simpleaffy

November 11, 2009

R topics documented:

all.present.in.group L. Lo e 2
all.present L e e e e e 2
DE.COITECE.SA .« v v v v v v e e e e e e e e e e e e e e e e e e e 3
callLeXPrsS e e e e 4
detection.p.val 5
eL.annotation e e e 6
getarray.indices L. L e 7
get.array.subset.affybatch oL oo 8
getarray.subset 9
get.fold.change.and.t.test L 9
blue.whitered.cols 10
hmap.eset e e e e e e e e 11
hmap.pe e e e 13
journalpng L L e 14
JUStMAS . L 15
PairComp-class e 16
PAIrWISE.COMPATISON . .+ « . v v v v v b e e et e e e e e e e e e 17
pairwisefilter 18
pPlot.pairwise.compariSOno e e e e e e e e e e 19
plot.qe.statso L e e e e e e e 20
ge.affy . . e e 22
gec.getalphal e 23
C.ZELAITAY .« « . v v v v e e e e e e e e e e e e e 24
gC.ZEL.PrODES e e e e 25
C.GEtratios e 26
ge.getspikes oL 27
qchaveparams Ll 28
C.OK . . o e 29
QC o o e e e e e 29
gereadfile. e e 30
QCStats-Class e e e e e e e 31
GOS o v v e e e e e e e 32
read.affymixed 33
readaffy L L 34
setQCEnvironment e e e e e e 35
simpleaffy-deprecated o 36
standard.pearsono ... L e e e e e e e e e e 37

2 all.present.in.group

trad.scatter.plot L e 38

Index 39

all.present.in.group
Filter by PMA call

Description

Filters an object by PMA calls. Must be called present in at leset 'no’ elements in at least one of the
replicate sets in the factor ’group’

Usage
all.present.in.group (x, group,members,calls,no = "all")

Arguments

X An object to filter

group The factor to filter by

members The members in the group to check. If null, checks all possible ones

calls A matrix of PMA calls

no How many in a row to pass the filter? If "all’ then all must be present
Value

A probesetid
Author(s)

Crispin J Miller
Examples

Not run:
all.present.in.group (eset,calls,"line",dim(calls) [2])

End (Not run)

all.present 3

all.present Filter by PMA call

Description

must be present in at least no arrays to be called present

Usage

all.present (x,calls,no = "all")

Arguments

X An object to filter
calls A matrix of PMA calls

no How many in a row to pass the filter? If ’all’ then all must be present

Value

A probesetid

Author(s)
Crispin J Miller

Examples

Not run:
all.present (eset,calls,dim(calls) [2])

End (Not run)

bg.correct.sa Simpleaffy Implementation of Mas5 Background Correction

Description
Implements the MASS5.0 background correction functions as described in Affy’s *Statistical Algo-
rithms Description Document’.

Usage

bg.correct.sa (unnormalised, grid=c (4, 4))

Arguments

unnormalised An unnormalised AffyBatch object

grid The dimensions of the grid to divide the chip into for background correction.

4 call.exprs

Value

An AffyBatch object

Author(s)
Crispin J Miller

References
http://bioinformatics.picr.man.ac.uk/http://www.affymetrix.com/support/
technical/technotes/statistical_reference_guide.pdf

See Also
http://www.affymetrix.com/support/technical/technotes/statistical_
reference_guide.pdf

Examples

Not run:
eset.bg.mas <- bg.correct.sa(eset);

End (Not run)

call.exprs Generate Expression Summaries for Affymetrix Data

Description

Generates expression summaries and normalizes Affymetrix data using either MAS5.0, GCRMA
or RMA algorithms.

Usage
call.exprs(x, algorithm = "rma", do.log = TRUE, sc = 100, method = NA)
Arguments
x an Af fyBatch object
algorithm one of *"rma","rma-R","gcrma", "mas5", "mas5-R". "rma" and "mas5" make
use of a native C-library and are faster than "rma-R" and "mas5-R".
do.log return logged data if true
sc if the mas5 algorithm is being used, sets the target intensity to which the chips
should be scaled.
method The algorithm used to normalise the data. Has no effect for "rma", defaults to
quantile normalisation for "rma" and no normalisation for "mas5"
Value

An AffyBatch object containing expression summaries.

http://bioinformatics.picr.man.ac.uk/
http://www.affymetrix.com/support/technical/technotes/statistical_reference_guide.pdf
http://www.affymetrix.com/support/technical/technotes/statistical_reference_guide.pdf
http://www.affymetrix.com/support/technical/technotes/statistical_reference_guide.pdf
http://www.affymetrix.com/support/technical/technotes/statistical_reference_guide.pdf

detection.p.val 5

Author(s)
Crispin J Miller

References

http://bioinformatics.picr.man.ac.uk/

See Also

read.affy, expresso, justRMA, justMAS

Examples

Not run:
eset.rma <- call.exprs(eset,"rma");
eset.mas5 <- call.exprs(eset, "mas5");

End (Not run)

detection.p.val Calculate Detection p-values

Description

Calculate MASS detection pvalues and Present Marginal Absent calls. This is an implementation
based on the algorithm described in Liu, Mei et al. (2002) ’Analysis of high density expression
microarrays with signed-rank call algorithms’, Bioinformatics 18(12) pp1593-1599.

Usage

detection.p.val (x, tau = NULL,calls=TRUE, alphal=NULL,alpha2=NULL, ignore.saturate

Arguments
X An unnormalised AffyBatch object
tau Errrmmm... tau
alphal Present-Marginal threshold
alpha?2 Marginal-Absent threshold
calls if true, generate PMA calls

ignore.saturated
if true do the saturation correction described in the paper, with a saturation level

of 46000
Value
A list:
pval A matrix of detection p values

call A matrix of PMA calls

http://bioinformatics.picr.man.ac.uk/

6 get.annotation

Note

alphal and alpha2 are parameters that change according to the chip type you are using. If they are
not specified, the function uses the current QC environment to find them, and attempts to set one up
if it is not there. This is done with an internal call to the function setQCEnvironment. Ifitis
unable to find the appropriate config files, this will cause an error. See set QCEnvironment for
more details.

Author(s)

Crispin J Miller

References

http://bioinformatics.picr.man.ac.uk/

See Also

setQCEnvironment

Examples

Not run:
dpv <- detection.p.val (eset);

End (Not run)

get.annotation Get annotation data for a gene list

Description

Takes a vector of probeset names and a CDF name. Produces a table of annotations, containing gene
name, description, sequence accession number and unigene accession number for each probeset. In
addition, write.annotation is a utility function that outputs the annotation data in a form suitable
for loading into excel and results.summary takes the outut of pairwise.comparison or pairwise.filter
and spits out a table with the means of the replicates the fold-change between them (log2) and t-test
p-values. This is followed by a table of annotation (produced by get.annotation).

