
logicFS
November 11, 2009

R topics documented:
data.logicfs . 1
getMatEval . 2
logic.bagging . 2
logicFS-internal . 6
logicFS . 6
logic.oob . 9
logic.pimp . 10
make.snp.dummy . 11
minDNF . 12
mlogreg . 12
plot.logicFS . 14
predict.logicBagg . 16
predict.mlogreg . 17
print.logicFS . 17
vim.chisq . 18
vim.ebam . 19
vim.individual . 21
vim.logicFS . 22
vim.norm . 24
vim.set . 25

Index 28

data.logicfs Example Data of logicFS

Description

data.logicfs contains two objects: a simulated matrix data.logicfs of 400 observations
(rows) and 15 variables (columns) and a vector cl.logicfs of length 400 containing the class
labels of the observations.

Each variable is categorical with realizations 1, 2 and 3. The first 200 observations are cases,
the remaining are controls. If one of the following expression is TRUE, then the corresponding
observation is a case:

SNP1 == 3

1

2 getMatEval

SNP2 == 1 AND SNP4 == 3

SNP3 == 3 AND SNP5 == 3 AND SNP6 == 1

where SNP1 is in the first column of data.logicfs, SNP2 in the second, and so on.

See Also

logic.bagging, logicFS

getMatEval Evaluate Prime Implicants

Description

Computes the values of prime implicants for observations for which the values of the variables
composing the prime implicants are available.

Usage

getMatEval(data, vec.primes, check = TRUE)

Arguments

data a data frame in which each row corrsponds to an observation, and each column
to a binary variable.

vec.primes a character vector naming the prime implicants that should be evaluated. Each
of the variables composing these prime implicants must be represented by one
column of data.

check should some checks be done before the evaluation is performed? It is highly
recommended not to change the default check = TRUE.

Value

a matrix in which each row corresponds to an observation (the same observations in the same order
as in data, and each column to one of the prime implicants.

Author(s)

Holger Schwender, 〈holger.schwender@udo.edu〉

logic.bagging 3

logic.bagging Bagged Logic Regression

Description

A bagging and subsampling version of logic regression. Currently available for the classification,
the linear regression, and the logistic regression approach of logreg. Additionally, an approach
based on multinomial logistic regressions as implemented in mlogreg can be used if the response
is categorical.

Usage

S3 method for class 'formula':
logic.bagging(formula, data, recdom = TRUE, ...)

Default S3 method:
logic.bagging(x, y, B = 100, useN = TRUE, ntrees = 1, nleaves = 8,

glm.if.1tree = FALSE, replace = TRUE, sub.frac = 0.632,
anneal.control = logreg.anneal.control(), oob = TRUE,
onlyRemove = FALSE, prob.case = 0.5, importance = TRUE,
addMatImp = FALSE, fast = FALSE, rand = NULL, ...)

Arguments

formula an object of class formula describing the model that should be fitted.

data a data frame containing the variables in the model. Each row of data must cor-
respond to an observation, and each column to a binary variable (coded by 0 and
1) or a factor (for details, see recdom) except for the column comprising the
response. The response must be either binary (coded by 0 and 1), categorical
or continuous. If continuous, a linear model is fitted in each of the B itera-
tions of logic.bagging. If categorical, the column of data specifying the
response must be a factor. In this case, multinomial logic regressions are per-
formed as implemented in mlogreg. Otherwise, depending on ntrees (and
glm.if.1tree) the classification or the logistic regression approach of logic
regression is used.

recdom a logical value or vector of length ncol(data) comprising whether a SNP
should be transformed into two binary dummy variables coding for a reces-
sive and a dominant effect. If TRUE (logical value), then all factors (vari-
ables) with three levels will be coded by two dummy variables as described in
make.snp.dummy. Each level of each of the other factors (also factors speci-
fying a SNP that shows only two genotypes) is coded by one indicator variable.
If FALSE (logical value), each level of each factor is coded by an indicator vari-
able. If recdom is a logical vector, all factors corresponding to an entry in
recdom that is TRUE are assumed to be SNPs and transformed into the two
binary variables described above. Each variable that corresponds to an entry of
recdom that is TRUE (no matter whether recdom is a vector or a value) must
be coded by the integers 1 (coding for the homozygous reference genotype), 2
(heterozygous), and 3 (homozygous variant).

x a matrix consisting of 0’s and 1’s. Each column must correspond to a binary
variable and each row to an observation.

4 logic.bagging

y a numeric vector or a factor specifying the values of a response for all the ob-
servations represented in x. If a numeric vector, then y either contains the class
labels (coded by 0 and 1) or the values of a continuous response depending on
whether the classification or logistic regression approach of logic regression, or
the linear regression approach, respectively, should be used. If the response is
categorical, then y must be a factor naming the class labels of the observations.

