Agidx44Preprocess

Pedro Lopez-Romero

April 21, 2009

1 Package Overview

The Agidx44PreProcess package has been designed to read Agilent 4 x 44 gene
expression arrays data files into R [3] for its pre-processing using other Biocon-
ductor functions. The package needs plain text files exported by the Agilent
Feature Extraction 9.1.3.1 (or later version) image analysis software (AFE) [1].
The pre-processing steps implemented in the package are the following:

1.- read the target file 2.- read the array samples 3.- Background correction
and Normalization between samples 4.- Filtering Probes by Quality Flag 5.-
Summarizing of Replicated Probes 6.- Creating and ExpressionSet object with
the processed data

The package also contains other utilities that allow the user to explore the
architecture of the chip in terms of probe replication and gene replication.

Agidx44PreProcess contains standard graphical utilities to evaluate the qual-
ity of the data. These graphics might help the users to decide what sort fore-
ground and background signal, amongst those provided by the AFE, they want
to use in their analysis, and what background signal correction and normaliza-
tion method between samples they want to perform.

Finally, Agidx44PreProcess also generates the files DataSet.gct and Pheno-
types.cls that are used by the Gene Set Enrichment Analysis tool (GSEA) [5].

Agidx44PreProcess employees the corresponding Bioconductor annotation
packages (human: "hgug4112a.db”; mouse: "mgugd122a.db”) to assign to each
probe the ACCNUM, SYMBOL, ENTREZID, DESCRIPTION, GO TERMS
AND GO IDS. The annotacion package that is going to be used should be
loaded into the R session. In our example we used the hgug4112a.db annotation
package. The annotation package can be loaded using library

> library("hgug4112a.db")

The package allows choosing between different alternatives in each of the pre-
processing steps. Currently only the plain text files exported by AFE are sup-
ported. To read these files into R the Rpackagelimma function read.maimages
[4] is used. The user can choose the foreground signal (gProcessedSignal or
gMeanSignal) and the background signal for the background correction (gBG-
MedianSignal or gBGUsed). It also decides the methods for the Background

correction ("none”, “half’, "normexp”) and for the Normalization between ar-
rays ("none”, “quantile”, "vsn”). The backgroundCorrect and normalizeBe-
tweenArrays Rpackagelimma functions [4] have been used. If the user wants
to use other methods implemented in backgroundCorrect and in normalize-
BetweenArrays but not incorporated in the Agidx44PreProcess package, they
can easily call any of these functions externally. The users also choose if they
want to filter out the probes that do not reach a minimum of quality, which is
also established by the user. In this sense we can be more or less demanding in
function of the data in hand (low number of replicates probably demands being
more restrictive about quality limits). There is a final summarization step that
collapse the non-control replicated probes into a single value. The users can also
skip the Summarization step in order to use all the probes being replicated or
not. Finally the processed data is stored in an RGList that can be transformed
into an ExpressionSet. The ExpressionSet object can be used to statistically
analyze the data (differential expression, functional analysis, etc) using other
analytical packages such as limma.

2 Target File

We have to specify the experimental conditions under which the data have been
generated in a target file, where each sample is related with an experimental
group. This is done in a plain text file that can be loaded into R using the
Agidx44PreProcess function read.targets.

First we load the package and then we read the target file

NOT RUN

v

library("Agi4x44PreProcess")
targets=read.targets(infile="targets.txt")

v

NOT RUN

The function read.target returns a data.frame object similar to this:

> library("Agi4x44PreProcess")
> data(targets)
> targets

FileName Treatment GErep Subject Array
Ast Ast.txt st 1 A 1
Bst Bst.txt st 1 B 1
Aunst Aunst.txt unst 2 A 1
Bunst Bunst.txt unst 2 B 1

In the target file, the fields Filename, Treatment and GErep are mandatory.
The Filename specifies the name of the files, the Treatment specify which level of

the treatment corresponds the FileName. Other variables might also be included
if the users want to use them in further downstream statistical analysis. In our
given example, we have human cells that have been treated with BMP2 that are
to be compared with untreated cells, so in our design we consider a Treatment
effect with two levels, Stimulated and Unstimulated. We have collected two
replicates of each treatment level and both treatments have been applied to
cells of the same individuals, that is, the design have been blocked by Subject.
As we only have two levels of the blocking variable subject, this kind of design
is normally known as a paired design. To consider the paired design in future
downstream analysis, using limma for instance, we have to add a subject variable
that relates the individual with its sample. The GErep is a redundant variable
that mirrors the Treatment variable using a numeric code, i.e., each treatment
level (Stimulated an Unstimulated) is also codified numerically by being n the
number of levels of the treatment effect. We have included the Array variable as
an example of other sort of variables that we may want to use. In this case, the
Array variable refers to platform where the sample has been hybridized. Recall
that the Agilent 4x44 platforms allows the hybridization of 4 different samples
onto the same platform. In our example, as long as we have only 4 samples
hybridized on the same platform the inclusion of this variable does not make
any sense, since all the samples have been hybridized on the same platform, but
if we had more samples hybridized on different platforms we could consider the
platform (Array) as a blocking variable, using designs such as complete block
designs or incomplete block designs.