Usage

get.annotation (x, cdfname,verbose=FALSE)
write.annotation (summary, file="results/annotation.table.xls")
results.summary (results, cdfname)

Arguments
X a vector of probe names
cdfname the name of the chip (as produced by cdfName(AffyBatch)
verbose print out information if problems are found looking things up in the annotation

data

summary a table of data to write in a format appropriate to read into Excel

get.array.indices 7

file a table delimited file
results a PairComp object, as produced by pairwise.comparison and pairwise.filter
Value

A table containing annotation data

Author(s)
Crispin J Miller

References

http://bioinformatics.picr.man.ac.uk/

Examples

Not run:

pw <- pairwise.comparison (eset.rma, "group",c("A","P"))
pw.filtered <- pairwise.filter (pw)
summary <- results.summary (pw.filtered, "hgul33a")

write.annotation(file="spreadsheet.x1ls", summary)

End (Not run)

get.array.indices Find arrays in an AffyBatch object defined by their phenoData

Description

Given an AffyBatch object, looks at its phenoData slot to find the factor, or column specified

by ’group’ and searches that column for entries supplied in 'members’. Returns the indices of
these rows. For example, in a six chip AffyBatch object, x, with a column ’treatment’ containing
et 120t)t2° acallto get . array . indices (x, \"treatment\", c (\"c\",\"t1\"))
would return ¢(1,2,3,5).

Usage

get.array.indices (x,group, members)

Arguments
x An ExpressionSet or AffyBatch object.
group The name of the pData column to use.
members The labels within the pData column to match against.
Author(s)

Crispin J Miller

8 get.array.subset.affybatch

Examples

Not run:
indices3 <- get.array.indices (eset.rma, "group","A")

End (Not run)

get.array.subset.affybatch
Get a subset of arrays from an affybatch object, split by phnotypic data

Description
Looks at a factor in the phenotypic data for an Af fyBatch or ExpressionSet object and uses
it to select a subset of arrays, as defined by "'members’.

Usage

get.array.subset.affybatch(x, group, members)
get.array.subset.exprset (x, group, members)

Arguments
be An AffyBatch or ExpressionSet object.
group The name of the pData column to use.
members The labels within the pData column to match against.
Details

Subsetting an Af fyBat ch object by array is achieved using [x,], while the same is achieved for
an ExpressionSet by [, x]. Hence the two different functions. In general the generic method
get.array.subset should be used - since it sorts this all out automatically.

Value

An AffyBatch or ExpressionSet (as appropriate) containing the selected subset of chips.

Author(s)
Crispin J Miller

Examples

Not run:
subsetl <- get.array.subset.affybatch(eset.rma, "group", "A")
subset2 <- get.array.subset.exprset (eset.rma, "group",c("A","P"))
subset3 <- get.array.subset (eset.rma, "group", "A")

End (Not run)

get.array.subset 9

get.array.subset Get a subset of arrays from an affybatch object, split by phnotypic data

Description
Looks at a factor in the phenotypic data for an Af fyBatch or ExpressionSet object and uses
it to select a subset of arrays, as defined by “members’.

Usage

get.array.subset (x,group, members)

Arguments

be An ExpressionSet or Af fyBatch object.
group The name of the pData column to use.

members The labels within the pData column to match against.

Author(s)
Crispin J Miller

See Also

get.array.subset.affybatchget.array.subset.exprset

Examples

Not run:
subsetl <- get.array.subset.affybatch(eset.rma, "group", "A")
subset2 <- get.array.subset.exprset (eset.rma, "group",c("A","P"))
subset3 <- get.array.subset (eset.rma, "group","A")

End (Not run)

get.fold.change.and.t.test

Compute fold change and t-test statistics between two experimental
groups

Description

Generate fold changes (and possibly means) for a pair of experimental groups

Usage

get.fold.change.and.t.test (x,group,members, logged = TRUE, a.order=NULL,b.order=

10 blue.white.red.cols
Arguments
X an ExpressionSet object.
group column in pData(x).
members labels in group.
logged is the AffyBatch data logged?
a.order For a pairwise comparison the ordering of the first group of replicates
b.order For a pairwise comparison the ordering of the second group of replicates
method What method should be used to calculate the average for the fold-change - can
be either "logged","unlogged","median’
Details
Given an ExpressionSet object, generate quick stats for pairwise comparisons between a pair of ex-
perimental groups. If a.order and b.order are specified then a paired sample t-test will be conducted
between the groups, with the arrays in each group sorted according to the ordering specified.
The fold-changes are computed from the average values across replicates. By default this is done
using the mean of the unlogged values. The parameter, method allows the mean of the logged values
or the median to be used instead. T-tests are always computed with the logged data.
Value
An object of class PairComp
Author(s)
Crispin J Miller
References
http://bioinformatics.picr.man.ac.uk/
Examples

Not run:

pc <- get.fold.change.and.t.test (eset.rma, "group",c("A","P"))

End (Not run)

blue.white.red.cols
Generate colourings for heatmaps

Description

Produces standard colourings for heatmaps.

Usage

blue.white.red.cols (x)
red.black.green.cols (x)
red.yellow.white.cols (x)

hmap.eset 11

Arguments

X How many colours to make

Value

A vector of colors

Author(s)
Crispin J Miller

See Also

hmap hmap.eset hmap.pc

Examples

Not run:
cols <- blue.white.red.cols(21)

End (Not run)

hmap.eset Draw a heatmap from an AffyBatch object

Description

Given either an Af fyBatch draw a heatmap.

Usage

hmap.eset (x, probesets, samples=1:1length (sampleNames (x)), scluster=standard.pearson

Arguments
X The Af fyBatch object to get the expression data from
probesets What probesets to plot, defaults to all of them
samples Which samples to plot
scluster The function to use to cluster the samples by. Can also be a dendrogram object.
pcluster The function to use to cluster the probesets by. Can also be a dendrogram object.
slabs Labels for the sample axis
plabs Labels for the probeset axis defaults to geneNames(x)
col Vector of colour values to use (see below)
min.val The minimum intensity to plot
max.val The maximum intensity to plot
scale Scale each gene’s clouring based on standard deviation (See below)
spread If the data is scaled, how many standard deviations (or fold changes) either way

should we show. If no scaling, then does nothing

12 hmap.eset

by.fc If the data is scaled, scale by s.d. or by fold.change?

sdev A vector of standard deviaitions for each gene to be plotted. If no value is
supplied these are worked out from the data.

show.legend Draw a scale on the graph and show the title if supplied

title The title of the graph
cex Character expansion
Details

Takes an Af fyBatch object and plots a heatmap. At its simplest, all that is required is an Affy-
Batch object (as calculated by call.exprs) and a vector supplying the probesets to plot. These
can be specified by name, as an integer index or as a vector of TRUEs and FALSES. The function
will try to do something sensible with the labels. If it fails you will need to specify this with plabs.
The function will then draw a heatmap, coloured blue-white-red in increasing intensity, scaled so
that 100

Col can be used to change the colouring. "bwr" specifies blue-white-red, "rbg" specifies red-black-
green, and "ryw" specifies red-yellow-white. Alternatively, a vector of arbitrary colours can be
supplied (try rainbow (21), for example).

The clustering method can also be changed by supplying, either, a function that takes a matrix of
expression values and returns an hclust or dendrogram object, or alternatively, an hclust or
dendrogram object itself. Setting either of these to NULL will stop the heatmap being clustered
on that axis.

