stam

November 11, 2009

R topics documented:

golubTrain.cv L 1
golubTrainfit 2
image.stamPrediction L 3
plot.stamCV L e e e 4
plotstamFit 5
plot.stamPrediction 6
stamCV-class e e e 7
SAMLCY . . o o e e e e e e e 8
stamEval-class e e e 10
stam.evaluate e e e e e e 11
stamFit-class e 13
stamLfit .. oL L L e 14
stam.graph.plot 16
stamINode-class e e e 17
stam-internal L L L e e e e 18
stamLeaf-class e e 18
stamNet-class e e 19
STAMLIEL e e e e e e e e e e e e e 20
stamNode-class e 21
stamPrediction-class 22
stam.predict L L e e 23
Stam.rgb.colors L e e e e 24
SEAMLSEIVE . . & v v vt e 25
stam.writetHTML e 27
Index 28
golubTrain.cv Examplar StAM Cross-Validation Results
Description

This data set has been generated by stam.cv. It has been computed on the Golub data set on
leukemia, the classification task being to separate AML from ALL patients.

2 golubTrain.fit

Usage

data (golubTrain.cv)

Format

This is a stamCV object

Details

The original data set is drawn from the golubEsets library. The samples 1 to 38 have been fed
to stam. cv to generate the data set at hand.

See Also

stamCV-class, stam.cv,golubTrain

golubTrain.fit Examplar StAM Model Fit

Description
This data set has been generated by stam.fit. It has been computed on the Golub data set on
leukemia, the classification task being to separate AML from ALL patients.

Usage

data (golubTrain.cv)

Format

This is a stamFit object

Details
The original data set is drawn from the golubEset s library. The samples 1 to 38 have been fed to
stam. cv to generate the golubTrain. cv. This set in turn was given to stam. £it to generate
the data set at hand.

See Also

stamFit-class, stam.fit, golubTrain.cv

image.stamPrediction 3

image.stamPrediction
Molecular Symptoms Image on StAM Prediction

Description

Shows prediction results for each sample of the class of interest and for all nodes of a StAM model
fit as a color coded image.

Usage

S3 method for class 'stamPrediction':

image (x, aclass = NULL, main = NULL,
xlab = NULL, show.graph = TRUE,
max.label.length = 40,
sample.labels = FALSE, full.names = TRUE,
outfile = NULL, ps = FALSE, res = 72,
pointsize = 10, width = 11,

minspec = NULL, minsens = 0.1,
maxsens = 1, invert = FALSE,
col = stam.rgb.colors(xr0 = 0),

bin.thresh = NULL, ...)

Arguments
X stamPrediction object to be illustrated
aclass the name of the phenotype class of interest, usually the disease class. If set to
NULL the first class in lexicographical order is chosen
main the main title of the plot, generated automatically if left blank
xlab the label of the x-axis

show.graph (default is T) whether or not to show GO relations between the nodes
max.label.length

the maximum string length for a GO term
sample.labels

whether or not to show sample names on the x-axis

full.names whether or not to show GO terms instead of GO IDs

outfile name of output file if postscript or PNG graphics is to be generated. The ex-
tension of the file is chosen automatically according to the ps argument. If no
outfile is specified, an interactive plot is attempted

res resolution in points per inch

pPs if set to TRUE postscript output is generated

pointsize the standard fontsize

width width of image in inches (the height is computed according to the number of

nodes to be shown and the pointsize)

minspec nodes to be shown must be at least this specific. If set to NULL this is chosen
such that no more than 50 nodes are shown.

minsens nodes to be shown must be at least this sensitive

4 plot.stamCV

maxsens nodes to be shown must be at most this sensitive
invert whether or not to invert background and foreground colors
col the color gradient to code classifier output

bin.thresh threshold for binary color coding, if left at the default NULL, classifier outputs
are coded on a continuous scale.

additional options passed to image

Details

This image illustrates classifier outputs generated during a structured analysis of microarrays (StAM).
The centralpart of the image shows the color coded classifier outputs for each sample in the class of
interest (columns) and each nodes from StAM’s model fit (rows). Nodes can be restricted to those
of minimal sensitivity or specificity. Also nodes with particularly high sensitivity can be excluded.
The color code for the classifier outputs is shown in a color bar on the right hand side if a continuous
is used. If a testset is specified only these samples are used to compute sensitivity and specificity.
If the sample names are not displayed on the x-axis, the test samples are marked with capital letters
or just vertical bars (bars if there are too many test samples). Sensitivity and specificity is shown
to the left of the figure together with the relations between the GO nodes from the Gene Ontology.
GO terms are printed on the right of the image and may be used for a clickable map in HTML.

Value

A string to be used on an HTML page to provide a clickable map for the GO terms.

Author(s)

Claudio Lottaz

See Also

stam.predict

plot.stamCV Plots for StAM Cross Validation

Description

Plots performance and redundancy as well as number of remaining nodes and genes for a cross
validation in structured analysis of microarray data.

Usage

S3 method for class 'stamCV':

plot (x, outfile = NULL, aclass = NULL, delta = NULL,
main = NULL, which = 0, res = 72, ps = FALSE,
pointsize = 16, ...)

plot.stamFit

Arguments

X

outfile

aclass

which

delta
main
res
pPs

pointsize

Details

the object of type stamCV for which the plots are to be drawn

name of output file if postscript or PNG graphics is to be generated. The ex-
tension of the file is chosen automatically according to the ps argument. If no
outfile is specified, an interactive plot is attempted

the name of the phenotype class of interest, usually the disease class

choose the plot to be generated. 1:performance plot, 2:genes/nodes plot, 0:both
plots in interactive mode, non otherwise.

if a delta is provided, vertical lines are added accordingly

the main title of the plot, generated automatically if left blank
resolution in points per inch

if set to TRUE postscript output is generated

the standard fontsize

additional arguments to be passed to plot

This function generates two plots. The first one plots the root error rate, its performance and the
graph redundancy versus the shrinkage level. The second plot depicts the number of remaining
nodes and remaining accessible probesets for each shrinkage candidate.