3 Reading the data

The chips were scanned using the Agilent G2567AA Microarray Scanner Sys-
tem (Agilent Technologies) with the extended dynamic range option turned on.
Image analysis and data collection were carried out using the Agilent Feature
Extraction 9.1.3.1. (AFE) [1]. For the background signal the AFE was set to
use the spatial detrend surface value that estimate the noise due to a systematic
gradient on the array and whose computation is based on a Loess algorithm.
Details of how the spatial detrend algorithm works can be found in the AFE
reference guide.

Currently only the plain text files exported by AFE are supported. To
read these files into R the limma function [4] read.maimages is used. In our
example, use real data from Agilent 4x44 Human chips. However, for the sake
of reducing the disk space storing the original data have been trimmed, leaving
12,015 features out of the 45,015 that should be found on a Human Agilent
4x44 chip. Despite of this, the data example is perfectly valid to illustrate all
the features and performance of the functions included in the package, although
some of the functions regarding counting replicated probes, etc will produce
numbers that will not coincide with the real data.

To read the files we use the read.AgilentFE function:

NOT RUN
> dd=read.AgilentFE(targets, makePLOT=FALSE)

NOT RUN

The result will be an RGList similar to this:

> data(dd)
> class(dd)

[1] "RGList"

attr(, "package")

(1] "limma"

> dim(dd)

[1] 12015 4
The RGList contains the following slots

> names (dd)

[1] IIRII IIGII Ilell

IIGbII Iltargetsll Ilgenesll

The data stored in the RGList are the following:

variable data
dd$R gProcessedSignal
dd$G gMeanSignal
dd$Rb gBGMedianSignal
dd$Gb gBGUsed
ddS$targets File names
dd$genes$ProbeName Probe Name
dd$genes$GeneName Gene Name
dd$genes$SystematicName | Systematic Name
dd$genes$Description Description Name
dd$genes$Sequence 60 bases Sequence
dd$genes$Control Type FLAG to specify the sort of feature
dd$other$glsWellAboveBG | FLAG IsWellAboveBG
ddS$other$glsFound FLAG IsFound

dd$other$glsSaturated
ddS$other$glsFeatPopnOL
ddS$other$glsFeatNonUnifOL
ddS$other$chr_coord

FLAG IsSaturated

FLAG IsFeatPopnOL

FLAG IsFeatNonUnifOL

CHR coordinate from Agilent data files

"other"

The MeanSignal is the Raw mean signal of the spot. The ProcessedSig-
nal is the signal processed by AFE [1]. It contains the Multiplicatively De-
trend Background Subtracted Signal if the detrending is selected and it helps.
If the detrending does not help, the ProcessedSignal will be the Background
Subtracted Signal. The BGMedianSignal is the Median local background sig-
nal. The BGUsed depends on the scanner settings for the type of background
method and the setting for the spatial detrend. Usually, the Background Sig-
nal Used is the sum of the local background + the spatial detrending surface
value computed by the AFE software. To view the values used to calculate this
variable using different background signals and settings of spatial detrend and
global background adjust [1].

The dd$targets contain the name of the files equal to those in target file. The
dd$genes$ProbeName, dd$genes$GeneName, dd$genes$SystematicName, and
dd$genes$Description provide the mappings to dd$genes$ProbeName according
to Agilent. In the Agidx44PreProcess, if an annotation package exists, the fields
SystematicName, GeneName and Description are replaced, respectively, by the
corresponding ACCNUM, SYMBOL and DESCRIPTION obtained from the
corresponding annotation package.

The AFE attach to each feature a flag that identifies different quantification
errors of the signal. These quantification flags can be used to filter out signals
that do not reach a minimum established criterion of quality. We will come back
again to the filtering process in the section 8.

The dd$other$chr_coord variable contains the chromosomal coordinates pro-
vided by the Agilent manufacturer. These coordinates are used by the function
genes.rpt.agi to create links to the ENSEMBL data base for the different probes
interrogating the same gene. See section 6.

If we set the variable makePLOT = TRUE in the function read.AgilentFE
we will get a density plot and a boxplot of the

variable | data
dd$R | gProcessedSignal
dd$G | gMeanSignal

And a boxplot of the

variable | data
dd$Rb | gBGMedianSignal
dd$Gb | gBGUsed

These plots can also be obtained with the corresponding plot functions (see
section 12)

> BoxPlot(log2(dd$R), "ProcessedSignal", "red", xlab = "Samples",
+ ylab = "expression")

ProcessedSignal

ST

0T

uoissaldxa

sung

suny

1sg

svY

Samples

> plotDensity(log2(dd$R), "ProcessedSignal")

ProcessedSignal

< B Ast
o O Bst
O Aunst
Bl Bunst
[To)
—
o
>
=)
2 3
O
a o
7o)
[oq
o
o
S
o

N =12015 Bandwidth = 0.5587

> BoxPlot(log2(dd$G), "MeanSignal", "green", xlab = "Samples",
+ ylab = "expression")

MeanSignal

8T

T
9T

T
14

T
ct

uoissaldxa

1sung

suny

1sg

sy

Samples

> plotDensity(log2(dd$G), "MeanSignal")