Scaling is somewhat more complex. If scale is TRUE, then each gene is coloured independently,
on a scale based on its standard deviation. By default this is calculated for the samples that are
being plotted, unless a value is supplied for sdev — in which case this should be a vector of standard
deviations, one for each probeset being plotted (and in the same order). This scaling is done after the
clustering. For more details on how all of this works see the website http://bioinf.picr.
man.ac.uk/simpleaffy and also look at hmap . pc which uses the scaling to plot transcripts
identified as being differentially expressed.
Value

Returns an (invisible) list containing the dendrograms used for samples and probesets

Author(s)
Crispin J Miller

See Also

hmap.pcblue.white.red.cols standard.pearson
Examples
Not run:

eset.mas <- call.exprs(eset,"masb")
hmap.eset (eset.mas,1:100,1:6,col="rbg")

End (Not run)

http://bioinf.picr.man.ac.uk/simpleaffy
http://bioinf.picr.man.ac.uk/simpleaffy

hmap.pc 13

hmap.pc Draw a heatmap from an PairComp object

Description

Given either a PairComp object draw a heatmap.

Usage

hmap.pc (x,eset, samples=rownames (pData (x)), scluster=standard.pearson, pcluster=sta

Arguments

x The PairComp object to get the probeset list (and other data) from

eset The Af fyBatch object containing expression data

samples Which samples to plot — defaults to those used to calculate ’x’, but can be any
of the samples in eset

scluster The function to use to cluster the samples by. Can also be a dendrogram object.

pcluster The function to use to cluster the probesets by. Can also be a dendrogram object.

slabs Labels for the sample axis

plabs Labels for the probeset axis

col Vector of colour values to use (see below)

scale Scale each gene’s clouring based on standard deviation (See below)

spread If the data is scaled, how many standard deviations (or fold changes) either way
should we show. If no scaling, then does nothing

by.fc If the data is scaled, do it by fold change?

ap The column in the expression set’s pData object used to select the samples to
plot. By default this is the one used to calculate x.

mbrs The members of the "group’ column that we wish to plot. By default these are

the pair used to calculate x. If "all’ is supplied then all samples are used.

show.legend Draw a scale on the graph and show the title if supplied

title The title of the graph
cex Character expansion
Details

Takes a PairComp object and an Af fyBatch object and plots a heatmap. At its simplest, all that
is required are these two objects. The function will then draw a heatmap, coloured red-black-green
in increasing intensity, scaled for each gene based on standard deviation. The legend shows how
these colours translate into intensity.

Col can be used to change the colouring. "bwr" specifies blue-white-red, "rbg" specifies red-black-
green, and "ryw" specifies red-yellow-white. Alternatively, a vector of arbitrary colours can be
supplied (try rainbow (21), for example).

Scaling is somewhat complex. If scale is TRUE, then each gene is coloured independently, on a
scale based on its standard deviation. This is calculated as follows: ’group’ supplies a column in
the pData object of ’eset’ that is used to collect samples together (generally as replicate groups).

14 journalpng

’members’ supplies the entries within this column that are to be used. (Unless specified, the function
uses the same value for group’ and members’ used to calculate the PairComp object). The function
uses these data to calculate the standard deviation for each probeset within each set of replicates,
and then calculates the average sd for each gene. This is then used to scale the data so that each
probeset is plotted on a scale that shows the number of standard deviations away from the mean it
is for that sample. For more details on how all of this works see the website http://bioinf.
picr.man.ac.uk/simpleaffy.

Alternatively, by setting by.fc to FALSE, scaling can be done simply in terms of fold-change, in
which case, spread defines the maximum and minimum fold changes to show.

Value

Returns an (invisible) list containing the dendrograms used for samples and probesets

Author(s)
Crispin J Miller

See Also

hmap.eset blue.white.red.cols standard.pearson

Examples

Not run:
pc <- pairwise.comparison (eset.mas,group="group",members=c("a","b"), spots=eset)
pf <- pairwise.filter (pc)
hmap.pc (pf, eset.mas)

End(Not run)

journalpng Produce a device for producing artwork for presentations and journals

Description

journalpng generates a device to print a 4 x 4 inch 300 dpi figure (by default). screenpng does the
same, but 72dpi.

Usage

journalpng (file="figure.png",width=4, height=4, res=300)
screenpng (file="figure.png",width=4, height=4,res=72)

Arguments
file the file to write the figure to
width the width of the figure
height its height

res resolution in dots-per-inch

http://bioinf.picr.man.ac.uk/simpleaffy
http://bioinf.picr.man.ac.uk/simpleaffy

JjustMAS 15

Value

A table containing annotation data

Author(s)
Crispin J Miller

References

http://bioinformatics.picr.man.ac.uk/

Examples

Not run:
journalpng (file="results/figurel.png"); # starts a new device
trad.scatter.plot (exprs(eset) [,1],exprs (eset) [,2])
dev.off (); # writes the file at this point.

End (Not run)

justMAS Generate Expression calls using a C implementation of the MAS 5.0
Algorithm

Description

Implements the MASS5.0 background correction, expression summary and scaling functions as de-
scribed in Affy’s ’Statistical Algorithms Description Document’

Usage

JustMAS (unnormalised, tgt=100, scale=TRUE)

Arguments

unnormalised An unnormalised AffyBatch object

tgt The target intensity to scale array to, if scaling.
scale Scale the data to the specified target intensity.
Details

Uses a C code implementation of the MASS5.0 algorithm (As described in Affymetrix’s ’Statisti-
cal Algorithms Reference Guide’ - see http://www.affymetrix.com, and in Hubbell et al.
(2002) Robust Estimators for expression analysis. Bioinformatics 18(12) 1585-1592). Note that
this function returns log2 data.

Value

An AffyBatch object, with, in addition, scale-factors for each array stored in the object’s description@preprocess
slot, and the target intensity the arrays were scaled toin description@preprocessing@tgt

http://www.affymetrix.com

16 PairComp-class

Author(s)
Crispin J Miller

References

http://bioinformatics.picr.man.ac.uk/

See Also
http://www.affymetrix.com/support/technical/technotes/statistical_

reference_guide.pdf

Examples

Not run:
eset.mas <- JjustMAS (eset.mas);

End (Not run)

PairComp-class Class "PairComp" Represents the results of pairwise comparison be-
tween two experimental factors

Description

Holds fold-change, ttest p-score and detection p-value calls(if used) between a pair of experimental
factors.

Slots

means: Object of class "matrix" Mean values for each of the experimental factors.

fc: Object of class "numeric" Fold change between the means.

tt: Object of class "numeric" P-score between the factors.

calls: Object of class "matrix" Detection p-values for each probeset on each array.
group: Object of class "character" The name of the factor that was compared.
members: Object of class "character" A list containing the two levels compared between.
pData: Object of class "pData" The phenoData for the members that were compared.

calculated. from: Object of class "ExpressionSet" The original expression set that was
being compared.