Author(s)

Claudio Lottaz

See Also

stam.cv

plot.stamFit

Plots for StAM Model Fit

Description

Overall alpha vs. delta plot as well as nodewise scatter plots on performance/redundancy and speci-

ficity/sensitivity.

Usage

S3 method for class 'stamFit':
plot (x, outfile = NULL, aclass = NULL, main = NULL,

which = 0, res = 72, ps = FALSE, pointsize = 12, ...)

6 plot.stamPrediction

Arguments
X the object of type stamFit for which the plots are to be drawn
outfile name of output file if postscript or PNG graphics is to be generated. The ex-
tension of the file is chosen automatically according to the ps argument. The
filename is also augmented by suffixses to distinguish the plots generated. If no
outfile is specified, an interactive plot is attempted
aclass the name of the phenotype class of interest, usually the disease class
which choose the plot to be generated. 1:alpha vs. delta, 2:nodewise evaluation, 0:both
plots in interactive mode, non otherwise.
main the main title of the plot, generated automatically if left blank
res resolution in points per inch
ps if set to TRUE postscript output is generated
pointsize the standard fontsize
additional arguments to be passed to plot
Details

If several values for alpha are provided to stam.fit plot.stamFit generates a compound score Vvs.
shrinkage level plot. For each alpha one line is drawn and the best shrinkage (where the minimum
is achieved) is marked. In a second pane of the same plot alpha is plotted vs. these best shrinkage
levels.

Additionally nodewise scatter plots comparing performance vs. redundancy and sensitivity vs.
specificity are generated.

Author(s)

Claudio Lottaz

See Also

stam.fit

plot.stamPrediction
Scatter Plot on Node Results

Description

Plots nodewise performance vs. redundancy as well as nodewise sensitivity vs. specificity side by
side.

Usage

S3 method for class 'stamPrediction':
plot (x, outfile = NULL, aclass = NULL,
main = NULL, minspec = 0.9,
minsens = 0.1, maxsens = 1,
res = 72, ps = FALSE, pointsize = 12,
.)

stamCV-class

Arguments

X

outfile

aclass

main

minspec

minsens

maxsens

res

rs

pointsize

Author(s)

Claudio Lottaz

See Also

stam.predict

object of class stamPrediction to be plotted

name of output file if postscript or PNG graphics is to be generated. The ex-
tension of the file is chosen automatically according to the ps argument. If no
outfile is specified, an interactive plot is attempted

the name of the phenotype class of interest, usually the disease class. If set to
NULL the first class in lexicographical order is chosen.

the main title of the plot, generated automatically if left blank

if given the corresponding horizontal line is drawn in the sensitivity vs. speci-
ficity plot

if given the corresponding vertical line is drawn in the sensitivity vs. specificity
plot

if given the corresponding vertical line is drawn in the sensitivity vs. specificity
plot

resolution in points per inch
if set to TRUE postscript output is generated
the standard fontsize

additional arguments to be passed to plot

stamCV-class

Cross Validation Information Generated by StAM

Description

Objects if this class are generated by stam.cv. It contains results of cross validated model fits
generated in structured analysis of microarrays in order to choose graph shrinkage levels.

Objects from the Class

Objects can be created by calls of the form new ("stamCV", exprs, classifications,

beta, chip,

Slots

sample.label

root), but it is recommended the use the function stam. cv.

s: Object of class "character", names of samples

sample.classes: Object of class "character", class names for each sample

class.labels

: Object of class "character", one name for each class

prior: Object of class "numeric", prior class probabilities according to prevalence

beta: Object of

class "numeric", class weights, one per class

8 stam.cv

full.pamfit: Object of class "nsc", PAM fit on all probesets

probs: Object of class "array", matrix of cross validated prediction probabilities [samples x
classes x nodes]

folds: Object of class "1ist", buckets used in cross validation

results: Objectofclass "data.frame", cross-validated root error rate, root performance and
mean redundancy as well as remaining nodes and the accessible probesets for each delta

node.results: Object of class "1ist", performance, redundancy, sensitivity and specificity
per node

max.leafdev: Object of class "numeric", performance of worst leaf node
deltas: Object of class "numeric", shrinkage candidates

See stamNet—-class forslots chip, root, chippkg, GOpkg, nodes, leafs, inodes and
probes.

Extends

Class "stamNet ", directly.

Methods

print signature(x = "stamCV"): print information on cross validation

writetHTML signature (x = "stamCV"): generate HTML information on cross validation.
However, using stam.writeHTML is recommended.

Author(s)

Claudio Lottaz

See Also

stam.cv, stamNet—-class

stam.cv Cross Validated Training for StAM

Description

Determine classifiers in leaf nodes and weights in inner nodes as well as best graph shrinkage by
cross validated model fitting.

Usage

stam.cv (expression.matrix, classifications,
chip = "hgu95av2", root = "G0O:0008150",
beta = NULL, deltas = NULL, ndeltas = 10,
results.per.node = FALSE, old.cv = NULL,
pamimagefile = NULL, verbose = FALSE)

stam.cv 9

Arguments

expression.matrix
holds the expression levels. It may be of classes exprSet or ExpressionSet, or a
plain numeric matrix. In the first case exprs is used to extract the expression
levels. The matrix is expected to hold one column per sample and one row per
probeset.

classifications
This character vector must contain one entry per sample identifying the group
it belongs to. Alternatively, if expression.matrix is an exprSet or
ExpressionSet, this may be the name of a phenoData variable.

chip the name of the microarray chip. A meta data package is expected to be found
holding the needed annotation, namely the links between probesets and Gene
Ontology nodes.

root the GO node used as root of the classifier graph. Only successors of this node
are considered during construction of the graph.

beta holds class weights used when judging classifier quality. The default is to set
class weights to the corresponding prevalence.

deltas numeric vector holding graph shrinkage candidates. Default is to determine
ndelta candidates between O and the lowest shrinkage level which removes
all leaf nodes.

ndeltas number of automatically determined graph shrinkage candidates determined if
deltas is not defined.

results.per.node
whether results for each node should be returned

old.cv stamCV object used to modify when PAM fits need not to be recomputed. E.g.
used when only beta is adapted.

pamimagefile When this parameter is specified stam. cv tries to read this file and extract a
stamCV object to be used as o1d. cv. If the file does not yet exist, PAM fits
are stored there after computation.

verbose when set to TRUE reports summary on each leaf training, otherwise shows a
progress bar.