MeanSignal

Q _ | Ast
o O Bst
O Aunst
Bl Bunst
o
('\! —
o
n
> o
s S
c
)
[a)]
o
|—! —
o
[Te)
o -
o
o
S ~
o
T T T I
5 10 15 20

N =12015 Bandwidth = 0.4342

> BoxPlot(log2(dd$Gb), "BGUsed", "orange", xlab = "Samples", ylab = "expression")

BGUsed

e
©
N
© '
'
—_ '
' '
' '
' '
e o ' ' !
s © -
7] o '
(%] 1
o '
Q. '
3 ! '
o | !
© | ' ! T
' ! '
' ! '
' ' ' |
' _ | '
' n
o '
— '
Lol —_
'
'
'
_
I I I I
7] @ @ %)
< c
< o S =
< om
Samples

> BoxPlot(log2(dd$Rb), "BGMedianSignal", "blue", xlab = "Samples",
+ ylab = "expression")

10

BGMedianSignal

Bst - ©

© _|
— 8
< _| o
—
o
~)
-
c o
ksl
@ o
@ 3
o o
x
[} o
o -
o 8
8 8
I o
! ?
o
< -
T I
— —
(%] (%]
< 5
m

Aunst —

Samples

4 Replicated Probes

The Agilent arrays contains a number of non-control probes replicated up to
ten times which are spread across the array. This allows computing the %
CV (percent of the coefficient of variation) for each array. Agidx44PreProcess
incorporates a specific function, CV.rep.probes, that allows the identification of
the non-control replicated probes (we call them Probe Sets) and the computation
of their coefficient of variation (% CV). The CV is computed for every set of
replicated probes. Within each array, the median of the CV of every probe-
set is reported as the CV of the array. A lower median CV indicates a better
reproducibility of the array. The CV can be used as a measured of the quality
of the arrays and it can help to detect a sample that deviates from the rest as
an erroneous one. This measure is also reported by the QC report of AFE. The
CV.rep.probes function also writes a file (Probe.Sets.txt) that contains the non-
control replicated probes, along with its PROBE ID, the number of replicates,
the ACCNUM code, the SYMBOL code, the DESCRIPTION of the gene, and
the % CV of the probe in each array. The CVs are also given in a boxplot.

> CV.rep.probes(dd, "hgug4l12a.db", foreground = "MeanSignal",
+ raw.data = TRUE, writeR = FALSE, targets)

11

Non-CTRL Replicated probes
foreground: MeanSignal
FILTERING BY ControlType FLAG
RAW DATA: PROBES AFTER ControlType FILTERING: 11259

REPLICATED NonCtrl Probes 207
UNIQUE probes 10836
DISTRIBUTION OF REPLICATED NonControl Probes
reps
1 2 3 4 5
79 63 46 15 4
REPLICATED (redundant) probeNames 423
MEDIAN % CV
Ast Bst Aunst Bunst
1.041 0.878 0.948 1.107

5 Replicated Genes

Agidx44PreProcess incorporates a function, genes.rpt.agi, to identify what we
call the Gen Sets, i.e. groups of identical genes, according to the ACCNUM
code obtained from the corresponding Bioconductor annotation package, which
are interrogated by different probes at different locations. Genes with a NA
ACCNUM reference as well as non-controls replicated probes are dismissed for
these computations. The genes.rpt.agi function deals with these gen-sets and
generates an HTML output that contains links to ENSEMBL data base in order
to allow checking the exact location of the Agilent-probe in the chromosome.
Agidx44PreProcess uses the chromosome coordinates provided by the Agilent
Manufacturer in the data extracted by AFE. The Agi4x44PreProcess library
also reports information such as the distance amongst the members of a gen
set, the member of the same gen set that are reported to be located in different
chromosomes and the distribution of the gen sets size.

> genes.rpt.agi(dd, "hgug4112a.db", raw.data = TRUE, WRITE.html = FALSE,
+ REPORT = FALSE)

GENE SETS: same genes interrogated by different probes
FILTERING BY ControlType FLAG
RAW DATA: PROBES AFTER ControlType FILTERING: 11259

INPUT DATA: RAW
CHIP: hgug4l12a.db

12

PROBE SETS (NON-CTRL prob rep. x 10): 207
GEN-SETS (REPLICATED GENES): 537
PROBES in gen-sets: 1115

Be aware that may be non-control replicated probes that interrogate the
same gene in the same location, and the very same gene might be interrogated
by other probe at different chromosomal location.