Methods

[signature(x = "PairComp"): getthe values for the specified gene(s).
[<- signature (x = "PairComp"): not supported.

calls signature (object = "PairComp"): the detection.p.values.

fc signature (object = "PairComp"): the fold-changes.

group signature (object = "PairComp"): the name of the group that was compared.

 http://bioinformatics.picr.man.ac.uk/
http://www.affymetrix.com/support/technical/technotes/statistical_reference_guide.pdf
http://www.affymetrix.com/support/technical/technotes/statistical_reference_guide.pdf

pairwise.comparison 17

means signature (object = "PairComp"): the means of the two experimental factors
that were compared.

members signature (object = "PairComp"): the members of that group that were com-
pared.
pairwise.filter signature (object = "PairComp"): Take a PairComp object and filter

it to yield probesets that pass the specified criteria.

tt signature (object = "PairComp"): the results of a ttest between groups.
pData signature (object = "pData"): The phenoData from the members that were com-
pared.
calculated.from signature (object = "ExpressionSet"): The original expression set.
Author(s)
Crispin Miller

pairwise.comparison
Compute pairwise comparison statistics between two experimental
groups

Description

Generate fold changes, t-tests and means for a pair of experimental groups

Usage

pairwise.comparison (x, group, members=NULL, spots=NULL, a.order=NULL, b.order=NULL,

Arguments

x an ExpressionSet object.

group column in pData(x).

members labels in group.

spots unnormalised AffyBatch data for this experiment - if included, results in PMA
calls and detection p-values being generated

a.order For a comparison with matched pairs, the ordering of the first group of replicates

b.order For a comparison with matched pairs, the ordering of the second group of repli-
cates

method What method should be used to calculate the average for the fold-change - can

be either "logged","unlogged"," median"

logged Whether the input data is logged or not

18 pairwise.filter

Details

Given an ExpressionSet object, generate quick stats for pairwise comparisons between a pair of ex-
perimental groups. If a.order and b.order are specified then a paired sample t-test will be conducted
between the groups, with the arrays in each group sorted according to the ordering specified. By
default, the function assumes that the expression values are logged (this can be changed with the
parameter "logged"). The fold-changes are computed from the average values across replicates.
Unless you specify otherwise, this is done using the mean of the unlogged values (i.e. logged data
is first unlogged, the mean calculated, and the result re-logged). The parameter "method", allows
the mean of the logged values or their median to be used instead. T-tests are always computed with
the logged data.

Value

A Pairwise comparison object.

Author(s)
Crispin J Miller

References

http://bioinformatics.picr.man.ac.uk/

Examples

Not run:
pc <- pairwise.comparison (eset.rma, "group",c("A","P"))

End (Not run)

pairwise.filter Filter pairwise comparison statistics between two experimental groups

Description

Given the results of a pairwise.comparison, filter the resulting gene list on expression level, PMA
calls (if available), fold change and t-test statistic.

min.exp and min.exp.no allow the data to be filtered on intensity (where min.exp.no specifies the
minimum number of arrays that must be above the threshold *min.exp’ to be allowed through the
filter).

PMA filtering is done when min.present.number is greater than 0.

min.present.no allows arrays to be filtered by PMA call. A number or *all’ must be specified. If a
number, then the at least this many arrays must be called present, if ’all’, then all arrays must be
called present.

present.by.group specifies whether PMA filtering is to be done on a per-group basis or for all arrays
at once. If ’false’ then the experiment is treated as a single group (i.e. a probeset passes the filter if
it is called present on at least min.present.number arrays in the whole experiment. If ’true’ then it
must be called present on at least this many arrays in one or more groups. See the vignette for more
details.

plot.pairwise.comparison 19

Usage

pairwise.filter (object,min.exp=10g2 (100),min.exp.no=0,min.present.no=0, present

Arguments
object a ’PairComp’ object
min.exp Filter genes using a minimum expression cut off

min.exp.no A gene must have an expression intensity greater than 'min.exp’ in at least this
number of chips

min.present.no
A gene must be called present on at least this number of chips

present .by.group
If true, then the probeset must be called Present on at least min.present.number
arrays in any of the replicate sets used to generate the PairComp object being
filtered. If false, then must be called present on at least min.present.no of the
arrays in the whole experiment

fc A gene must show a log2 fold change greater than this to be called significant
tt A gene must be changing with a p-score less than this to be called significant
Value

A ’PairComp’ object filtered to contain only the genes that pass the specified filter parameters.

Author(s)
Crispin J Miller

References

http://bioinformatics.picr.man.ac.uk/

Examples

Not run:
pc <- pairwise.comparison (eset.rma, "group",c("A","P"))
pf <- pairwise.filter (pc,tt=0.01);

End(Not run)

plot.pairwise.comparison
Plots a PairComp object

Description
Draws a scatter plot between means from a pairwise comparison. Colours according to PMA calls
and identifies ’signficant’ genes yielded by a filtering

Usage

plot.pairwise.comparison (x, y=NULL, labels=colnames (means (x)), showPMA=TRUE, type="s

20 plot.qc.stats

Arguments
x A PairComp object
% A PairComp object
labels A list containing x and y axis labels
showPMA True if PMA calls are to be identified
type Can be ’scatter’, 'ma’ or ’volcano’

Additional arguments to plot
Details

Takes a PairComp object (as produced by pairwise.comparison and plots a scatter plot be-
tween the sample means. If PMA calls are present in the calls slot of the object then it uses them
to colour the points. Present on all arrays: red; absent on all arrays: yellow; present in all some ar-
rays; orange. In addition, if a second PairComp object is supplied, it identifies spots in that object,
by drawing them as black circles. This allows, for example, the results of a pairwise.filter
to be plotted on the same graph.

If type is ’scatter’ does a simple scatter plot. If type is "volcano’ does a volcano plot. If type is 'ma’
does an MA plot.

Author(s)

Crispin J Miller

See Also

pairwise.comparisonpairwise.filter trad.scatter.plot

Examples

Not run:
pc <- pairwise.comparison (eset.mas,group="group",members=c("a","b"), spots=eset)
pf <- pairwise.filter (pc)
plot (pc, pf)

End (Not run)

plot.gc.stats Plots a QCStats object

Description

Generates a visual summary of the various QC statistics recommended by Affymetrix in their *Data
Analysis Fundamentals’ handbook.

plot.qc.stats 21

Arguments

X A QCStats object
fc.line.col The colour to mark fold change lines with

sf.ok.region The colour to mark the region in which scale factors lie within appropriate

bounds
chip.label.col

The colour to label the chips with
sf.thresh Scale factors must be within this fold-range
gdh.thresh Gapdh ratios must be within this range

ba.thresh beta actin must be within this range
present.thresh
The percentage of genes called present must lie within this range

bg.thresh Array backgrounds must lie within this range

label What to call the chips

main The title for the plot

usemid If true use 3’/M ratios for the GAPDH and beta actin probes

cex Value to scale character size by (e.g. 0.5 means that the text should be plotted
half size)

Other parameters to pass through to plot

Details

A lot of information is presented in this one figure. By default, each array is represented by a
seperate line in the figure. The central vertical line corresponds to 0 fold change, the dotted lines
on either side correspond to 3 fold up and down regulation. The blue bar represents the region in
which all arrays have scale factors within, by default, three-fold of each other. Its position is found
by calculating the mean scale factor for all chips and placing the center of the region such that the
borders are -1.5 fold up or down from the mean value.