B an integer specifying the number of iterations.

useN logical specifying if the number of correctly classified out-of-bag observations
should be used in the computation of the importance measure. If FALSE, the
proportion of correctly classified oob observations is used instead. Ignored if
importance = FALSE.

ntrees an integer indicating how many trees should be used.
For a binary response: If ntrees is larger than 1, the logistic regression ap-
proach of logic regreesion will be used. If ntrees is 1, then by default the
classification approach of logic regression will be used (see glm.if.1tree.)
For a continuous response: A linear regression model with ntrees trees is
fitted in each of the B iterations.
For a categorical response: n.lev − 1 logic regression models with ntrees
trees are fitted, where n.lev is the number of levels of the response (for details,
see mlogreg).

nleaves a numeric value specifying the maximum number of leaves used in all trees com-
bined. See the help page of the function logreg of the package LogicReg
for details.

glm.if.1tree if ntrees is 1 and glm.if.1tree is TRUE the logistic regression approach
of logic regression is used instead of the classification approach. Ignored if
ntrees is not 1 or the response is not binary.

replace should sampling of the cases be done with replacement? If TRUE, a bootstrap
sample of size length(cl) is drawn from the length(cl) observations in
each of the B iterations. If FALSE, ceiling(sub.frac * length(cl))
of the observations are drawn without replacement in each iteration.

sub.frac a proportion specifying the fraction of the observations that are used in each iter-
ation to build a classification rule if replace = FALSE. Ignored if replace
= TRUE.

anneal.control
a list containing the parameters for simulated annealing. See the help page of
logreg.anneal.control in the LogicReg package.

oob should the out-of-bag error rate (classification and logistic regression) or the
out-of-bag root mean square prediction error (linear regression), respectively,
be computed?

onlyRemove should in the single tree case the multiple tree measure be used? If TRUE, the
prime implicants are only removed from the trees when determining the im-
portance in the single tree case. If FALSE, the original single tree measure is
computed for each prime implicant, i.e. a prime implicant is not only removed
from the trees in which it is contained, but also added to the trees that do not
contain this interaction. Ignored in all other than the classification case.

prob.case a numeric value between 0 and 1. If the outcome of the logistic regression,
i.e. the class probability, for an observation is larger than prob.case, this
observations will be classified as case (or 1).

importance should the measure of importance be computed?

logic.bagging 5

addMatImp should the matrix containing the improvements due to the prime implicants in
each of the iterations be added to the output? (For each of the prime implicants,
the importance is computed by the average over the B improvements.) Must be
set to TRUE, if standardized importances should be computed using vim.norm,
or if permutation based importances should be computed using vim.perm.

fast should a greedy search (as implemented in logreg) be used instead of simu-
lated annealing?

rand numeric value. If specified, the random number generator will be set into a
reproducible state.

... for the formula method, optional parameters to be passed to the low level
function logic.bagging.default. Otherwise, ignored.

Value

logic.bagging returns an object of class logicBagg containing

logreg.model a list containing the B logic regression models,

inbagg a list specifying the B Bootstrap samples,

vim an object of class logicFS (if importance = TRUE),

oob.error the out-of-bag error (if oob = TRUE),

... further parameters of the logic regression.

Author(s)

Holger Schwender, 〈holger.schwender@udo.edu〉

References

Ruczinski, I., Kooperberg, C., LeBlanc M.L. (2003). Logic Regression. Journal of Computational
and Graphical Statistics, 12, 475-511.

Schwender, H., Ickstadt, K. (2007). Identification of SNP Interactions Using Logic Regression.
Biostatistics, 9(1), 187-198.

See Also

predict.logicBagg, plot.logicBagg, logicFS

Examples

Not run:
Load data.
data(data.logicfs)

For logic regression and hence logic.bagging, the variables must
be binary. data.logicfs, however, contains categorical data
with realizations 1, 2 and 3. Such data can be transformed
into binary data by
bin.snps<-make.snp.dummy(data.logicfs)

To speed up the search for the best logic regression models
only a small number of iterations is used in simulated annealing.
my.anneal<-logreg.anneal.control(start=2,end=-2,iter=10000)

6 logicFS

Bagged logic regression is then performed by
bagg.out<-logic.bagging(bin.snps,cl.logicfs,B=20,nleaves=10,

rand=123,anneal.control=my.anneal)

The output of logic.bagging can be printed
bagg.out

By default, also the importances of the interactions are
computed
bagg.out$vim

and can be plotted.
plot(bagg.out)

The original variable names are displayed in
plot(bagg.out,coded=FALSE)

New observations (here we assume that these observations are
in data.logicfs) are assigned to one of the classes by
predict(bagg.out,data.logicfs)

End(Not run)

logicFS-internal Internal logicFS functions

Description

Internal logicFS functions.

Details

These functions are not meant to be directly called by the user.

Author(s)

Holger Schwender, 〈holger.schwender@udo.edu〉

logicFS Feature Selection with Logic Regression

Description

Identification of interesting interactions between binary variables using logic regression. Currently
available for the classification, the linear regression and the logistic regression approach of logreg
and for a multinomial logic regression as implemented in mlogreg.

logicFS 7

Usage

S3 method for class 'formula':
logicFS(formula, data, recdom = TRUE, ...)

Default S3 method:
logicFS(x, y, B = 100, useN = TRUE, ntrees = 1, nleaves = 8,

glm.if.1tree = FALSE, replace = TRUE, sub.frac = 0.632,
anneal.control = logreg.anneal.control(), onlyRemove = FALSE,
prob.case = 0.5, addMatImp = TRUE, fast = FALSE, rand = NULL, ...)