6 Background Correction and Normalization be-
tween arrays

To make direct comparisons of data coming from different chips it is important
to remove sources of variation of non biological nature that may exists between
arrays. Systematic non-biological differences between chips become apparent
in several obvious ways especially in labelling and in hybridization, and bias
the relative measures on any two chips when we want to quantify the differ-
ences in treatment of two samples. Normalization is the attempt to compensate
for systematic technical differences between chips, to see more clearly the sys-
tematic biological differences between samples. First the data are background
corrected. We produced a Background Subtracted Signal. The Background Sig-
nal Used depends on the scanner settings for the type of background method
and the settings for spatial detrend. Usually, the Background Signal Used is the
sum of the Local Background Signal + the Spatial Detrending Surface Value
computed by the scanner software. For the Background correction we use the
backgroundCorrect function of the limma package with options "half”, "norm-
exp”. This function is designed to produce positive corrected intensities. First,
any intensity which is less than 0.5 is reset to be equal to 0.5. Besides, and offset
value (normally 50) is used. This offset adds a constant to the intensities before
log-transforming, so that the log ratios are shrunk towards zero at the lower
intensities. After background correction, data are normalized between arrays
using the limma function normalizeBetweenArrays with options "quantile”,
"vsn”.

For the foreground signal, the user can choose between the "MeanSignal” and
the "ProcessedSignal” and between the "BGMedianSignal” and the "BGUsed” for
the background signal that may be used in the background correction. The user
may want to have a look at different plots of the intensities (density plots, etc
...) in order to decide what signal they want to use in their analysis. The
"MeanSignal” is the Raw mean signal of the feature. The "ProcessedSignal”
is the signal processed by the AFE. The "BGMedianSignal” is the Median lo-
cal background signal. The "BGUsed” depends on the scanner settings for the
type of background method and the setting for the spatial detrend. Usually,
the BGUsed is the sum of the local background + the spatial detrending surface
value computed by the AFE software. The limma function "backgroundCorrect”
is used for the background correction. This function is designed to produced
positive intensities. Any intensity which is less than 0.5 is reset to be equal

13

to 0.5. Additionally, a constant of 50 (normally) is used as an offset that it is
added to the intensities before the log transformation. The effect of the offset
addition is to shrunk log ratios to zero at the lower intensities and thus reducing
the variability of the log-ratios for low intensity spots. The optimal choice for
the offset is the one which makes the variability of the log-ratios as constant as
possible across the range of intensity values (Smyth, G. in BioC mailing List).
If the ’half’ method is chosen for the background correction, the method will
subtract the chosen BACKGROUND signal to the chosen FOREGROUND sig-
nal, to produce positive corrected intensities according to the ”half” method.
If the "normexp” method is selected, then a convolution of normal and expo-
nential distributions is fitted to the foreground intensities using the background
intensities as a covariate, and the expected signal given the observed foreground
becomes the corrected intensity. See limma user guide for details.

> ddNORM = BGandNorm(dd, BGmethod = "half", NORMmethod = "quantile",
+ foreground = "MeanSignal", background = "BGMedianSignal",
+ offset = 50, makePLOTpre = FALSE, makePLOTpost = FALSE)

BACKGROUND CORRECTION AND NORMALIZATION

foreground: MeanSignal
background: BGMedianSignal

BGmethod: half
NORMmethod: quantile
OUTPUT in log-2 scale

If we set the variables makePLOTpre = TRUE and makePLOTpost =
TRUE, a density Plot, a boxplot differentiating negative controls from the rest
of the signals, and MA plot identifying the different kind of features, and a
Relative Log Expression plot (RLE) [2] are constructed using the data before
and after normalization, respectively. The same plots can be obtained calling
the respective Agidx44PreProcess plotting functions. See section 12.

Usually, we prefer to normalize the data before filtering probes out. Most of
the probes that are going to be filtered out are going to be the ones that are not
distinguishable from the background signal. Normally these are probes that are
not expressed in the biological system under study and will be filtered out but
it is interesting to keep these signal values to perform the normalization using
the maximum amount of information as possible.

7 Filtering Probes

The Agilent Feature Extraction software provides for each feature a flag that
identifies different quantification errors of the signal. The quantification flags

14

can be used to filter out signals that didn’t reach a minimum criterion of quality
established by the user. The data are filtered at a feature level according to the
following criteria.

a) To keep features within the dynamic range of the scanner: For a spot =
xi across all the samples, we demand that at leas p % of the probes of the spot
xi in at least one experimental condition had a quantification flag denoting that
the signal is distinguishable from background. The same criterion is applied
independently for the "IsFound” flag and for the saturation of the signal.

b) To keep features that are of good quality, for each probe we filtered out
the probe that had more than y % of the replicates in at least one experimental
condition with a flag indicating presence of Outliers. The function returns an
RGList containing with the FILTERED data eliminated

In order to allow the tracking of features that may have been filtered out
from the original raw data, the following files are given:

RawDataNOCtrl.txt: contains all the features included in the array once
the internal controls were removed. Internal controls were removed prior to any
pre-processing step.

IsNOTWellAboveBG.txt: contains the features that were filtered out be-
cause they were not distinguishable from the local background signal. We uses
a Boolean flag indicating if a feature is WellAboveBackground (Flag = 1) or not
(Flag = 0). A feature reaches a Flag = 1 if IsPosAndSignif and additionally the
gBGSubSignal is greater than 2.6%g(r)BG_SD.