Each array is plotted as a line from the 0-fold line to the point that corresponds to its scale factor.
If the ends of all of the lines are in the blue region, their scale-factors are compatible. The lines are
coloured blue if OK, red if not.

The figure also shows GAPDH and beta-actin 3°/5’ ratios. These are represented as a pair of points
for each chip. Affy state that beta actin should be within 3, gapdh around 1. Any that fall outside
these thresholds (1.25 for gapdh) are coloured red; the rest are blue.

Written along the left hand side of the figure are the number of genes called present on each array
and the average background. These will vary according to the samples being processed, and Affy’s
QC suggests simply that they should be similar. If any chips have significantly different values this
is flagged in red, otherwise the numbers are displayed in blue. By default, ’significant’ means that
%-present are within 10% of each other; background intensity, 20 units. These last numbers are
somewhat arbitrary and may need some tweaking to find values that suit the samples you’re dealing
with, and the overall nature of your setup.

Finally, if BioB is not present on a chip, this will be flagged by printing *BioB’ in red.
In short, everything in the figure should be blue - red highlights a problem!

Usage

plot.qc.stats(x, fc.line.col = "black", sf.ok.region = "light blue", chip.label.col = "black", sf.thresh
= 3, gdh.thresh = 1.25, ba.thresh = 3, present.thresh = 10, bg.thresh = 20, label = NULL, title="QC
Stats",spread=c(-8,8),usemid=F,type="1",cex=1, ...)

22 gc.affy

Author(s)
Crispin J Miller

See Also
qc

Examples

data (gcs)
plot (gcs)

qc.affy Generate Affymetrix Style QC Statistics

Description

Generate QC data for Affymetrix arrays

Usage
gc.affy(unnormalised, normalised=NULL,tau=0.015, logged=TRUE,
cdfn=cdfName (unnormalised))
Arguments

unnormalised An unnormalised raw Af fyBatch object to call qc stats on

normalised The same one, processed using justMAS (contains scale factors etc.). If not
supplied, then the object gets calculated internally.

tau used by detection p value
logged True if the data is logged
cdfn The cdf name for the array - can be used to specify a different set of probes to
the default
Details

Affymetrix recommend a series of QC metrics that should be used to check that arrays have hy-
bridised correctly and that sample quality is acceptable. These are discussed in the document *QC

and Affymetrix data’ accompanying this package, and on the web at http://bioinformatics.picr.man.ac.uk.
They are described in detail in the *Expression Analysis Fundamentals’ manual available from
Affymetrix.

This function takes an (unnormalised) AffyBatch object, and (optionally) an ExprSet, with MAS
expression calls produced by call.exprs and generates QC metrics. If the MAS calls are not
supplied these are claculated internally.

Value

A QCStats object describing the supplied Af fyBatch

gc.get.alphal 23

Author(s)
Crispin J Miller

Examples

Not run:
gcs <- dc (eset)

End (Not run)
data (gcs)
ratios (gcs)
avbg (gcs)
maxbg (gcs)
minbg (gcs)
spikeInProbes (gcs)
qcProbes (gcs)
percent.present (gcs)
plot (gcs)
sfs(gcs)
target (gcs)
ratios (gcs)

gc.get.alphal Get or set the alpha values for the current QC environment

Description

Alphal and Alpha2 are used to define the P/M/A thresholds for detection calling algorithm see -
detection.p.val. These are array dependent, these functions set or get their values. Tau is a
constant parameter within the calculation and is not array specific.

Usage
)

value)

)

value)

gc.get.alphal
gc.set.alphal
gc.get.alpha?
gc.set.alpha?2
gc.get.tau()

—~ o~ o~ —~

Arguments

value A double representing the alphal or alpha2 threshold for defining detection calls.
See detection.p.val for more details.

Value

gc.set.alphalandgc.set.alpha? returnnothing. gc.get.alphal andgc.get.alpha2
return a double.

Author(s)
Crispin J Miller

24 gc.get.array

References

http://bioinformatics.picr.man.ac.uk/

See Also

detection.p.val

Examples

setQCEnvironment ("hgul33plus2cdf")
gc.get.alphal ()
gc.get.alpha2

0
gc.set.alphal (0.05)
gc.get.alphal ()
gc.set.alpha2 (0.05)
gc.get.alpha2 ()
gc.get.array Get or set the name of the array for which the current QC environ-
ment is valid. Currently not used for anything important; is a free text
identifier.

Description

The array name is simply a free text name for the array of interest.

Usage

gc.get.array ()
gc.set.array (name)

Arguments

name a free text name for the array of interest

Value

a string

Author(s)
Crispin J Miller

References

http://bioinformatics.picr.man.ac.uk/

See Also

setQCEnvironment

http://bioinformatics.picr.man.ac.uk/

gc.get.probes 25

Examples

gc.set.array ("plus2")
gc.get.array ()

gc.get.probes Retrieve QC probeset names for the current array type

Description

Get the names of probesets used to calculate 3°/5’ ratios for the current array type. qc.get . spikes
is used to set the spike probe names (i.e. bioB, bioC, etc.)

Usage

gc.get .probes ()
gc.get .probe (name)
gc.add.probe (name, probeset)

Arguments
name A name for the given probeset. By default, this is the probeset identifier
probeset A probeset ID

Value

A character array of probeset IDs, or the requested probeset ID, as appropriate.

Author(s)
Crispin J Miller

References

http://bioinformatics.picr.man.ac.uk/

See Also

setQCEnvironment gc.get.spikes

Examples

setQCEnvironment ("hgul33plus2cdf")

qc.get.probes ()

gc.add.probe ("my.name", "a.probesetid_at")
gc.add.probe ("another.name", "another.probesetid_at")
qc.get.probes ()

26 gc.get.ratios

gc.get.ratios Retrieve pairs of probesets used for calculating 3°/5’ ratios

Description

Get the names of the qc probesets used to define the 3°/5’ ratios.

Usage

gc.get.ratios ()
gc.get.ratio (name)
gc.add.ratio (name, probesetl, probeset?2)

Arguments

name A name for the given ratio calculation (such as gapdh3/5)
probesetl A probeset ID
probeset?2 A probeset ID

Value

A list, each element with a name like gapdh3/5 and comprising of a two-element character vector
of probeset IDs.

Author(s)

Crispin J Miller

References

http://bioinformatics.picr.man.ac.uk/

See Also

setQCEnvironment gc.get.probes

Examples

setQCEnvironment ("hgul33plus2cdf")

gc.get.ratios()

gc.add.ratio("a.name", "probesetl.id", "probeset2.id")
gc.get.ratio("a.name")

qc.get.spikes 27

gc.get.spikes Retrieve QC spike probeset names for the current array type

Description

Get the names of spike probesets for bioB, bioC, etc. ratios for the current array type. gc.get . probes
is used to define the 3°/5’ ratio probesets

Usage

gc.get.spikes ()
gc.get.spike (name)
gc.add.spike (name, probeset)

Arguments
name A name for the given probeset. By default, this is the probeset identifier
probeset A probeset ID

Value

A character array of probeset IDs, or the requested probeset ID, as appropriate.