Details

stam.cv uses stam.net to generate a classifier graph for the microarray chip at hand. It then
fits a PAM classifier for each leaf node only considering the probesets annotated to the node. After-
wards, in each inner node, weights are attributed to each child according to the childs classification
performance. Finally, the weights are shrunken such that most of them become zero. In fact, the
best shrinkage level is chosen in a cross validation setting.

Classification performance is evaluated using an inverted deviance like measure which uses weights
to overstate specificity of a classifier. Weights for nodes are chosen according to this measure and
shrunken by an absolute shrinkage level. For each shrinkage candidate cross validated performance
results in terms of graph heterogeneity and classification performance are stored.

Value

An object of class stamCV is returned. Use the methods print and plot to extract information about
the cross validation.

10 stamEval-class

Author(s)

Claudio Lottaz

See Also

stamCV-class,plot.stamCV, stam.writeHTML

Examples

Not run:

load and prepare some data
library (golubEsets)

data (Golub_Merge)

golubTrain <- Golub_Mergel[,1:38]

classify into ALL and AML

(root is chosen to yield results reasonably fast,

consider GO:0008150 (biological process) to obtain

meaningful results)

golubTrain.cv <- stam.cv(golubTrain, "ALL.AML", chip="hu6800",
root="G0:0005576", ndeltas=10)

get further information
print (golubTrain.cv)

plot (golubTrain.cv, delta=0.6)
End (Not run)

stamEval-class Results of a Complete StAM Analysis

Description

Objects of this class are returned by ctam.evaluate. Results of all steps in a structured analysis
of microarray data are stored.

Objects from the Class

Objects can be created by calls of the form new ("stamEval", exprs, cv, fit, pred,
testset), butusing stam.evaluate is recommended.

Slots
chip: Object of class "character", the name of the chip for which the classifier net is gener-
ated.

exprs: Object of class "matrix", the plain matrix of expression levels [probesets x samples],
rownames and colnames are expected to be defined

cv: Object of class "stamCV", store cross validation results
fit: Object of class "stamFit", store model fit
pred: Object of class "stamPrediction", store prediction results

testset: Objectof class "numeric", indices of samples treated as test set. The others are used
for trainig.

stam.evaluate 11

Methods

writetHTML signature(x = "stamEval"): generate HTML information on a complete
StAM analysis, but using stam.writeHTML is recommended.

Author(s)

Claudio Lottaz

See Also

stam.evaluate, stamCV-class, stamFit-class, stamPrediction—-class, stam.writeHTML

stam.evaluate StAM Evaluation Procedure

Description

This performs a structured analysis of microarrays (StAM) from scratch to the end. It starts with a
cross-validation, performas a model fit, predicts phenotypes and writes complete HTML code with
images.

Usage

stam.evaluate (expression.matrix, classifications,
report.dir = getwd(), aclass =
names (table (classifications)) [1],
titlestem = NULL, testset =
stam.balanced.folds (classifications, 3)[[1]],
chip = "hgu95av2", root = "G0:0008150",
no.output = FALSE, alpha = seq(0, 1, 0.1),
beta = NULL, deltas = NULL, ndeltas = 30,
minspec = NULL, minsens = 0.1, maxsens = 1,
pamimagefile = NULL)

Arguments

expression.matrix
holds the expression levels. It may be of class exprSet or ExpressionSet,
or a plain numeric matrix. In the first case exprs is used to extract the expres-
sion levels. The matrix is expected to hold one column per sample and one row
per probeset.

classifications
This character vector must contain one entry per sample identifying the group it
belongs to.

aclass the name of the phenotype class of interest, usually the disease class. If set to
NULL the first class in lexicographical order is chosen.

testset indeces of the columns in the expression.matrix representing test samples.

chip the name of the microarray chip. A meta data package of the same name is

expected to be found holding the needed annotation, namely the links between
probesets and Gene Ontology nodes.

12

root

alpha

beta

deltas

ndeltas

titlestem

report.dir
no.output
minspec
minsens

maxsens

stam.evaluate

the GO node used as root of the classifier graph. Only successors of this node
are considered during construction of the graph/model.

root performance vs. mean redundancy weight. If set to NULL the root er-
ror rate is used exclusively to determine the best shrinkage level. If a numeric
vector is provided, all alternatives are computed and the user is given an inter-
active choice. Values between 0 and 1 are valid, 0 meaning exclusive weight on
redundancy and 1 putting exclusive weight on performance.

holds class weights used when judging classifier quality. The default is to set
class weights to the corresponding prevalence. Several combinations of class
weights may be provided for testing one after the other. To do so a matrix is
expected to hold one combination of weights per row and must thus have one
column per class.

numeric vector holding graph shrinkage candidates. Default is to determine
ndelta candidates between O and the lowest shrinkage level which removes
all leaf nodes.

number of automatically determined graph shrinkage candidates determined if
deltas is not defined.

the first part of the title of the HTML page to be written, is complemented by
some of the parameters.

the directory where the HTML pages are to be written

do not generate any HTML or images

nodes to be shown in molecular symptoms image must be at least this specific
nodes to be shown in molecular symptoms image must be at least this sensitive

nodes to be shown in molecular symptoms image must be at most this sensitive

pamimagefile When this parameter is specified stam. cv tries to read this file and extract a

Details

stamCV object to avoid recomputing PAM fits. If the file does not yet exist,
PAM fits are stored there after computation.

stam.evaluate exexutes all steps needed in a structured analysis of a microarray study and
coherently generates HTML output including plots and images. In Firstly, a 10 fold cross validation
is performed with the data not identified as test set. Secondly, using an adequate graph shrinkage
level, a model fit is computed. Finally, all data is used for prediction to illustrate the performance.

Furthermore, this method generates a set of HTML pages. One page reports on the analysis as a
whole, while additional interlinked pages, one for each node in the model fit, contain information
on the fit and results of each node. On the main page plots and images illustrate and summarize
the analysis. Clickable maps make the exploration of the results convenient. All files are stored
together with an R data containing the returned R object in the user specified report directory.