Arguments

formula an object of class formula describing the model that should be fitted.
data a data frame containing the variables in the model. Each row of data must

correspond to an observation, and each column to a binary variable (coded by 0
and 1) or a factor (for details, see recdom) except for the column comprising
the response. The response must be either binary (coded by 0 and 1), categorical
or continuous. If continuous, a linear model is fitted in each of the B iterations of
logicFS. If categorical, the column of data specifying the response must be a
factor. In this case, multinomial logic regressions are performed as implemented
in mlogreg. Otherwise, depending on ntrees (and glm.if.1tree) the
classification or the logistic regression approach of logic regression is used.

recdom a logical value or vector of length ncol(data) comprising whether a SNP
should be transformed into two binary dummy variables coding for a reces-
sive and a dominant effect. If TRUE (logical value), then all factors (vari-
ables) with three levels will be coded by two dummy variables as described in
make.snp.dummy. Each level of each of the other factors (also factors speci-
fying a SNP that shows only two genotypes) is coded by one indicator variable.
If FALSE (logical value), each level of each factor is coded by an indicator vari-
able. If recdom is a logical vector, all factors corresponding to an entry in
recdom that is TRUE are assumed to be SNPs and transformed into the two
binary variables described above. Each variable that corresponds to an entry of
recdom that is TRUE (no matter whether recdom is a vector or a value) must
be coded by the integers 1 (coding for the homozygous reference genotype), 2
(heterozygous), and 3 (homozygous variant).

x a matrix consisting of 0’s and 1’s. Each column must correspond to a binary
variable and each row to an observation.

y a numeric vector or a factor specifying the values of a response for all the ob-
servations represented in x. If a numeric vector, then y either contains the class
labels (coded by 0 and 1) or the values of a continuous response depending on
whether the classification or logistic regression approach of logic regression, or
the linear regression approach, respectively, should be used. If the response is
categorical, then y must be a factor naming the class labels of the observations.

B an integer specifying the number of iterations.
useN logical specifying if the number of correctly classified out-of-bag observations

should be used in the computation of the importance measure. If FALSE, the
proportion of correctly classified oob observations is used instead.

ntrees an integer indicating how many trees should be used.
For a binary response: If ntrees is larger than 1, the logistic regression ap-
proach of logic regreesion will be used. If ntrees is 1, then by default the
classification approach of logic regression will be used (see glm.if.1tree.)

8 logicFS

For a continuous response: A linear regression model with ntrees trees is
fitted in each of the B iterations.
For a categorical response: n.lev − 1 logic regression models with ntrees
trees are fitted, where n.lev is the number of levels of the response (for details,
see mlogreg).

nleaves a numeric value specifying the maximum number of leaves used in all trees
combined. For details, see the help page of the function logreg of the package
LogicReg.

glm.if.1tree if ntrees is 1 and glm.if.1tree is TRUE the logistic regression approach
of logic regression is used instead of the classification approach. Ignored if
ntrees is not 1, or the response is not binary.

replace should sampling of the cases be done with replacement? If TRUE, a Bootstrap
sample of size length(cl) is drawn from the length(cl) observations in
each of the B iterations. If FALSE, ceiling(sub.frac * length(cl))
of the observations are drawn without replacement in each iteration.

sub.frac a proportion specifying the fraction of the observations that are used in each iter-
ation to build a classification rule if replace = FALSE. Ignored if replace
= TRUE.

anneal.control
a list containing the parameters for simulated annealing. See the help of the
function logreg.anneal.control in the LogicReg package.

onlyRemove should in the single tree case the multiple tree measure be used? If TRUE, the
prime implicants are only removed from the trees when determining the im-
portance in the single tree case. If FALSE, the original single tree measure is
computed for each prime implicant, i.e. a prime implicant is not only removed
from the trees in which it is contained, but also added to the trees that do not
contain this interaction. Ignored in all other than the classification case.

prob.case a numeric value between 0 and 1. If the outcome of the logistic regression,
i.e. the predicted probability, for an observation is larger than prob.case this
observations will be classified as case (or 1).

addMatImp should the matrix containing the improvements due to the prime implicants in
each of the iterations be added to the output? (For each of the prime implicants,
the importance is computed by the average over the B improvements.) Must be
set to TRUE, if standardized importances should be computed using vim.norm,
or if permutation based importances should be computed using vim.perm.

fast should a greedy search (as implemented in logreg) be used instead of simu-
lated annealing?

rand numeric value. If specified, the random number generator will be set into a
reproducible state.

... for the formula method, optional parameters to be passed to the low level
function logicFS.default. Otherwise, ignored.

Value

An object of class logicFS containing

primes the prime implicants,

vim the importance of the prime implicants,

prop the proportion of logic regression models that contain the prime implicants,

logicFS 9

type the type of model (1: classification, 2: linear regression, 3: logistic regression),

param further parameters (if addInfo = TRUE),

mat.imp the matrix containing the improvements if addMatImp = TRUE, otherwise,
NULL,

measure the name of the used importance measure,

useN the value of useN,

threshold NULL,

mu NULL.

Author(s)

Holger Schwender, 〈holger.schwender@udo.edu〉

References

Ruczinski, I., Kooperberg, C., LeBlanc M.L. (2003). Logic Regression. Journal of Computational
and Graphical Statistics, 12, 475-511.

Schwender, H., Ickstadt, K. (2007). Identification of SNP Interactions Using Logic Regression.
Biostatistics, 9(1), 187-198.

See Also

plot.logicFS, logic.bagging

Examples

Not run:
Load data.
data(data.logicfs)

For logic regression and hence logic.fs, the variables must
be binary. data.logicfs, however, contains categorical data
with realizations 1, 2 and 3. Such data can be transformed
into binary data by
bin.snps<-make.snp.dummy(data.logicfs)

To speed up the search for the best logic regression models
only a small number of iterations is used in simulated annealing.
my.anneal<-logreg.anneal.control(start=2,end=-2,iter=10000)

Feature selection using logic regression is then done by
log.out<-logicFS(bin.snps,cl.logicfs,B=20,nleaves=10,

rand=123,anneal.control=my.anneal)

The output of logic.fs can be printed
log.out

One can specify another number of interactions that should be
printed, here, e.g., 15.
print(log.out,topX=15)

The variable importance can also be plotted.
plot(log.out)

10 logic.pimp

And the original variable names are displayed in
plot(log.out,coded=FALSE)

End(Not run)

logic.oob Prime Implicants

Description

Computes the out-of-bag error of the classification rule comprised by a logicBagg object.

