] <- pkgName

chrLengths <- getChrLengths("Homo sapiens")

writeOrganism(pkgName, pkgPath, "Homo sapiens")

writeChrLength (pkgName, pkgPath, chrLengths)

writeDocs("geneNMap", pkgName, pkgPath, "1.1.0",
list(author = "annonymous", maintainer = "annonymous@net.com"),
repList, "PKGNAME")

Now, we can clean up the mess we have left.
unlink(c(unified, XMLOut, "geneNMap", "test.xml", "testByNum.xml"))
unlink(file.path(getwd(), "test"), TRUE)
2 Session Information
The version number of R and packages loaded for generating the vignette were:

R version 2.9.0 Under development (unstable) (2009-01-14 r47602)
x86_64-unknown-linux-gnu

locale:
LC_CTYPE=en_US;LC_NUMERIC=C;LC_TIME=en_US;LC_COLLATE=en_US;LC_MONETARY=C;LC_MESSAGES=er

attached base packages:

[1] tools stats graphics grDevices utils datasets methods
[8] base

other attached packages:
[1] AnnBuilder_1.21.1 annotate_1.21.3 AnnotationDbi_1.5.14
[4] XML_1.99-0 Biobase_2.3.10

loaded via a namespace (and not attached):
[1] DBI_0.2-4 RSQLite_0.7-1 xtable_1.5-4

	Introduction
	Session Information