Value

Returns an object of class stamEval containing all results generated during the above described
procedure. Use the methods defined on the class corresponding the slot you want to investigat

further.

Author(s)

Claudio Lottaz

stamFit-class 13

See Also

stamEval-class, stam.cv, stam.fit, stam.predict, stam.writeHTML

Examples

load and normalize some data
Not run:

library (golubEsets)

data (Golub_Merge)

(root 1s chosen to yield results reasonably fast,
consider G0O:0008150 (biological process) to obtain
meaningful results)

demonstrate the use of several combinations of class weights

betas <- cbind(c (0.5, 0.8, 0.9), c(0.5, 0.2, 0.1))

golubNorm.eval.explore <- stam.evaluate (Golub_Merge, "ALL.AML",
chip="hu6800", root="GO:0005576",
alpha=seqg(0, 1, 0.1), beta=betas, ndelta=10)

demonstrate the use of testsets
golubNorm.eval.predict <- stam.evaluate (Golub_Merge, "ALL.AML", testset=39:72,
chip="hu6800", root="GO:0005576", ndelta=10)

End(Not run)

stamFit-class Model Fit Generated by StAM

Description

Objects of this class hold a model fit as it is generated by structured analysis of microarray data. The
function stam. £it returns such objects. They are handed on to stam.predict for predictions.

Objects from the Class

Objects can be created by calls of the form new ("stamFit", cv, exprs, alpha, delta,
max.nodes, collapse.scnodes), butitisrecommended to use the function stam. fit.

Slots

sample.classes: Object of class "character", class names for each sample
class.labels: Object of class "character", one name for each class

prior: Object of class "numeric", prior class probabilities according to prevalence
full.pamfit: Object of class "nsc", PAM fit on all probesets

alpha: Object of class "numeric", performance vs. redundancy weight(s)

beta: Object of class "numeric", class weights, one per class

delta: Object of class "numeric", shrinkage level given by the user

best .delta: Object of class "numeric", shrinkage level used for computing
default.delta: Objectofclass "numeric", default shrinkage level suggested by stam. fit

scores: Object of class "matrix", compound scores weighted using the provided alpha(s)

14 stam.fit

alpha.tab: Object of class "matrix", results comparing alphas

node.results: Object of class "1ist", performance, redundancy, sensitivity and specificity
per node

collapse.scnodes: Object of class "1logical", whether single children nodes are removed
after shrinkage

See stamNet—-class for slots chip, root, chippkg, GOpkg, nodes, leafs, inodes and
probes.

Extends

Class "stamNet", directly.

Methods
print signature(x = "stamFit"): print information on the model fit.
writetHTML signature(x = "stamFit"): generate HTML information on the model fit,

but using stam.writeHTML is recommended.

Author(s)

Claudio Lottaz

See Also

stam.fit, stamNet-class

stam.fit Fit StAM Model to Training Data

Description

Using the whole expression data provided fit one StAM model according to the chosen shrinkage

level.
Usage
stam.fit (cv, expression.matrix, collapse.scnodes = FALSE,
alpha = 0.5, delta = NULL, max.nodes = 100)
Arguments
cv result stam.cv on the same data, must be of class stamCV

expression.matrix
holds the expression levels. It may be of class exprSet or ExpressionSet,
or a plain numeric matrix. In the first case exprs is used to extract the expres-
sion levels. The matrix is expected to hold one column per sample and one row
per probeset.

collapse.scnodes
if set to TRUE replace single children nodes after shrinkage

stam.fit 15

alpha root performance vs. mean redundancy weight. If set to NULL the root er-
ror rate is used exclusively to determine the best shrinkage level. If a numeric
vector is provided, all alternatives are computed and the user is given an inter-
active choice. Values between 0 and 1 are valid, 0 meaning exclusive weight on
redundancy and 1 putting exclusive weight on performance.

delta overrule alpha and set shrinkage level explicitely.

max.nodes choose default shrinkage level such that no more than this number of nodes
remain after shrinkage.

Details

In a first step stam. £it must choose a shrinkage level. In order to do so it uses results stored in
the cv. If the user provides a shrinkage level explicitly this delta is used. If he specifies a single
weighting factor alpha the corresponding weighted score is used to determine the best shrinkage
level. If alpha is set to a vector of values, the corresponding scores are computed and a default
delta is suggested using the median value of the alphas. If this shrinkage level leads to more
than max . node s nodes remaining the shrinkage level is increase until no more than max .nodes
remain after shrinkage.

Using the thus determined shrinkage level a weighting of nodes is computed using the leaf node
results from cv. Thereby, the whole dataset supplied is used.

Value

An object of class stamFit is returned. You may use the print and plot methods to further investigate
the returned value.

Author(s)

Claudio Lottaz

See Also

stam.cv, stamFit-class, plot.stamFit, stam.graph.plot, stam.writeHTML

Examples

Not run:

prepare data
library (golubEsets)
data (Golub_Merge)

load and prepare some data
golubTrain <- Golub_Mergel[,1:38]
data (golubTrain.cv)

compute fit
golubTrain.fit <- stam.fit (golubTrain.cv, golubTrain, alpha=seq(0, 1, 0.1))

investigate

print (golubTrain.fit)
plot (golubTrain.fit)
End(Not run)

show clickable web-page

16 stam.graph.plot

Not run:

map <- stam.graph.plot (golubTrain.fit, outfile="golubTrain")

cat ("<HTML><BODY><MAP NAME='graph_map'>", map, "</MAP>",
"</BODY></HTML>\n",
file="graph_plot.html")

browseURL (paste ("file://", getwd(), "/graph_plot.html", sep=""))

End (Not run)

stam.graph.plot Draw StAM Model Fit Graph

Description

This function uses graphviz to layout a graph plot of a model fit. In addition a client side clickable
map is returned to added to an HTML page.

Usage
stam.graph.plot (x, outfile = "", pointsize = 10,
width = 9, height = 6)
Arguments
X the stamFit object holding the model to be drawn
outfile name of output file without extension.
pointsize the standard font size
width width of plot in inches
height height of plot in inches
Details

This function generates a file in the dot language for graphviz. It uses the dot program to produce
the layout of the graph and png as well as postscript files of this layout. Moreover, a client-side
clickable map is generated which can be included in an HTML page.