Usage

logic.oob(log.out, prob.case = 0.5)

Arguments

log.out an object of class logicBagg, i.e. the output of logic.bagging.

prob.case a numeric value between 0 and 1. If the logic regression models are logistic
regression models, i.e. if in logic.bagging ntree is set to a value larger
than 1, or glm.if.1tree is set to TRUE, then an observation will be classified
as case (or more exactly, as 1) if the class probability is larger than prob.case.

Value

The out-of-bag error estimate.

Author(s)

Holger Schwender, 〈holger.schwender@udo.edu〉

See Also

logic.bagging

logic.pimp Prime Implicants

Description

Determines the prime implicants contained in the logic regression models comprised in an object
of class logicBagg.

Usage

logic.pimp(log.out)

Arguments

log.out an object of class logicBagg, i.e. the output of logic.bagging.

make.snp.dummy 11

Details

Since we are interested in all potentially interested interactions and not in a minimum set of them,
logic.pimp and returns all prime implicants and not a minimum number of them.

Value

A list consisting of the prime implicants for each of the B logic regression models of log.out.

Author(s)

Holger Schwender, 〈holger.schwender@udo.edu〉

See Also

logic.bagging, logicFS, prime.implicants

make.snp.dummy SNPs to Dummy Variables

Description

Transforms SNPs into binary dummy variables.

Usage

make.snp.dummy(data)

Arguments

data a matrix containing only 1’s, 2’s and 3’s (see details). Each column of data
corresponds to a SNP and each row to an observation.

Details

make.snp.dummy assumes that the homozygous dominant genotype is coded by 1, the heterozy-
gous genotype by 2, and the homozygous recessive genotype by 3. For each SNP, 2 dummy vari-
ables are generated:

SNP.1 At least one of the bases explaining the SNP are of the recessive type.

SNP.2 Both bases are of the recessive type.

Value

A matrix with 2*ncol(data) columns containing 2 dummy variables for each SNP.

Note

See the R package scrime for more general functions for recoding SNPs.

Author(s)

Holger Schwender, 〈holger.schwender@udo.edu〉

12 mlogreg

minDNF Minimum Disjunctive Normal Form

Description

Computes the prime implicants or the minimal disjuntive form, respectively, of a given truth table.

Usage

prime.implicants(mat)
minDNF(mat)

Arguments

mat a matrix containing only 0’s and 1’s. Each column of mat corresponds to a
binary variable and each row to a combination of the variables for which the
logic expression is TRUE.

Value

Either an object of class minDNF or of class primeImp. Both contain a vector of (a minimum
number of) prime implicants. The primeImp additionally contains the prime implicant table.

Author(s)

Holger Schwender, 〈holger.schwender@udo.edu〉

References

Schwender, H. (2007). Minimization of Boolean Expressions Using Matrix Algebra. Technical
Report, SFB 475, Department of Statistics, University of Dortmund.

See Also

logic.pimp

mlogreg Multinomial Logic Regression

Description

Performs a multinomial logic regression for a nominal response by fitting a logic regression model
(with logit as link function) for each of the levels of the response except for the level with the
smallest value which is used as reference category.

mlogreg 13

Usage

S3 method for class 'formula':
mlogreg(formula, data, recdom = TRUE, ...)

Default S3 method:
mlogreg(x, y, ntrees = 1, nleaves = 8, anneal.control = logreg.anneal.control(),

select = 1, rand = NA, ...)

Arguments

formula an object of class formula describing the model that should be fitted.

data a data frame containing the variables in the model. Each column of data must
correspond to a binary variable (coded by 0 and 1) or a factor (for details on
factors, see recdom) except for the column comprising the response, and each
row to an observation. The response must be a categorical variable with less
than 10 levels. This response can be either a factor or of type numeric or
character.

recdom a logical value or vector of length ncol(data) comprising whether a SNP
should be transformed into two binary dummy variables coding for a reces-
sive and a dominant effect. If TRUE (logical value), then all factors (vari-
ables) with three levels will be coded by two dummy variables as described in
make.snp.dummy. Each level of each of the other factors (also factors speci-
fying a SNP that shows only two genotypes) is coded by one indicator variable.
If FALSE (logical value), each level of each factor is coded by an indicator vari-
able. If recdom is a logical vector, all factors corresponding to an entry in
recdom that is TRUE are assumed to be SNPs and transformed into the two
binary variables described above. Each variable that corresponds to an entry of
recdom that is TRUE (no matter whether recdom is a vector or a value) must
be coded by the integers 1 (coding for the homozygous reference genotype), 2
(heterozygous), and 3 (homozygous variant).

x a matrix consisting of 0’s and 1’s. Each column must correspond to a binary
variable and each row to an observation.

y either a factor or a numeric or character vector specifying the values of the re-
sponse. The length of y must be equal to the number of rows of x.

ntrees an integer indicating how many trees should be used in the logic regression
models. For details, see logreg in the LogicReg package.

nleaves a numeric value specifying the maximum number of leaves used in all trees com-
bined. See the help page of the function logreg in the LogicReg package
for details.

anneal.control
a list containing the parameters for simulated annealing. For details, see the help
page of logreg.anneal.control in the LogicReg package.

select numeric value. Either 0 for a stepwise greedy selection (corresponds to select
= 6 in logreg) or 1 for simulated annealing.

rand numeric value. If specified, the random number generator will be set into a
reproducible state.