IsPosAndSignif uses a Boolean flag, established via a 2-sided t-test, indicates
if the mean signal of a feature is greater than the corresponding background. 1
indicates Feature is positive and significant above background

IsNOTFound.txt: contains the features that were filtered out because t hey
were NOT FOUND. A feature is considered Found if two conditions are true:
1) the difference between the feature signal and the local background signal is
more than 1.5 times the local background noise and 2) the spot diameter is at
least 0.30 times the nominal spot diameter. A Boolean variable is used to flag
found features. 1 = IsFound

IsSaturated.txt: contains the probes that are saturated. A feature is satu-
rated IF 50 % of the pixels in a feature are above the saturation threshold. 1 =
Saturated

IsFeatNonUnifOL.txt: contains the features that are considered a Non Uni-
formity Outlier. A feature is non-uniform if the pixel noise of feature exceeds
a threshold established for a uniform> feature. 1 indicates Feature is a non-
uniformity outlier.

IsFeatPopnOL.txt: contains the features that are considered a Population
Outlier. A feature is a population outlier if its signal is less than a lower thresh-
old of exceeds an upper threshold determined using a multiplier (1.42) times the
interquartile range of the population. 1 indicates Feature is a population outlier

IsNOTWellAboveNEG.txt: Besides, for each feature we can demand a min-
imum signal value that have to be reached at least for a p % of the replicates
of the features in one of the experimental conditions. The minimum limit is es-
tablished as Mean Negative Controls + 1.5*(Std. dev.Negative Controls). Nor-

15

mally, after filtering by the WellAboveBG and IsFound criteria, all the probes
are well above negative controls.

In addition to all these files indicated above we have added the ACCNUM,
GENE SYMBOL, the ENTREZID reference and the gene DESCRIPTION that
map to each manufacturer probe code in the corresponding annotation package.

In the filter.probes function, the management about which filtering process
are done is controlled by the following logical variables:

control, wellaboveBG, isfound, wellaboveNEG, sat, PopnOL, NonUnifOL
and nas. These logical variables are set to TRUE if we want to accomplish a
specific filtering step, remove controls, well above background, well above nega-
tive controls, saturation, population outliers, non uniform outliers and removing
NAs, respectively.

The variables that control the filtering process are:

limISF: for a given feature xi across samples, is the minimum % of probes of
spots for that feature that is demanded to remain in a experimental condition
with a isfound-FLAG = 1 (Is Found).

limNEG: for a given feature xi across samples, is the minimum % of spots
for that feature that is demanded to remain in a experimental condition with a
intensity > Limit established for negative controls (Mean + 1.5 x SD).

limSAT: for a given feature xi across samples, is the minimum % of spots
for that feature that is demanded to remain in a experimental condition with a
saturation-FLAG = 0 (Non Saturated).

limPopnOL: for a given feature xi across samples, is the minimum % of
spots for that feature that can be seen in an experimental condition with a
saturation-FLAG = 1 (Is Pop OL).

limNonUnifOL: for a given feature xi across samples, is the minimum %
of spots for that feature that can be seen in an experimental condition with
saturation-FLAG = 1 (Is Non Uni OL).

limNAS: for a given feature xi across samples, is the minimum % of NAs
spots for that feature that is demanded to remain in an experimental condition.

> ddFILT = filter.probes(ddNORM, control = TRUE, wellaboveBG = TRUE,

+ isfound = TRUE, wellaboveNEG = TRUE, sat = TRUE, PopnOL = TRUE,
+ NonUnifOL = T, nas = TRUE, limWellAbove = 75, 1imISF = 75,

+ 1imNEG = 75, 1imSAT = 75, limPopnOL = 75, limNonUnifOL = 75,

+ 1imNAS = 100, makePLOT = F, annotation.package = "hgug4112a.db",
+ flag.counts = T, targets)

FILTERING PROBES BY FLAGS

FILTERING BY ControlType FLAG

PROBES BEFORE FILTERING: 12015
PROBES AFTER ControlType FILTERING: 11259
RAW DATA WITHOUT CONTROLS OUT : 11259

16

FILTERING BY IsWellAboveBG filterFLAG

FLAG FILTERING OPTIONS - FLAG OK = 1 - limWellAbove: 75 Y%
PROBES BEFORE FILTERING: 11259

PROBES AFTER QC FILTERING: 7926

IsNOTWellAboveBG OUT : 3333

FILTERING BY gIsFound filterFLAG

FLAG FILTERING OPTIONS - FLAG OK = 1 - 1imISF: 75 %
PROBES AFTER gIsFound FILTERING: 7605
IsNOTFound OUT : 321

FILTERING BY WellAboveNeg filterWellAboveSIGNALv2 ~ FLAG

FLAG FILTERING OPTIONS - 1imNEG: 75 %
Limit computed as MeanNeg + 1.5 x (SDNeg)
Limit: 6.23 6.01 5.96 6

PROBES AFTER WellAboveNeg FILTERING: 7605
WellAboveNeg OUT : O

FILTERING BY gIsSaturated filterFLAG

FLAG FILTERING OPTIONS - FLAG OK = O - 1imSAT: 75 %
PROBES AFTER gIsSaturated FILTERING: 7605
IsSaturated OUT : O