Value

A character string containing HTNL code for a clickable map.

Note

This function only works on unix systems with graphviz installed.

Author(s)

Claudio Lottaz

References

Gansner ER, North SC. "An open graph visualization system and its applications to software engi-
neering". Software Practice and Experience, 1999, pp. 1-5.

stamINode-class 17

See Also

stam.fit

stamINode-class Inner Nodes in Classifier Nets by StAM

Description

Objects of this class represent inner nodes of classifier nets as they are generated by structured
analysis of microarray data. These nodes only contain children but never hold direct annotations of
genes.

Objects from the Class

Objects can be created by calls of the form new ("stamINode", ID, GOidx, children).

ID is the GO identifier as character string
GOidx environment attributing indices to all GO indentifiers

children indeces of all children

Exactly one of GOidx and children must be defined, the other set to NULL (default)

Slots

children: Object of class "numeric", indeces of the node’s direct children in the Gene On-
tology.

weights: Object of class "numeric", weights attributed to the node’s direct children.

See stamNode-class fot ID, category, replacedParents and supNode.

Extends

Class "stamNode", directly.

Methods
print signature (x = "stamINode"): print information on the inner node.
writetHTML signature(x = "stamINode"): generate HTML information on the inner
node.
Author(s)

Claudio Lottaz

See Also

stamNode-class, stamLeaf—-class

18 stamLeaf-class

stam—-internal StAM Internal Function

Description

Function for internal use only.

Details

No details given. This function is subject to change without further notice.

Author(s)

Claudio Lottaz

stamLeaf-class Leaf Nodes in Classifier Nets by StAM

Description

Objects of this class represent leaf nodes in a classifier net as it is used by structured analysis of
microarray data. These are the only nodes which have genes annotated.

Objects from the Class

Objects can be created by calls of the form new ("stamLeaf", ID, chip, probesidx).

ID is the GO identifier as character string
chip the name of the chip for which the classifier net is generated.

probes a character vector holding the identifiers of the probesets in the order as they occur in the
expression matrix

Slots
chip: Object of class "character", the name of the chip for which the classifier net is gener-
ated.

probes: Object of class "numeric", for each probeset holds its position in the expression met-
rices to be analyzed

pamfit: Object of class "nsc", holds the results of pamr.train restricted to the genes annotated
to the current leaf node.

delta: Object of class "numeric™", stores the best delty for the local pamfit as determined by
pamr.cv.

See stamNode—-class fot ID, category, replacedParents and supNode.

Extends

Class "stamNode", directly.

stamNet-class 19

Methods

print signature (x = "stamLeaf"): print information on the leaf node.

writetHTML signature (x = "stamLeaf"): generate HTML information on the leaf node.
Author(s)

Claudio Lottaz

See Also

stamNode—-class, stamINode—-class

stamNet-class Classifier Net for StAM

Description

Objects of this class describe a network of classifiers as it is used by structured analysis of microar-
ray data.

Objects from the Class

Objects can be created by calls of the form new ("stamNet", chip, root, probes), or
by acall to stam.net.

chip the name of the chip for which the classifier net is generated.

root the GO identifier of the node where the generation of the classifier net is started.

probes a character vector holding the identifiers of the probesets in the order as they occur in the
expression matrix

Slots

chip: Object of class "character", the name of the chip for which the classifier net is gener-
ated.

root: Object of class "character™", the GO identifier of the node where the generation of the
classifier net is started.

chippkg: Object of class "character™", information on the version of the meta data package
for the chip

GOpkg: Object of class "character", information on the version of the meata data package on
the Gene Ontology

nodes: Objectof class "1ist", elements are of class stamINode or stamLeaf, one for each
node in the classifier net.

leafs: Object of class "numeric™", indices of all leaf nodes in slot nodes
inodes: Object of class "numeric", indices of all inner nodes in slot nodes

probes: Object of class "environment", the corresponding index for each probeset in the
expression matrices to be analyzed

20 stam.net

Methods
print signature (x = "stamNet"): print information on the classifier net
writetHTML signature(x = "stamNet"): generate HTML information on the classifier

net. However, using stam.writeHTML is recommended.

Author(s)

Claudio Lottaz

See Also

stam.net, stamLeaf-class, stamINode—-class

stam.net Generate a Classifier Graph for StAM

Description

Generates a classifier graph for structured analysis of microarray data based on the Gene Ontology.

Usage
stam.net (chip = "hgu95av2", root = "GO:0008150", probes = character(0))
Arguments
chip A character string representing the microarray chip from which data has been
generated. A meta data packages of the same name is used to obtain the annota-
tion data, namely for the Gene Ontology.
root The identifier of the GO node to be used as the root of the classifier graph. Only
successors of this node are considered to generate the graph.
probes The probe names in the order as they occur in the expression matrix. Indeces
according to this character array are used to index probes/probesets.
Details

stam.net crawls through the Gene Ontology starting with the root node specified. It collects all
successors of the root into a classifier graph according to the parent-children relations defined in the
Gene Ontology. Probesets of the microarray chip at hand are attributed to GO nodes according to
the Bioconductor annotation meta data package for the chip.

For any node i which has GO annotations AND successors an additional node i’ is introduced to the
classifier graph. The new node is added as an additional child to i and all probesets annotated to i
are moved to i’, such that only leaf nodes hold probesets. Nodes which neither themselves nor any
of their successors hold probesets are discarded. stam.net also replaces inner nodes with only one
child by their successor.

Value

An object of class stamNet is returned. You may use the print method to obtain detailed information
about the classifier graph. You may further investigate any element of the *nodes’ list using the print
method.

stamNode-class 21

Author(s)

Claudio Lottaz

See Also

stamNet—-class, stam.writeHTML

Examples

Not run:

load some data

library (golubEsets)

data (Golub_Merge)

emat <- exprs (Golub_Merge)

determine classifier graph for chip "hu6800" on

biological processes, taking the positions of

probesets in Golub's expression matrix into account

net <- stam.net (chip="hu6800", root="G0:0003674", probes=rownames (emat))

have a look

print (net)

print (net@nodes[[16]])

print (net@nodes$"G0O:0007638")
End (Not run)

stamNode-class Nodes in a Classifier Net by StAM

Description

Objects of this class and its subclasses represent single nodes in a classifier net as it is used by
structured analysis of microarray data.