... for the formula method, optional parameters to be passed to the low level
function mlogreg.default. Otherwise, ignored.

14 plot.logicFS

Value

An object of class mlogreg composed of

model a list containing the logic regression models,

data a matrix containing the binary predictors,

cl a vector comprising the class labels,

ntrees a numeric value naming the maximum number of trees used in the logic regres-
sions,

nleaves a numeric value comprising the maximum number of leaves used in the logic
regressions,

fast a logical value specifying whether the faster search algorithm, i.e. the greedy
search, has been used.

Author(s)

Holger Schwender, 〈holger.schwender@udo.edu〉

References

Holger Schwender (2007). Measuring the Importances of Genotypes and Sets of Single Nucleotide
Polymorphisms. Technical Report, SFB 475, Department of Statistics, University of Dortmund.
Appears soon.

See Also

predict.mlogreg, logic.bagging, logicFS

plot.logicFS Variable Importance Plot

Description

Generates a dotchart of the importance of the most important interactions for an object of class
logicFS or logicBagg.

Usage

S3 method for class 'logicFS':
plot(x, topX = 15, cex = 0.9, pch = 16, col = 1, show.prop = FALSE,

force.topX = FALSE, coded = TRUE, add.thres = TRUE, thres = NULL,
include0 = TRUE, add.v0 = TRUE, v0.col = "grey50", main = NULL, ...)

S3 method for class 'logicBagg':
plot(x, topX = 15, cex = 0.9, pch = 16, col = 1, show.prop = FALSE,

force.topX = FALSE, coded = TRUE, include0 = TRUE, add.v0 = TRUE,
v0.col = "grey50", main = NULL, ...)

plot.logicFS 15

Arguments

x an object of either class logicFS or logicBagg.

topX integer specifying how many interactions should be shown. If topX is larger
than the number of interactions contained in x all the interactions are shown.
For further information, see force.topX.

cex a numeric value specifying the relative size of the text and symbols.

pch specifies the used symbol. See the help of par for details.

col the color of the text and the symbols. See the help of par for how colors can be
specified.

show.prop if TRUE the proportions of models that contain the interactions of interest are
shown. If FALSE (default) the importances of the interactions are shown.

force.topX if TRUE exactly topX interactions are shown. If FALSE (default) all interac-
tions up to the topXth most important one and all interactions having the same
importance as the topXth most important one are shown.

coded should the coded variable names be displayed? Might be useful if the actual
variable names are pretty long. The coded variable name of the j-th variable is
Xj.

add.thres should a vertical line marking the threshold for a prime implicant to be called
important be drawn in the plot? If TRUE, this vertical line will be drawn at
NULL.

thres non-negative numeric value specifying the threshold for a prime implicant to be
called important. If NULL and add.thres = TRUE, the suggested threshold
from x will be used.

include0 should the x-axis include zero regardless whether the importances of the shown
interactions are much higher than 0?

add.v0 should a vertical line be drawn at x = 0? Ignored if include0 = FALSE
and all importances are larger than zero.

v0.col the color of the vertical line at x = 0. See the help page of par for how colors
can be specified.

main character string naming the title of the plot. If NULL, the name of the importance
measure is used.

... Ignored.

Author(s)

Holger Schwender, 〈holger.schwender@udo.edu〉

See Also

logicFS, logic.bagging

16 predict.logicBagg

predict.logicBagg Predict Method for logicBagg objects

Description

Prediction for test data using an object of class logicBagg.

Usage

S3 method for class 'logicBagg':
predict(object, newData, prob.case = 0.5,

type = c("class", "prob"), ...)

Arguments

object an object of class logicBagg.

newData a matrix or data frame containing new data. If omitted object$data, i.e. the
original training data, are used. Each row of newData must correspond to a
new observation. Each row of newData must contain the same variable as the
corresponding column of the data matrix used in logic.bagging, i.e. x if
the default method of logic.bagging has been used, or data without the
column containing the response if the formula method has been used.

prob.case a numeric value between 0 and 1. A new observation will be classified as case
(or more exactly, as 1) if the class probability, i.e. the average of the predicted
probabilities of the models (if the logistic regression approach of logic regres-
sion has been used), or the percentage of votes for class 1 (if the classification
approach of logic regression has been used) is larger than prob.case. Ignored
if type = "prob" or the response is quantitative.

type character vector indicating the type of output. If "class", a numeric vector
of zeros and ones containing the predicted classes of the observations (using the
specification of prob.case) will be returned. If "prob", the class proba-
bilities or percentages of votes for class 1, respectively, for all observations are
returned. Ignored if the response is quantitative.

... Ignored.

Value

A numeric vector containing the predicted classes (if type = "class") or the class probabil-
ities (if type = "prob") of the new observations if the classification or the logistic regression
approach of logic regression is used. If the response is quantitative, the predicted value of the
response for all observations in the test data set is returned.

Author(s)

Holger Schwender, 〈holger.schwender@udo.edu〉

See Also

logic.bagging

predict.mlogreg 17

predict.mlogreg Predict Method for mlogreg Objects

Description

Prediction for test data using an object of class mlogreg.