FILTERING BY gIsFeatPopnOL filterFLAGall

FLAG FILTERING OPTIONS - FLAG OK = O - limPopnOL: 75 %
PROBES AFTER glsFeatPopnOL FILTERING: 7582
IsFeatPopnOL OUT : 23

FILTERING BY gIlsFeatNonUnifOL filterFLAGall

FLAG FILTERING OPTIONS - FLAG OK = O - limNonUnifOL: 75 %
PROBES AFTER gIlsFeatPopnOL FILTERING: 7582
IsFeatNonUnifOL OUT : O

FILTERING BY NAs
FLAG FILTERING OPTIONS - 1limNAS: 100 %

PROBES BEFORE NAs FILTERING: 7582
probes with ANY NAS: 0

17

PROBES AFTER NAs FILTERING:

COUNT FLAG gIsWellAboveBG
PROBES DISTRIBUTION across
probeFLAG

2 3 4

29 371 7182

(FLAG OK) gIsWellAboveBG =

COUNT FLAG glsFound
PROBES DISTRIBUTION across
probeFLAG

2 3 4

89 643 6850

(FLAG OK) gIsFound = 1

COUNT FLAG gIsSaturated
PROBES DISTRIBUTION across
probeFLAG

3 4

(FLAG OK) gIsSaturated =

COUNT FLAG gIsFeatPopnOL
PROBES DISTRIBUTION across
probeFLAG

2 3 4

2 29 7551

(FLAG OK) gIsFeatPopnOL =

COUNT FLAG gIsFeatNonUnifOL

PROBES DISTRIBUTION across exp.

probeFLAG
2 3 4
1 20 7561

0

0

(FLAG OK) gIsFeatNonUnifQOL =

> dim(ddFILT)

[1] 7582 4

If we set the variables makePLOT = TRUE a density Plot, a boxplot, and a
Relative Log Expression (RLE) plot are constructed using the filtered data. The
same plots can be obtained calling the respective Agidx44PreProcess plotting

functions. See section 12.

8 Summarizing

Normally, the Agilent 4 x 44 chips contain a set of non-control probes that are
replicated up to ten times. These probes are spread over the chip and allows

18

1

0

measuring the chip reproducibility in terms of the coefficient of variation (%CV)
in such a way that lower CV indicates a better reproducibility of the array.

These replicated probes can be seen as a sub-sampling or pseudo-replication
of the same experimental unit, i.e. for the same sample and array (confounded)
a given 60 mer sequence is replicated. The same probes within the array are
correlated and its variability should be mainly due to differences in labelling,
hybridization and array location. For the eventual statistical analysis we can
leave the replicate probes as they are, and analyze them independently to each
other. This will have the inconvenient of having different results for the same
probe that eventually will have to be condensed into a single one to make a
decision about the differential expression of the gene that the probe is inter-
rogating. We could take into account the sub sampling by a statistical model
that includes a term that consider the replication of the probes. The strategy
adopted in Agidx44Preproces is to produce, for each set of replicated probes,
a unique probe value obtained by computing the median of the intensities of
the probes belonging to the replicated probe set. This has been implemented in
the summarize.probe function. This function uses an RGList as an input and it
produces another RGList where each set of replicated non-control probes have
been collapsed into a single value. Normally, the input RGList is the "filtered
data”, but other RGLists can be used as inputs. This summarization process
could affect to the estimated prior value and prior degrees of freedom for the
residual variance of the genes when using eBayes in the limma package. How-
ever, since the number of replicated probes is extremely low in comparison to
the total number of probes in the array, this effect is very small.

This is an optional step that produces the processed data that can be ana-
lyzed. If this step is not performed, the filtered data are the one that has to be
analyzed.

> ddPROC = summarize.probe(ddFILT, makePLOT = FALSE, targets)

SUMMARIZATION OF non-CTRL PROBES

SUMMARIZED DATA: 7246 4

If we set the variables makePLOT = TRUE a density Plot, a boxplot, a
Relative Log Expression (RLE) plot, MVA plots and a hierarchical cluster plot
are constructed using the summarized data. The same plots can be obtained
calling the respective Agidx44PreProcess plotting functions. See section 12.

9 Creating an ExpressionSet object

The build.eset function creates an instance of class ExpressionSet object from
an RGList. Usually this function is applied to an RGList object containing the
processed data, but certainly other RGList objects can be employed.

> esetPROC = build.eset (ddPROC, targets, makePLOT = FALSE, annotation.package = "hgug41l12a.c

19

If we set the variables makePLOT = TRUE it makes a heatmap with the
100 greater variance genes, a "hierarchical cluster’ with all the genes and a pca
plot. The same plots can be obtained calling the respective Agidx44PreProcess
plotting functions. See section 12. The following plots show the esetPROC
data.

The information contained in the ExpressionSet object can be written in a
file, ProcessedData.txt, using the function write.eset. This function also writes
the mappings of the Agilent PROBE ID with the ACCNUM, SYMBOL, EN-
TREZID and DESCRIPTION fields, using the corresponding annotation pack-
age.