Objects from the Classes

Objects can be created by calls of the form new ("stamNode", ID, supNode).

ID is the GO identifier as character string

supNode indicates whether the node is a supplementary node to avoid nodes which have both,
genes directly annotated and children in the stamNet.

Slots

ID: Object of class "character™", holds the GO identifier as character string

category: Object of class "character", represents the GO ontology the node belongs (MF:
molecular function, BP: biological process, CC: cellular component).

replacedParents: Object of class "character™", holds all GO identifiers of nodes which
have been removed, because the had only one child.

supNode: Object of class "logical", indicates whether the nodes has been added to avoid
nodes which have both directly annotated genes as well as children in the classifier graph

22 stamPrediction-class

Methods
getGOchildren signature (x = "stamNode"): returns the identifiers of the direct children
of node x in the Gene Ontology.

getGOchildren signature(x = "character"): returns the identifiers of the direct chil-
dren of the node with identifier x in the Gene Ontology.

getGOparents signature (x = "stamNode"): returns the identifiers of the direct parents
of node x in the Gene Ontology.

getGOparents signature (x = "character"): returns the identifiers of the direct parents
of the node with identifier x in the Gene Ontology.

getGOterm signature (x "stamNode") : returns the GO term represented by node x.

getGOterm signature(x = "character"): returns the GO term represented by the node
with identifier x.
print signature (x = "stamNode") print information on the node.
writetHTML signature (x = "stamNode") generate HTML information on the node.
Author(s)

Claudio Lottaz

See Also

stamLeaf-class, stamINode—-class

stamPrediction-class
Results of Predictions by StAM

Description

Object of this class are returned by stam.predict and contain prediction results as they are
computed by structured analysis of microarray data.

Objects from the Class

Objects can be created by calls of the form new ("stamPrediction", fit, expr.mat,
cls, testset),butusing stam.predict is recommended.

Slots

chip: Object of class "character", the name of the chip for which the classifier net is gener-
ated.

nodes: Objectof class "1ist", elements are of class stamINode or stamLeaf, one for each
remaining node in the classifier net.

class.labels: Object of class "character", one name for each class
best .delta: Object of class "numeric", shrinkage level used for computing
cls: Object of class "character™", class names for each sample

probs: Object of class "array", matrix of prediction probabilities [samples x classes X nodes]

stam.predict 23

predicts: Object of class "character", overall prediction for each sample

testset: Object of class "numeric", indeces of samples which belong to the test set. The
other samples are assumed to be the traiing set.

node.results: Object of class "1ist", performance, redundancy, sensitivity and specificity

per node
Methods
image signature(x = "stamPrediction"): molecular symptomsimage, see image.stamPrediction
for details
print signature (x = "stamPrediction"): print information on prediction
writtHTML signature(x = "stamPrediction"): generate HTML information on pre-

diction, but using stam.writeHTML is recommended

Author(s)

Claudio Lottaz

See Also

stam.predict, image.stamPrediction, stam.writeHTML

stam.predict Predict Classifications of New Data

Description

StAM analysis on new data using a given model fit.

Usage

stam.predict (fit, expression.matrix, classifications = NULL,
testset = NULL)

Arguments

fit stamFit object containing a trained model
expression.matrix
matrix or exprSet or ExpressionSet, containing new data
classifications
character vector specifying class names per sample. You may either specify one
class per sample in the expression.matrix, or one class per training sample (all
but the testset).

testset indeces of samples not yued in training

Details

stam.predict uses an object returned by stam.fit to perform a structured analysis of the new ex-
pression data provided. Thereby, it uses all classifiers in the leaf nodes to provide classification
results in these for each sample. In addition, weighted sums in inner nodes are computed to provide
classification results for the whole graph.

24 stam.rgb.colors

Value

An object of type stamPrediction is returned. You may use print, plot and image functions to further
investigate the results. Information on node classifiers are obtained through the print methods on
elements of the nodes slot.

Author(s)

Claudio Lottaz

See Also

stamPrediction-class,plot.stamPrediction,image.stamPrediction, stam.fit,
stam.writeHTML

Examples

Not run:

load and prepare data

library (golubEsets)

data (Golub_Merge)

golubTest <- Golub_Merge[,39:72]
data (golubTrain.fit)

compute predictions
golubTest.pred <- stam.predict (golubTrain.fit, golubTest,
pData (golubTest) [, "ALL.AML"])
golubMerge.pred <- stam.predict (golubTrain.fit, Golub_Merge,
pData (Golub_Merge) [, "ALL.AML"], testset=39:72)

further investigate

print (golubTest.pred)

plot (golubTest.pred)

End(Not run)

Not run:

map <- image (golubMerge.pred, outfile="golubMerge")

cat ("<HTML><BODY><MAP NAME='image_map'>", map, "</MAP>",
"</BODY></HTML>\n",
file="pred_img.html")

browseURL (paste ("file://", getwd(), "/pred_img.html", sep=""))

End (Not run)

stam.rgb.colors Generate a Color Gradient

Description

Generates a colur gradient starting from one color given by the user and ending in another going
through black.

Usage

~

stam.rgb.colors(n = 12
0

m , 0
rl =0, gl =1, bl = 0)

stam.serve 25

Arguments
Number of shades generated in the color gradient
m skewing factor. m=1 produces a linear gradient from start to black and from
black to end. High m decreases the amount of black, low m’s increase it.
r0 red component of the starting color
g0 green component of starting color
b0 blue component of the starting color
rl red component of the ending color
gl green component of the ending color
bl blue component of the ending color
Value

A charactor vector of length 2*n. Each element represents the code of an RGB color.

Author(s)

Claudio Lottaz

See Also

image.stamPrediction

Examples

red.to.blue <- stam.rgb.colors(10, 1, 1, 0, 0, 0, 0, 1)
fake.data <- matrix(seq(0, 1, 0.01), nrow=10, ncol=10)
image (fake.data, col=red.to.blue)

stam.serve StAM server launch and installation

Description
stam.serve installs StAM’s server feature if it has not been installed before. Moreover it launches
the StAM server needed to use StAM output interactively through the internet.