Usage

S3 method for class 'mlogreg':
predict(object, newData, type = c("class", "prob"), ...)

Arguments

object an object of class mlogreg, i.e. the output of the function mlogreg.

newData a matrix or data frame containing new data. If omitted object$data, i.e. the
original training data, are used. Each row of newData must correspond to a
new observation. Each row of newData must contain the same variable as the
corresponding column of the data matrix used in mlogreg, i.e. x if the default
method of mlogreg has been used, or data without the column containing
the response if the formula method has been used.

type character vector indicating the type of output. If "class", a vector containing
the predicted classes of the observations will be returned. If "prob", the class
probabilities for each level and all observations are returned.

... Ignored.

Value

A numeric vector containing the predicted classes (if type = "class"), or a matrix composed
of the class probabilities (if type = "prob").

Author(s)

Holger Schwender, 〈holger.schwender@udo.edu〉

See Also

mlogreg

print.logicFS Print a logicFS object

Description

Prints an object of class logicFS.

Usage

S3 method for class 'logicFS':
print(x, topX = 5, show.prop = TRUE, coded = FALSE, digits = 2, ...)

18 vim.chisq

Arguments

x an object of either class logicFS.
topX integer indicating how many interactions should be shown. Additionally to the

topX most important interactions, any interaction having the same importance
as the topX most important one are also shown.

show.prop should the proportions of models containing the interactions of interest also be
shown?

coded should the coded variable names be displayed? Might be useful if the actual
variable names are pretty long. The coded variable name of the j-th variable is
Xj.

digits number of digits used in the output.
... Ignored.

Author(s)

Holger Schwender, 〈holger.schwender@udo.edu〉

See Also

logicFS, vim.logicFS

vim.chisq ChiSquare Based Importance

Description

Determining the importance of interactions found by logic.bagging or logicFS by Pearson’s
ChiSquare Statistic. Only available for the classification and the logistic regression approach of
logic regression.

Usage

vim.chisq(object, data = NULL, cl = NULL)

Arguments

object either an object of class logicFS or the output of an application of logic.bagging
with importance = TRUE.

data a data frame or matrix consisting of 0’s and 1’s in which each column corre-
sponds to one of the explanatory variables used in the original analysis with
logic.bagging or logicFS, and each row corresponds to an observation.
Must be specified if object is an object of class logicFS, or cl is speci-
fied. If object is an object of class logicBagg and neither data nor cl
is specified, data and cl stored in object is used to compute the ChiSquare
statistics. It is, however, highly recommended to use new data to test the inter-
actions contained in object, as they have been found using the data stored
in object, and it is very likely that most of them will show up as interesting if
they are tested on the same data set.

cl a numeric vector of 0’s and 1’s specifying the class labels of the observations in
data. Must be specified either if object is an object of class logicFS, or if
data is specified.

vim.ebam 19

Details

Currently Pearson’s ChiSquare statistic is computed without continuity correction.

Contrary to vim.logicFS (and vim.norm and vim.perm), vim.chisq does neither take the
logic regression models into acount nor uses the out-of-bag observations for computing the impor-
tances of the identified interactions. It "just" tests each of the found interactions on the whole data
set by calculating Pearson’s ChiSquare statistic for each of these interactions. It is, therefore, highly
recommended to use an independent data set for specifying the importances of these interactions
with vim.chisq.

Value

An object of class logicFS containing

primes the prime implicants

vim the values of Pearson’s ChiSquare statistic,

prop NULL,

type NULL,

param further parameters (if object is the output of logicFS or vim.logicFS
with addInfo = TRUE),

mat.imp NULL,

measure "ChiSquare Based",

threshold the 1 - 0.05/m quantile of the ChiSquare distribution with one degree of freedom,

mu NULL.

Author(s)

Holger Schwender, 〈holger.schwender@udo.edu〉

See Also

logic.bagging, logicFS, vim.logicFS, vim.norm, vim.ebam

vim.ebam EBAM Based Importance

Description

Determines the importance of interactions found by logic.bagging or logicFS by an Empir-
ical Bayes Analysis of Microarrays (EBAM). Only available for the classification and the logistic
regression approach of logic regression.

Usage

vim.ebam(object, data = NULL, cl = NULL, nameEBAM = NULL, ...)

20 vim.ebam

Arguments

object either an object of class logicFS or the output of an application of logic.bagging
with importance = TRUE.

data a data frame or matrix consisting of 0’s and 1’s in which each column corre-
sponds to one of the explanatory variables used in the original analysis with
logic.bagging or logicFS, and each row corresponds to an observation.
Must be specified if object is an object of class logicFS, or cl is speci-
fied. If object is an object of class logicBagg and neither data nor cl
is specified, data and cl stored in object is used to compute the ChiSquare
statistics. It is, however, highly recommended to use new data to test the inter-
actions contained in object, as they have been found using the data stored
in object, and it is very likely that most of them will show up as interesting if
they are tested on the same data set.

cl a numeric vector of 0’s and 1’s specifying the class labels of the observations in
data. Must be specified either if object is an object of class logicFS, or if
data is specified.

nameEBAM a character string. If specified, then the output of the EBAM analysis is stored
under this name in the global environment.

... further arguments of ebam and cat.ebam. For details, see the help files of
these functions from the package siggenes.

Details

For each interaction found by logic.bagging or logicFS, the posterior probability that this
interaction is significant is computed using the Empirical Bayes Analysis of Microarrays (EBAM).
These posterior probabilities are used as the EBAM based importances of the interactions.