NOT RUN
> write.eset (esetPROC,ddPROC, "hgug4112a.db", targets)

NOT RUN

10 mappings

The function build.mappings creates a data.frame that contains by rows the
PROBE IDs and by columns contains "ACCNUM””"SYMBOL”,”JENTREZID”,
"DESCRIPTION”,"GO.Id” and "GO.Terms” for each probe. Mappings are ex-

tracted from the corresponding annotation package. Usually this function is
applied to an Expression Set object containing the processed data

NOT RUN

> mappings=build.mappings (esetPROC, "hgug4112a.db")
> names (mappings)

NOT RUN

11 GSEA outputs

The function gsea.files generates the files "DataSet.gct” and "Phenotypes.cls”
that are used by the Gene Set Enrichment Analysis tool (GSEA) [5]

NOT RUN

> gsea.files(esetPROC,targets, "hgug4112a.db")

20

NOT RUN

12 Plotting Functions

We have implemented in Agidx44PreProcess some diagnostic plots. These are
functions to produce boxplots (Boxplot and boxplotNegCtrl), density plots
(plotDensity), MA plots (MVAplotMEDctr and MVAplotMED), Relative Log
Expression plots (RLE), heatmaps (HeatMap), hierarchical cluster of samples
(hierclus) and PCA plots (PCAplot). Let us see some examples:

12.1 Boxplot

> BoxPlot(log2(dd$G), "MeanSignal", "green", xlab = "Samples",
+ ylab = "expression")

12.2 boxplotNegCtrl
> boxplotNegCtrl(dd, Log2 = FALSE, channel = "G")

Neg Ctrl & Genes

18
|

16
|

exprs

10
|

Samples

21

The functions, Boxplot and boxplotNegCtrl, construct a boxplot using the
intensities of each sample The Boxplot uses as input a matrix in log2 scale
whereas the boxplotNegCtrl uses an RGList. In this case we have to pass to
the boxplotNegCtrl functions two arguments that indicates if the signal in the
RGList on which the boxplot is base is in log2 scale (Log2=TRUE) or not
(Log2=FALSE). The ”channel” argument specifies on which signal the boxplot
is based on. If "channel = R”, then the data stored in dd$R is used, if channel
is missing or "channel = G” then the data stored in dd$G is used. In the
boxplotNegCtrl the gene signals and the signals of the negative controls are
separated in the plot. This allows studying if the relative comparison between
the signals of the gene features and the negative controls.

12.3 plotDensity

This function creates a density plot with the intensities of the arrays

> plotDensity(log2(dd$G), "Density Plot example")

12.4 MVAplotMEDctr

It creates a MA plots using a synthetic array as a reference. i.e., the M value
is computed for every spot as the difference between the spot in the array and
the same spot averaged over the whole set of arrays. Every kind of feature is
identified with different colour. As in the "boxplotNegCtrl” we have to give the
“channel” argument to specify on which signal the MA is based. The function
also produces a short report giving information about how many spots of each
kind (REPLICATED NON-CTRL, POSITIVE CTRL, NEGATIVE CTRL and
STRUCTURAL) there are inside the chip. This function is normally applied to
Raw data.

> par(mfrow = c(2, 2), ask = TRUE)
> MVAplotMEDctrl(dd, "MVA example", channel = "G")

12.5 MVAplotMED

It creates a MA plots using a "synthetic” array as a reference but it does not
distinguish the different sort of spots. The function can be used to evaluate the
performance of the Normalization process.

> par(mfrow = c(2, 2))
> MVAplOtMED(dd$G, "red", "MVA exa.mple”)

12.6 RLE

This function produces for each sample a Boxplot that displays the Relative
Log Expression (RLE) [2]. The RLE is computed for every spot in the array
as the difference between the spot and the median of the same spot across all

22

the arrays. As the majority of the spots are expected not to be differentially
expressed, the plot should show boxplots centred on zero and all of them having
the approximately the same dispersion. An array showing greater dispersion
than the other, or being not centred at zero could have quality problems.

> par(mfrow = c(1, 1))
> RLE(log2(dd$G), "RLE example ", "orange')

RLE example

o _J
—
o
o
o
® — H
o o
o
o
© -
o
°
s ¥ 7

Ast —

0 2
|
ﬁ Fuxm ©
Bst - ° HI|HQO o
Aunst — ° OH Pﬁmoo
Bunst — oo H Pnoo

Samples

12.7 HeatMap

This function creates a HeatMap graph using the heatmap.2 function of the
gplots package. The plot is created for the number of highest variance genes
indicated in the argument "size” of the function.

> HeatMap (exprs(esetPROC), size = 100, "100 High Var genes")

23

Color Key

aJ
M 100 High Var genes

Count
0 15 30

6 10 14
Value

]

|

=
g

100 high variance genes

Ast
Aunst
Bunst

12.8 hierclus

This function makes a hierarchical cluster of the samples using the hclust

function of the stats package. If the argument sel = TRUE it selects the "size”
highest variance genes for the plot.

> data(targets)
> GErep = targets$Gerep

> hierclus (exprs(esetPROC), GErep, methdis = "euclidean", methclu = "complete",
+ sel = FALSE, size = 100)

24

H.CLUST EUCLIDEAN - all genes

45

40

Height

Bst

35
|
Bunst J

30

Ast

-
.