Author(s)

Crispin J Miller

References

http://bioinformatics.picr.man.ac.uk/

See Also

setQCEnvironment gc.get.probes

Examples

gc.get.spikes ()

gc.add.spike ("my.name", "a.probesetid_at")
gc.add.spike ("another.name", "another.probesetid_at")
gc.get.spikes ()

28 gc.have.params

gc.have.params Does simpleaffy have a QC definition file for the specified array?

Description

Simpleaffy requires a definition file describing the qc probes, spikes, alpha values, etc. for the array
of interest. This is used to initialize the QC environment for the array (usually implicitly within the
gc function), by a call to set QCEnvironment. This function can be used to see if the specified
array has a definition file.

Usage

gc.have.params (name)

Arguments
name The ’clean’ CDF name of the array (i.e. the result of calling cleancdfname
on the cdfName of the Af fyBat ch object containing the array data of interest.
Value

True or False

Author(s)

Crispin J Miller

References

http://bioinformatics.picr.man.ac.uk/

See Also

setQCEnvironment gc gqc.ok cdfName cleancdfname

Examples

gc.have.params ("nosucharraycdf")
gc.have.params ("hgul33plus2cdf")
setQCEnvironment ("hgul33plus2cdf")
gc.have.params (cleancdfname ("HG-U133_Plus_2"))

gc.ok 29

gc.ok Has simpleaffy’s QC environment been set up?

Description

Simpleaffy requires a definition file describing the qc probes, spikes, alpha values, etc. for the array
of interest. This is used to initialize the QC environment for the array (usually implicitly within
the gc function), by a call to setQCEnvironment. This function can be used to check if the qc
environment has been set up for the current session

Usage
gc.ok ()

Value

True or False

Author(s)
Crispin J Miller

References

http://bioinformatics.picr.man.ac.uk/

See Also

setQCEnvironment gc gqc.have.params cdfName

Examples
qgc.ok ()
setQCEnvironment ("hgul33plus2cdf")
qgc.ok ()
qc Generate QC stats from an AffyBatch object
Description

Generate QC metrix for Affymetrix data.

Usage

gc (unnormalised, ...)

Arguments

unnormalised An AffyBatch object with nowt done to it

Any other parameters

30 qc.read.file

Details

Affymetrix recommend a series of QC metrics that should be used to check that arrays have hy-
bridised correctly and that sample quality is acceptable. These are discussed in the document *QC

and Affymetrix data’ accompanying this package, and on the web at http://bioinformatics.picr.man.ac.uk.
They are described in detail in the *Expression Analysis Fundamentals’ manual available from
Affymetrix.

Before using this function you are strongly encouraged to read the *QC and Affymetrix data’ docu-
ment, which contains detailed examples.

This function takes an Af fyBatch object and generates a QCStat s object containing a set of QC
metrics. See gc . af fy for more details.

Author(s)
Crispin J Miller

See Also

gc.affy setQCEnvironment

Examples

Not run:
gcs <- gc (eset,eset.mas)

End (Not run)
data (gcs)
ratios (gcs)
avbg (gcs)
maxbg (gcs)
minbg (gcs)
spikeInProbes (gcs)
qcProbes (gcs)
percent.present (gcs)
plot (gcs)
sfs(gcs)
target (gcs)
ratios (gcs)

gc.read.file Read a file defining the QC parameters for a specified array and set
up the QC Environment

Description

Affymetrix define a series of QC parameters for their arrays. Many of these rely on specific probeset
that differ between arrays and are used to calculate things like 3°/5’ ratios. See gc . af fy for more
details. This is usually done by a call to setQCEnvironment; the function described here is the
one that does the actual loading of the configuration file. See the package vignette for details of the
config file’s syntax.

QCStats-class 31

Usage

gc

.read.file (fn)

Arguments

fn

Value

none.

Author(s)

full path and name of the file to load

Crispin J Miller

References

http://bioinformatics.picr.man.ac.uk/

See Also

setQCEnvironment

Examples

fn

qc.
qc.
qc.
qc.

<- system.file ("extdata", "hgul33plus2cdf.qgcdef",package="simpleaffy")
read.file (fn)

get.spikes()

get .probes ()

get.ratios ()

QCStats-class Class "QCStats"

Description

Holds Quality Control data for a set of Affymetrix arrays

Objects from the Class

Objects can be created by calls of the form gc (AffyBatch).

Slots

scale. factors: Object of class "numeric" Scale factors used to scale the chips to the spec-
ified target intensity

target: Object of class "numeric" The target intensity to which the chips were scaled

percent .present: Object of class "numeric" Number of genes called present

average .background: Object of class "numeric" The average background for the arrays

minimum.background: Object of class "numeric" The minimum background for the arrays

maximum.background: Objectof class "numeric" The maximum background for the arrays

32 qcs

spikes: Object of class "1ist" spiked in probes (e.g. biob, bioc...)
gc.probes: Object of class "1ist" qc probes (e.g. gapdh 3,5,M,...)
arrayType: The cdfName of the Af fyBatch object used to create the object

Methods
avbg signature (object = "QCStats"): average background
maxbg signature (object = "QCStats"): maximum background
minbg signature (object = "QCStats"): minimum background
spikeInProbes signature (object = "QCStats"): the spike-in QC probes
qcProbes signature (object = "QCStats"): the gapdh and actin QC probes
percent.present signature (object = "QCStats"): no probesets called present
plot signature(x = "QCStats"): Plota QCStats object
sfs signature (object = "QCStats"): scale factors
target signature (object = "QCStats"): target scaling
ratios signature (object = "QCStats"): 5’3’ and 5’M ratios for QC Probes
arrayType signature (object = "QCStats"): The type of array for which this QC stats

object was generated

Author(s)
Crispin J Miller

See Also

gc

gcs an example QC Stats object

Description
This datasets gives sample qc data for 25 array hgul33a comparison between two cell lines (MCF7
and MCF10A) and a variety of protocols.

Usage

qcs

Format

a QCStats object

Examples

data (gcs)
plot (gcs)

read.affy.mixed 33

read.affy.mixed Read a Set of .CEL Files and Phenotypic Data from mixed chip types

Description

Reads the specified file, which defines phenotypic data for a set of .CEL files. Reads the specified
files into an Af fyBatch object and then creates a phenoData object, defining the experimental
factors for those chips. This function deals with different array types by generating a pseudo arrayset
containing only the probes in common. It does this by finding the smallest chip type in the set, and
using this as a template. Probesets that aren’t shared are set to 0. Other probesets are copied in.
Note that this means that spots that were in one place on one array, appear to be at a different place
on another. What this does to position specific background correction algorithms (such as mas5) is
left as an exercise to the reader). Beware...