Usage

stam.serve (tmp.path = NULL, cgi.path = NULL, cgi.url = NULL)

Arguments
tmp.path the path to the directory where files are stored for communication between your
WWWe-server and the StAM-server.
cgi.path the path to the directory in which the StAM-related CGI scripts are to be stored.
Make sure that your WWW-server can execute CGI scripts from here and that
access rights are set correctly.
cgi.url the URL prefix needed to access the CGI scripts, i.e. the directory specified in

cgi.path.

26 stam.serve

Details

The stam package provides a feature to manipulate some parameters interactively using HTML
forms. This feature needs a WWW browser which is able to execute CGI scripts. The HTML
output used to work with interactively must be generated with the stam.write.forms option turned
on.

StAM provides a set of CGI scripts which are called from the forms written into the HTML code
when the above mentioned option is turned on. This scripts write task files into the directory given
by tmp.path. This directory must have write permission for the WWW server. The StAM server
regularly checks this directory for such tasks and executes them.

stam.serve installs the StAM server feature when it is called the first time after the installation of
the stam package. Firstly, this consists of registering the three parameters of stam.serve into the
package installation such that they can be reloaded when the packages is loaded into R the next
time. For this purpose a dataset is written into the installation, thus you need write permissions
in the corresponding directory. Secondly, the cgi.url is written into StAM’s CGI scripts and these
scripts are written into the cgi.path.

When the installation of StAM’s server feature is complete, stam.serve starts checking the directory
where it expects the tasks written by the CGI scripts and is thus ready for operation. After the
server feature has been installed the server can be launched simply by calling stam.serve() without
parameters. A second call with parameters modifies the StAM server installation accordingly.

Note

* You need write permission in the stam installation directory in order to install StAM’s server
feature.

* You need write permission in the directory where the CGI scripts are to be deposited in order
to install StAM’s server feature.

* You must regenerate all HTML you want to work with through the stam server after installa-
tion of the server feature.

* You must turn on the stam.write.forms option when generating HTML for use with the server
feature.

Author(s)

Claudio Lottaz

See Also

stam.writeHTML

Examples

Not run:
make sure subsequent calls to stam.writeHTML generate forms
options (stam.write.forms=TRUE)

first call to stam.serve after installation of the stam package

stam.serve (tmp.path = "/home/myhome/upload",
cgi.path = "/home/myhome/cgi-bin/stam",
cgi.url = "http://www.myserver.com/cgi-bin/stam")

subsequent calls to launch StAM server without modifying the installation
stam.serve ()
End (Not run)

stam.writeHTML 27

stam.writeHTML Write StAM Output in HTML

Description

Write HTML output for various pieces of a structured analysis of microarray data for further inter-
active exploration.

Usage
stam.writeHTML (x, title = NULL, align = "left",
outfile = "index.html", nonodes = FALSE, ...)
Arguments
X the piece of the analysis for which HTML is to be generated. It may be of
any of the following classes: stamNode, stamNet, stamCV, stamFit,
stamPredictionor stamEval
title the title to be used on the generated main page. A default is generated according
to a few important parameters of x
align alignment of the tatle (left, right, center)
outfile the file where to store the generated HTML code unless x is of class stamEval.
In the latter case, out file is a directory where the the collection of files is
stored.
nonodes whether to generate (possibly lengthy) output for all nodes
further arguments passed to writeHTML calls.
Details

Use this function to generate HTML pages for further investigation of StAM results. The pages are
interlinked and contain links to external resources such as the Gene Ontology and the Affymetrix
website. Clickable maps are generated for the illustration of the model fit as well as the molecular
symptoms image.

Author(s)

Claudio Lottaz

Examples

Not run:
data (golubTrain.cv)
data (golubTrain.fit)

stam.writeHTML (golubTrain.cv)
stam.writeHTML (golubTrain.fit, nonodes=TRUE)
End (Not run)

Index

*Topic classes
stamCV-class, 7
stamEval-class, 9
stamFit-class, 12
stamINode-class, 16
stamLeaf-class, 18
stamNet-class, 19
stamNode-class, 21
stamPrediction-class, 22

+Topic classif
stam.cv, 8
stam.evaluate, 10
stam.fit, 14
stam.predict, 23

xTopic datasets
golubTrain.cv, 1
golubTrain.fit,?2

+Topic hplot
image.stamPrediction, 2
plot.stamCV, 4
plot.stamFit, 5
plot.stamPrediction, 6
stam.graph.plot, 15
stam.serve, 25
stam.writeHTML, 27

*Topic internal
stam—-internal, 17
stam.rgb.colors, 24

+Topic utilities
stam.net, 20

accelerate.AFFYREF
(stam—internal), 17

AFFYLIBS (stam—-internal), 17

AFFYREF (stam—-internal), 17

B(stam—internal), 17

beginHTML (stam-internal), 17
BR (stam—-internal), 17
busy.buffer (stam-internal), 17
BUTTON (stam—internal), 17

catHTML (stam-internal), 17
CHECKBOX (stam—-internal), 17

28

collect.lines (stam—internal), 17
endHTML (stam—-internal), 17
FORM (stam—internal), 17

getGOcategory (stam-internal), 17
getGOchildren (stam-internal), 17
getGOchildren, character-method
(stamNode—-class), 21
getGOchildren, stamNode-method
(stamNode-class), 21
getGOparents (stam-internal), 17
getGOparents, character—-method
(stamNode—-class), 21
getGOparents, stamNode-method
(stamNode-class), 21
getGOprobes (stam—internal), 17
getGOterm (stam—internal), 17
getGOterm, character—-method
(stamNode—-class), 21
getGOterm, stamNode-method
(stamNode-class), 21
getprobenames (stam-internal), 17
getprobes (stam—-internal), 17
getprobesymbols (stam—-internal),
17
golubTrain, /
golubTrain.cv, 1,2
golubTrain.fit,?2
GOREF (stam—-internal), 17