25

d
hclust (*, "complete")

12.9 PCAplot

This function makes a PCA plot of the sample space using the plotPCA of the
affycoretools package.

> data(targets)
> PCAplot(esetPROC, targets)

13 Parameter File

It is convenient to write the pre-processing settings that we want to use in the
pre-processing in a parameter file. The parameter file can be a plain text file
where the specific values for the variables used in Agidx44PreProcess are defined.
This file can be loaded into R using source, source(”AGI4x44PreProcess.param.txt”).
An example of this sort of file is provided below.

OVERALL parameters

annotation.package="hgug4112a.db” foreground="MeanSignal” background="BGMedianSignal”

READING THE Target File

infile="targets.txt”

READING THE DATA (RGList)

makePLOT.rAg=TRUE

25

PROBES REPLICATED & GENES REPLICATED

makePROBES=FALSE makeGENES=FALSE

raw.data=TRUE write.probes=TRUE WRITE.genes.html=TRUE REPORT .genes=TRUE

NORMALIZATION (here the foreground and background are used)

BGmethod="half” NORMmethod="quantile” offset=50 makePLOTpre=TRUE
makePLOTpost=TRUE

FILTERING PROBES

control=TRUE wellaboveBG=TRUE isfound=TRUE wellaboveNEG=TRUE
sat=TRUE PopnOL=TRUE NonUnifOL=TRUE nas=TRUE limWellAbove=75.0
limISF=75.0 imNEG=75.0 imSAT=75.0 limPopnOL=75.0 limNonUnifOL=75.0
limNAS=100 makePLOT filt=TRUE flag.counts=FALSE

SUMMARIZING PROBES

makePLOT.summ=TRUE

CREATING & WRITING EXPRESIONSET

makePLOT.eset=TRUE

MAPPING

makeMAPPINGS=TRUE

GSEA output

makeGSEA=TRUE

NOT RUN
> source ("AGI4x44PreProcess.param. txt")

NOT RUN

Once this file has been loaded in to R, we can write an R script where we
can have all the Agi4dx44PreProcess functions to carry out the pre-processing
steps. This code can be read into R by source. An example of a typical script
is given below.

NOT RUN

> library("Agi4x44PreProcess")
> library("hgugd112a.db")

> source("AGI4x44PreProcess.param.txt")
reading target file (TXT).
> targets=read.targets(infile=infile)

reading Agilent Feature Extraction data files (TXT).

26

> dd=read.AgilentFE(targets,makePLOT=makePLOT.rAg)
PROBES REPLICATED

> if (makePROBES){
> CV.rep.probes(dd,annotation.package,
foreground,raw.data,writeR=write.probes, targets)

>}
GENES REPLICATED

> if (makeGENES){

> genes.rpt.agi(dd,annotation.package,raw.data,
WRITE.html1=WRITE.genes.html, REPORT=REPORT.genes)

>}

NORMALIZATION

> ddNORM=BGandNorm (dd, BGmethod, NORMmethod,
foreground, background,
offset,makePLOTpre,makePLOTpost)

FILTERING PROBES

> ddFILT=filter.probes (ddNORM,
control,

wellaboveBG,

isfound,

wellaboveNEG,

sat,

PopnOL,

NonUnifOL,

nas,

limWellAbove,

1imISF,

1imNEG,

1imSAT,

1limPopnOL,

1imNonUnifOL,

1imNAS,
makePLOT=makePLOT.filt,annotation.package,flag.counts, targets)

SUMMARIZING PROBES

> ddPROC=summarize.probe (ddFILT,makePLOT=makePLOT. summ, targets)

27

CREATING EXPRESIONSET OBJECT

esetPROC=build.eset (ddPROC, targets,makePLOT=makePL0T.eset,
annotation.package)

WRITING EXPRESIONSET OBJECT: ProcessedData.txt
write.eset (esetPROC,ddPROC, annotation.package, targets)
MAPPING

if (makeMAPPINGS){

mappings=build.mappings (esetPROC, annotation.package)

}

GSEA OUTPUTS

if (makeGSEA){

gsea.files(esetPROC, targets, annotation. package)

}

NOT RUN

References

[1]
2]

Agilent. Agilent Feature Extraction Reference Guide, 2007.

B. Bolstad, F. Collin, J. Brettschneider, K. Simpson, L. Cope, R. Irizarry,
and T.P. Speed. Quality Assesement of Affymetricz GeneChip Data, pages
397-420. Springer, New York, 2005.

R Development Core Team. R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria, 2005.
ISBN 3-900051-07-0.

Gordon K Smyth. Limma: linear models for microarray data, pages 397—-420.
Springer, New York, 2005.

Aravind Subramanian, Pablo Tamayo, Vamsi K Mootha, Sayan Mukherjee,
Benjamin L Ebert, Michael A Gillette, Amanda Paulovich, Scott L Pomeroy,
Todd R Golub, Eric S Lander, and Jill P Mesirov. Gene set enrichment anal-
ysis: a knowledge-based approach for interpreting genome-wide expression
profiles. Proc Natl Acad Sci U S A, 102(43):15545-15550, Oct 2005.

28