Usage
read.affy.mixed (covdesc = "covdesc",path=".", ...)
Arguments
covdesc A white space delimited file suitable for reading as a data. frame. The first
column (with no column name) contains the names(or paths to) the .CEL files to
read. Remaining columns (with names) represent experimental factors for each
chip. these become elements of the phenoData object.
extra functions to pass on to ReadAffy
path The path to prefix the filenames with before calling ReadAffy
Value
An AffyBatch object
Author(s)
Crispin J Miller
References

http://bioinformatics.picr.man.ac.uk/

See Also

ReadAffy,AffyBatch data.frame phenoData

Examples

Not run:
eset <- read.affy.mixed(); # read a set of CEL files

eset.rma <- call.exprs(eset,"rma");

End (Not run)

 http://bioinformatics.picr.man.ac.uk/

34 read.affy

read.affy Read a Set of .CEL Files and Phenotypic Data

Description

Reads the specified file, which defines phenotypic data for a set of .CEL files. Reads the specified
files into an Af fyBat ch object and then creates a phenoData object, defining the experimental
factors for those chips.

Usage
read.affy(covdesc = "covdesc",path=".", ...)
Arguments
covdesc A white space delimited file suitable for reading as a data . frame. The first
column (with no column name) contains the names(or paths to) the .CEL files to
read. Remaining columns (with names) represent experimental factors for each
chip. these become elements of the phenoData object.
extra functions to pass on to ReadAffy
path The path to prefix the filenames with before calling ReadAffy
Value
An AffyBatch object
Author(s)
Crispin J Miller
References

http://bioinformatics.picr.man.ac.uk/

See Also

ReadAffy,AffyBatch data.frame phenoData

Examples

Not run:
eset <- read.affy(); # read a set of CEL files
eset.rma <- call.exprs(eset,"rma");

End (Not run)

 http://bioinformatics.picr.man.ac.uk/

setQCEnvironment 35

setQCEnvironment Establish the appropriate QC environment for the specified array

Description

Affymetrix define a series of QC parameters for their arrays. Many of these rely on specific probeset
that differ between arrays and are used to calculate things like 3°/5’ ratios. See gc . af £y for more
details. These functions are used to set up the appropriate QC environment for the specified array.
This is done by loading a configuration file, either from the packages data directory, or from the
specified path. See the package vignette for details of the config file’s syntax.

Usage

setQCEnvironment (array, path=NULL)

Arguments
array This should be the *clean’ cdf name of the array as generated by cleancdfname
in the affy package.
path Path to the file. By default, checks the package’s own data directory - only
needed if a defininition file is being specified manually, as described in the vi-
gnette.
Details

The usual way to get the ’clean’ cdfname is as follows: cleancdfname (cdfName (eset)),
where eset is an Af fyBatch object.

Value

none.

Author(s)
Crispin J Miller

References

http://bioinformatics.picr.man.ac.uk/
See Also
gc

Examples

setQCEnvironment ("hgul33plus2cdf")
setQCEnvironment (cleancdfname ("HG-U133_Plus_2"))

36

simpleafty-deprecated

simpleaffy-deprecated
Does simpleaffy have a QC definition file for the specified array?

Description

The underlying implementation of simpleaffy has changed significantly and it now represents QC
parameters differently. In particular, it loads only the QC data for the specified array type. A call to
any of these functions loads the appropriate environment specifed by name. They therefore been

deprecated and WILL disappear from simpleaffy in the future.

Usage

getTao (name)

getAlphal (name
getAlpha?2 (name
getActin3 (name
getActinM (name
getActinb5 (name
getGapdh3 (name
getGapdhM (name
getGapdhb (name

~ e~ o~~~ —~
~— e e e e o~

getAllQCProbes (name)

getBioB (name)
getBioC (name)
getBioD (name)
getCreX (name)

getAllSpikeProbes (name)
haveQCParams (name)

Arguments

name

Details

The ’clean” CDF name of the array (i.e. the result of calling cleancdfname

on the cdfName of the AffyBatch object containing the array data of interest.

Each of these functions has been replaced by a new function of the form gc.get.. In order
to support ratios other than gapdh and beta-actin, the appropriate way to get ratios is now to use
gc.get.ratios, which will return a table containing all suggested ratio calculations for the
array. Similarly, gc . get . spikes will return a table containing all spike probesets for the array.

Author(s)

Crispin J Miller

References

http://bioinformatics.picr.man.ac.uk/

standard.pearson 37

See Also

setQCEnvironment qc gc.ok cdfName cleancdfname qc.get.ratios gc.get.spikes
gc.get .probes

Examples

#o0ld

getBioB ("hgul33plus2cdf")
getActin3 ("hgul33plus2cdf")
getActinM ("hgul33plus2cdf")
getActin5 ("hgul33plus2cdf")

#new
setQCEnvironment ("hgul33plus2cdf")
gc.get.spikes () ["bioB"]

r <- gc.get.probes/()
r["actin3"]
r["actinM"]
r["actinb"]

standard.pearson A clustering function based on pearson correlation

Description

Given a matrix of values, uses hclust and cor to generate a clustering based on 1-Pearson correlation

Usage
standard.pearson (x)
Arguments
x A matrix of data
Value

The result of performing an hclust

Author(s)
Crispin J Miller

See Also

hmap hmap.eset hmap.pc

Examples

Not run:
y <- standard.pearson (x)

End (Not run)

38 trad.scatter.plot

trad.scatter.plot Does a Traditional Scatter Plot of Expression Data

Description

Plots expression data as a scatter plot with optional fold-change lines

Usage

trad.scatter.plot (x, y, add = FALSE, fc.lines = log2(c (2, 4,

Arguments
X x coords
v y coords
add add this data to an existing graph
fc.lines Vector of intervals at which to draw fold-change lines

draw.fc.lines
Draw fold change lines?
draw.fc.line.labels
Label the fold change lines with the fold changes they represent?

fc.line.col The colour to draw fold change lines

pch Plotting character to use for the scatter data (see plot for more details)
x1lim Range for the xaxis
ylim Range for the yaxis

Additional parameters to pass through to the underlying plot function

Author(s)
Crispin J Miller

References

http://bioinformatics.picr.man.ac.uk/

See Also

plot

Examples

Not run:
trad.scatter.plot (exprs(eset.rma) [,1],exprs(eset.rma) [, 4])

End (Not run)

6,

8)),

draw.fc.lin

Index

*Topic classes
PairComp-class, 15
QCStats-class, 30

xTopic datasets
qcs, 31

*Topic misc
all.present,?2
all.present.in.group, 1
bg.correct.sa,?2
blue.white.red.cols,9
call.exprs,3
detection.p.val,4
get.annotation,5
get.array.indices, 6
get.array.subset, 8
get.array.subset.affybatch,7
get.fold.change.and.t.test,8
hmap.eset, 10
hmap.pc, 12
journalpng, 13
justMAS, 14
pairwise.comparison, 16
pairwise.filter, 17
plot.pairwise.comparison, 18
plot.gc.stats, 19

qc, 28

gc.affy,21
gc.get.alphal, 22
gc.get.array, 23

gc.get .probes, 24
gc.get.ratios,25
gc.get.spikes, 26
gc.have.params, 27
gqc.ok, 28
gqc.read.file, 29
read.affy, 33
read.affy.mixed, 32
setQCEnvironment, 34
simpleaffy-deprecated, 35
standard.pearson, 36
trad.scatter.plot, 37
[,PairComp-method
(PairComp-class), 15