H1l (stam—internal), 17

H2 (stam—-internal), 17

H3 (stam-internal), 17

H4 (stam-internal), 17

HIDDEN (stam—-internal), 17

HR (stam—-internal), 17

HREF (stam-internal), 17
HREFannotation (stam-internal), 17
HTMLtag (stam—-internal), 17

I.(stam-internal), 17
image.stamPrediction, 2, 23-25
IMG (stam—internal), 17

INDEX

initialize, stamCV-method
(stamCV-class),7
initialize, stamEval-method
(stamEval-class),9
initialize, stamFit-method
(stamFit-class), 12
initialize, stamINode-method
(stamINode-class), 16
initialize, stamLeaf-method
(stamLeaf-class), 18
initialize, stamNode-method
(stamNode—-class), 21

initialize, stamPrediction-method

(stamPrediction—-class), 22
LI (stam-internal), 17
MAP (stam—-internal), 17

NAME (stam—-internal), 17
nodelink (stam-internal), 17
nsc—-class (stam—-internal), 17

OL(stam—internal), 17

P (stam—internal), 17
pamr.cvfix (stam—internal), 17
PASSWORD (stam—-internal), 17
permute.rows (stam—-internal), 17
plot.stamCV, 4,9
plot.stamFit,5, 15
plot.stamPrediction, 6, 24
postorder.traverse
(stam-internal), 17
print (stam-internal), 17
print, stamCV-method
(stamCV-class),7
print, stamFit-method
(stamFit-class), 12
print, stamINode-method
(stamINode-class), 16
print, stamLeaf-method
(stamLeaf-class), 18
print, stamNet-method
(stamNet—-class), 19
print, stamNode-method
(stamNode—-class), 21
print, stamPrediction-method
(stamPrediction—-class), 22

RADIOBOX (stam—-internal), 17
reconstruct.pamfit
(stam—-internal), 17

29

redraw.pred.img (stam—-internal),
17

refit.model (stam—internal), 17

RESET (stam-internal), 17

restrict.pamfit (stam-internal),
17

root.dist (stam—-internal), 17

SELECTMENU (stam—-internal), 17
stam—-internal, 17
stam.ad.plot (stam—-internal), 17
stam.add.delta (stam-internal), 17
stam.addNode (stam—internal), 17
stam.balanced.folds
(stam-internal), 17
stam.cgi.path (stam-internal), 17
stam.cgi.url (stam-internal), 17
stam.closedev (stam—internal), 17
stam.collapse.scnodes
(stam-internal), 17
stam.cv, 1,4,7,8,12,15
stam.deviance (stam—-internal), 17
stam.edr.plot (stam—-internal), 17
stam.evaluate, 10, 10
stam. findmin (stam—-internal), 17
stam.fit,2,5,12, 13,14, 16, 24
stam.fit.pam(stam—-internal), 17
stam.getidx (stam—internal), 17
stam.graph.plot, 15,15
stam.listgenes (stam-internal), 17
stam.matchcv (stam—-internal), 17
stam.maxpreds (stam—-internal), 17
stam.net, 19, 20
stam.ng.plot (stam—-internal), 17
stam.nodePerformanceHTML
(stam-internal), 17
stam.nodePredictHTML
(stam-internal), 17
stam.nodes.plot (stam-internal),
17
stam.nzgraph (stam—internal), 17
stam.opendev (stam—internal), 17
stam.permute.rows
(stam-internal), 17
stam.pred.img.form
(stam-internal), 17
stam.predict, 4,6, 12,23, 23
stam.preds (stam-internal), 17
stam.redundancy (stam-internal),
17
stam.refit.form(stam-internal),
17
stam.rgb.colors, 24

30

stam.scale (stam—internal), 17

stam.sensitivity (stam-internal),
17

stam.serve, 25

stam.shrink (stam—-internal), 17

stam.specificity (stam—-internal),
17

stam.threshpreds (stam-internal),
17

stam.tmp.path (stam—internal), 17

stam.trydeltas (stam-internal), 17

stam.weightnodes (stam—-internal),
17

stam.writeHTML, 9, 10, 12, 15, 20, 23, 24,
26,27

stamCV-class, 1,9, 10

stamCV-class, 7

stamEval-class, 12

stamEval-class, 9

stamFit-class, 2, 10, 15

stamFit-class, 12

stamINode-class, I8, 19, 22

stamINode-class, 16

stamlLeaf-class, 17,19, 22

stamLeaf-class, 18

stamNet (stamNet-class), 19

stamNet-class, 7, 13,20

stamNet-class, 19

stamNode-class, 17, 18

stamNode-class, 21

stamPrediction-class, 10, 24

stamPrediction-class, 22

SUBMIT (stam-internal), 17

sum.probs (stam—-internal), 17

TABLE (stam—internal), 17
tableHTML (stam-internal), 17
TD (stam—-internal), 17
TEXTAREA (stam-internal), 17
TEXTFIELD (stam—-internal), 17
TH (stam-internal), 17

TR (stam—-internal), 17

UL (stam—internal), 17

write.busy (stam-internal), 17
write.redirect (stam—-internal), 17
writeHTML (stam-internal), 17
writeHTML, stamCV-method
(stamCV-class),7
writeHTML, stamEval-method
(stamEval-class),9

INDEX

writeHTML, stamFit-method
(stamFit-class), 12
writeHTML, stamINode-method
(stamINode-class), 16
writeHTML, stamLeaf-method
(stamLeaf-class), 18
writeHTML, stamNet-method
(stamNet-class), 19
writeHTML, stamNode-method
(stamNode—-class), 21
writeHTML, stamPrediction-method
(stamPrediction-class), 22

	golubTrain.cv
	golubTrain.fit
	image.stamPrediction
	plot.stamCV
	plot.stamFit
	plot.stamPrediction
	stamCV-class
	stam.cv
	stamEval-class
	stam.evaluate
	stamFit-class
	stam.fit
	stam.graph.plot
	stamINode-class
	stam-internal
	stamLeaf-class
	stamNet-class
	stam.net
	stamNode-class
	stamPrediction-class
	stam.predict
	stam.rgb.colors
	stam.serve
	stam.writeHTML
	Index