The test statistic underlying this EBAM analysis is Pearson’s ChiSquare statistic. Currently, the
value of this statistic is computed without continuity correction.

Contrary to vim.logicFS (and vim.norm and vim.perm), vim.ebam does neither take the
logic regression models into acount nor uses the out-of-bag observations for computing the impor-
tances of the identified interactions. It "just" tests each of the found interactions on the whole data
set by calculating Pearson’s ChiSquare statistic for each of these interactions and performing an
EBAM analysis. It is, therefore, highly recommended to use an independent data set for specifying
the importances of these interactions with vim.ebam.

Value

An object of class logicFS containing

primes the prime implicants,
vim the posterior probabilities of the interactions,
prop NULL,
type NULL,
param further parameters (if object is the output of logicFS or vim.logicFS

with addInfo = TRUE),
mat.imp NULL,
measure "EBAM Based",
threshold the value of delta used in the EBAM analysis (see help files for ebam); by

default: 0.9,
mu NULL.

vim.individual 21

Author(s)

Holger Schwender, 〈holger.schwender@udo.edu〉

References

Schwender, H. and Ickstadt, K. (2008). Empirical Bayes Analysis of Single Nucleotide Polymor-
phisms. BMC Bioinformatics, 9:144.

See Also

logic.bagging, logicFS, vim.logicFS, vim.norm, vim.chisq

vim.individual VIM for Individual Variables

Description

Quantifies the importance of each individual variable occuring in at least one of the logic regression
models found in the application of logic.bagging.

Usage

vim.individual(object, useN = NULL, iter = NULL, prop = TRUE,
standardize = FALSE, mu = 0, addMatImp = FALSE, prob.case = 0.5,
rand = NA)

Arguments

object an object of class logicBagg, i.e. the output of logic.bagging
useN logical specifying if the number of correctly classified out-of-bag observations

should be used in the computation of the importance measure. If FALSE, the
proportion of correctly classified oob observations is used instead. If NULL
(default), then the specification of useN in object is used.

iter integer specifying the number of times the values of the considered variable are
permuted in the computation of its importance. If NULL (default), the values of
the variable are not permuted, but the variable is removed from the model.

prop should the proportion of logic regression models containing the respective vari-
able also be computed?

standardize should a standardized version of the individual variable importance measure be
returned? For details, see mu.

mu a non-negative numeric value. Ignored if standardize = FALSE. Other-
wise, a t-statistic for testing the null hypothesis that the importance of the re-
spective variable is equal to mu is computed.

addMatImp should the matrix containing the improvements due to each of the variables in
each of the logic regression models be added to the output?

prob.case a numeric value between 0 and 1. If the logistic regression approach of logic re-
gression has been used in logic.bagging, then an observation will be clas-
sified as a case (or more exactly, as 1), if the class probability of this observation
is larger than prob.case. Otherwise, prob.case is ignored.

rand an integer for setting the random number generator in a reproducible case.

22 vim.logicFS

Value

An object of class logicFS containing

vim the importances of the variables,

prop the proportion of logic regression models containing the respective variable (if
prop = TRUE) or NULL (if prop = FALSE),

primes the names of the variables,

type the type of model (1: classification, 2:linear regression, 3: logistic regression),

param further parameters (if addInfo = TRUE in the previous call of logic.bagging),

mat.imp either a matrix containing the improvements due to the variables for each of the
models (if addMatImp = TRUE), or NULL (if addMatImp = FALSE),

measure the name of the used importance measure,

useN the value of useN,

threshold NULL if standardize = FALSE, otherwise the 1− 0.05/m quantile of the
t-distribution with B−1 degrees of freedom, where m is the number of variables
and B is the number of logic regression models composing object,

mu mu (if standardize = TRUE), or NULL (otherwise),

iter iter.

Author(s)

Holger Schwender, 〈holger.schwender@udo.edu〉

References

Holger Schwender (2007). Measuring the Importances of Genotypes and Sets of Single Nucleotide
Polymorphisms. Technical Report, SFB 475, Department of Statistics, University of Dortmund.
Appears soon.

See Also

logic.bagging, logicFS, vim.logicFS, vim.set, vim.ebam, vim.chisq

vim.logicFS Importance Measures

Description

Computes the value of the single or the multiple tree measure, respectively, for each prime implicant
contained in a logic bagging model to specify the importance of the prime implicant for classifi-
cation, if the response is binary. If the response is quantitative, the importance is specified by a
measure based on the mean square prediction error.

Usage

vim.logicFS(log.out, useN = TRUE, onlyRemove = FALSE, prob.case = 0.5,
addInfo = FALSE, addMatImp = TRUE)

vim.logicFS 23

Arguments

log.out an object of class logicBagg, i.e. the output of logic.bagging.

useN logical specifying if the number of correctly classified out-of-bag observations
should be used in the computation of the importance measure. If FALSE, the
proportion of correctly classified oob observations is used instead.

onlyRemove should in the single tree case the multiple tree measure be used? If TRUE, the
prime implicants are only removed from the trees when determining the im-
portance in the single tree case. If FALSE, the original single tree measure is
computed for each prime implicant, i.e. a prime implicant is not only removed
from the trees in which it is contained, but also added to the trees that do not
contain this interaction. Ignored in all other than the classification case.

prob.case a numeric value between 0 and 1. If the logistic regression approach of logic re-
gression is used (i.e. if the response is binary, and in logic.bagging ntrees
is set to a value larger than 1, or glm.if.1tree is set to TRUE), then an ob-
servation will be classified as a case (or more exactly as 1), if the class prob-
ability of this observation estimated by the logic bagging model is larger than
prob.case.

addInfo should further information on the logic regression models be added?

addMatImp should the matrix containing the improvements due to the prime implicants in
each of the iterations be added to the output? (For each of the prime implicants,
the importance is computed by the average over the B improvements.) Must be
set to TRUE, if standardized importances should be computed using vim.norm,
or if permutation based importances should be computed using vim.perm.