39

[<—,PairComp-method
(PairComp-class), 15

AffyBatch, 21, 29-34

all.present, 2

all.present.in.group, 1

arrayType (QCStats-class), 30

arrayType, QCStats-method
(0CStats—-class), 30

arrayType-method (QCStats—class),
30

avbg (QCStats—-class), 30

avbg, QCStats-method
(0CStats—-class), 30

avbg-method (QCStats—-class), 30

bg.correct.sa,?2
blue.white.red.cols, 9,11, 13

calculated.from(PairComp-class),
15
calculated.from,PairComp-method
(PairComp-class), 15
call.exprs,3,11,21
calls (PairComp-class), 15
calls,PairComp-method
(PairComp-class), 15
cdfName, 27, 28, 31, 35, 36
cleancdfname, 27, 34-36

data.frame, 32, 33
detection.p.val,4,?22, 23

expresso, 4

fc (PairComp-class), 15
fc,PairComp-method
(PairComp-class), 15

.annotation,5

.array.indices,6

.array.indices,AffyBatch-method
(get.array.indices), 6

.array.indices, ExpressionSet-method
(get.array.indices), 6

get
get
get

get

40

get.array.subset, 7,8

get.array.subset, AffyBatch-method

(get.array.subset), 8

INDEX

maxbg (QCStats—-class), 30
maxbg, QCStats-method
(0CStats—-class), 30

get.array.subset, ExpressionSet-method maxbg-method (Q0CStats-class), 30

(get.array.subset), 8
get.array.subset.affybatch,7,8
get.array.subset.exprset,§
get.array.subset.exprset

(get.array.subset.affybatch),

7
get.fold.change.and.t.test,§
getActin3

(simpleaffy-deprecated), 35
getActinb

(simpleaffy-deprecated), 35
getActinM

(simpleaffy-deprecated), 35
getAllQCProbes

(simpleaffy-deprecated), 35
getAllSpikeProbes

(simpleaffy-deprecated), 35
getAlphal

(simpleaffy—-deprecated), 35
getAlpha?2

(simpleaffy-deprecated), 35
getBioB (simpleaffy-deprecated),

35
getBioC (simpleaffy—-deprecated),

35
getBioD (simpleaffy-deprecated),

35
getCreX (simpleaffy-deprecated),

35
getGapdh3

(simpleaffy-deprecated), 35
getGapdhb5

(simpleaffy—-deprecated), 35
getGapdhM

(simpleaffy—-deprecated), 35
getTao (simpleaffy-deprecated), 35
group (PairComp-class), 15
group, PairComp-method

(PairComp-class), 15

haveQCParams
(simpleaffy-deprecated), 35

hmap.eset, 10, 13

hmap.pc, 11,12

journalpng, 13
justMAS, 4, 14, 21
justRMA, 4

means (PairComp-class), 15
means,PairComp-method
(PairComp-class), 15
members (PairComp-class), 15
members, PairComp-method
(PairComp—-class), 15
minbg (QCStats—-class), 30
minbg, QCStats—-method
(0CStats—-class), 30
minbg-method (QCStats-class), 30

PairComp-class, 15
pairwise.comparison, 16, 19
pairwise.filter, 17,19
pairwise.filter,PairComp-method
(PairComp—-class), 15
pData (PairComp—-class), 15
pData,PairComp-method
(PairComp-class), 15
percent.present (QCStats-class),
30
percent.present,QCStats—method
(oCcStats—-class), 30
percent .present-method
(oCStats—-class), 30
phenoData, 32, 33
plot, 37
plot,PairComp
(plot.pairwise.comparison),
18
plot,PairComp, ANY-method
(PairComp-class), 15
plot,PairComp, missing—-method
(PairComp—-class), 15
plot,PairComp, PairComp-method
(PairComp-class), 15
plot,PairComp-method
(plot.pairwise.comparison),
18
plot,QCStats (plot.qgc.stats), 19
plot,QCStats, ANY-method
(oCStats—-class), 30
plot,QCStats,missing-method
(plot.gc.stats), 19
plot.pairwise.comparison, 18
plot.gc.stats, 19

qc, 21, 27,28, 28, 31, 34, 36
qc,AffyBatch-method (qgc), 28

INDEX

gc.add.probe (gc.get.probes), 24

gc.add.ratio(gc.get.ratios), 25

gc.add.spike (gc.get.spikes), 26

gc.affy, 21,29

gc.get.alphal, 22

gqc.get.alpha2 (gc.get.alphal), 22

qc.get.array, 23

gc.get.probe (gc.get.probes), 24

qc.get.probes, 24, 25, 26, 36

gc.get.ratio(gc.get.ratios), 25

gc.get.ratios,25, 35, 36

gc.get.spike (gc.get.spikes), 26

gc.get.spikes, 24, 26, 35, 36

gc.get.tau(gc.get.alphal), 22

gc.have.params, 27, 28

gc.ok, 27,28, 36

gc.read.file, 29

gc.set.alphal (gc.get.alphal), 22

qc.set.alpha2 (gc.get.alphal), 22

qc.set.array (gc.get.array), 23

qcProbes (QCStats—-class), 30

gcProbes, QCStats—-method
(oCStats—-class), 30

gqcProbes-method (QCStats-class),
30

gcs, 31

QCStats, 29

QCStats-class, 30

ratios (QCStats—class), 30
ratios, QCStats-method
(0CStats—-class), 30
ratios—method (QCStats-class), 30
read.affy,4,33
read.affy.mixed, 32
ReadAffy, 32, 33
red.black.green.cols
(blue.white.red.cols),9
red.yellow.white.cols
(blue.white.red.cols),9
results.summary (get.annotation),

5

screenpng (journalpng), 13
setQCEnvironment, 5, 23-30, 34, 36
sfs (QCStats-class), 30
sfs,QCStats—-method
(0CStats—-class), 30
sfs-method (QCStats—-class), 30
simpleaffy-deprecated, 35
spikeInProbes (QCStats-class), 30
spikeInProbes, QCStats-method
(oCStats—-class), 30

41

spikeInProbes-method
(0CStats—-class), 30
standard.pearson, 11, 13, 36

target (QCStats-class), 30

target,QCStats-method
(ocStats—-class), 30

target-method (QCStats—-class), 30

trad.scatter.plot, 19,37

tt (PairComp-class), 15

tt,PairComp-method
(PairComp-class), 15

write.annotation
(get.annotation),5

	all.present.in.group
	all.present
	bg.correct.sa
	call.exprs
	detection.p.val
	get.annotation
	get.array.indices
	get.array.subset.affybatch
	get.array.subset
	get.fold.change.and.t.test
	blue.white.red.cols
	hmap.eset
	hmap.pc
	journalpng
	justMAS
	PairComp-class
	pairwise.comparison
	pairwise.filter
	plot.pairwise.comparison
	plot.qc.stats
	qc.affy
	qc.get.alpha1
	qc.get.array
	qc.get.probes
	qc.get.ratios
	qc.get.spikes
	qc.have.params
	qc.ok
	qc
	qc.read.file
	QCStats-class
	qcs
	read.affy.mixed
	read.affy
	setQCEnvironment
	simpleaffy-deprecated
	standard.pearson
	trad.scatter.plot
	Index