Value

An object of class logicFS containing

primes the prime implicants,

vim the importance of the prime implicants,

prop the proportion of logic regression models containing the prime implicants,

type the type of model (1: classification, 2: linear regression, 3: logistic regression),

param further parameters (if addInfo = TRUE),

mat.imp the matrix containing the improvements if addMatImp = TRUE, otherwise,
NULL,

measure the name of the used importance measure,

useN the value of useN,

threshold NULL,

mu NULL.

Author(s)

Holger Schwender, 〈holger.schwender@udo.edu〉

References

Schwender, H., Ickstadt, K. (2007). Identification of SNP Interactions Using Logic Regression.
Biostatistics, doi:10.1093/biostatistics/kxm024.

24 vim.norm

See Also

logic.bagging, logicFS, vim.norm, vim.perm

vim.norm Standardized and Permutation Based Importance Measure

Description

Computes a standarized or a permutation based version of either the Single Tree Measure, the
Quantitative Response Measure, or the Multiple Tree Measure.

Usage

vim.norm(object, mu = 0)

vim.perm(object, mu = 0, n.perm = 10000, n.subset = 1000,
adjust = "bonferroni", rand = NA)

Arguments

object either the output of logicFS or vim.logicFSwith addMatImp = TRUE,
or the output of logic.baggingwith importance = TRUE and addMatImp
= TRUE.

mu a non-negative numeric value. Default is zero. However, mu should actually be
set to a value larger than zero. See Details.

n.perm the number of (sign) permutations used in vim.perm.

n.subset an integer specifying how many permutations should be considered at once.

adjust character vector naming the method with which the raw permutation based p-
values are adjusted for multiplicity. If "qvalue", the function qvalue.cal
from the package siggenes is used to compute q-values. Otherwise, p.adjust
is used to adjust for multiple comparisons. See p.adjust for all other possible
specifications of adjust. If "none", the raw p-values will be used. For more
details, see Details.

rand an integer for setting the random number generator in a reproducible case.

Details

In both vim.norm and vim.perm, an one-sample t-statistic is computed for each prime impli-
cant, where the numerator is given by V IM−mu with VIM being the single or the multiple tree
importance, and the denominator is the corresponding standard error computed by employing the B
improvements of the considered prime implicant in the B logic regression models. (Note that VIM
is the mean over these B improvements.)

As using mu = 0 might lead to calling a prime implicant important, even though it actually shows
only improvements of 1 or 0, mu should be set to a value larger than zero.

In vim.norm, the value of this t-statistic is returned as the standardized importance of a prime
implicant. The larger this value, the more important is the prime implicant. (This applies to all
importance measures – at least for those contained in this package.) Assuming normality, a possible
threshold for a prime implicant to be considered as important is the 1 − 0.05/m quantile of the t-
distribution with B − 1 degrees of freedom, where m is the number of prime implicants.

vim.set 25

In vim.perm, the sign permutation is used to determine n.perm permuted values of the one-
sample t-statistic, and to compute the raw p-values for each of the prime implicants. Afterwards,
these p-values are adjusted for multiple comparisons using the method specified by adjust. The
permutation based importance of a prime implicant is then given by 1− these adjusted p-values.
Here, a possible threshold for calling a prime implicant important is 0.95.

Value

An object of class logicFS containing

primes the prime implicants,

vim the respective importance of the prime implicants,

prop NULL,

type the type of model (1: classification, 2: linear regression, 3: logistic regression),

param further parameters (if addInfo = TRUE),

mat.imp NULL,

measure the name of the used importance measure,

useN the value of useN from the original analysis with, e.g., logicFS,

threshold the threshold suggested in Details,

mu mu.

Author(s)

Holger Schwender, 〈holger.schwender@udo.edu〉

References

Schwender, H. (2007). Statistical Analysis of Genotype and Gene Expression Data. Dissertation,
Department of Statistics, University of Dortmund, Dortmund, Germany.

See Also

logic.bagging, logicFS, vim.logicFS, vim.chisq, vim.ebam

vim.set VIM for Sets of Variables

Description

Quantifies the importances of sets of variables contained in a logic bagging model.

Usage

vim.set(object, set = NULL, useN = NULL, iter = NULL, standardize = FALSE,
mu = 0, addMatImp = FALSE, prob.case = 0.5, rand = NA)

26 vim.set

Arguments

object an object of class logicBagg, i.e. the output of logic.bagging.

set either a list or a character or numeric vector.
If NULL (default), then it will be assumed that data, i.e. the data set used in the
application of logic.bagging, has been generated using make.snp.dummy
or similar functions for coding variables by binary variables, i.e. with a function
that splits a variable, say SNPx, into the dummy variables SNPx.1, SNPx.2, ...
(where the “." can also be any other sign, e.g., an underscore).
If a character or a numeric vector, then the length of set must be equal to the
number of variables used in object, i.e. the number of columns of data in
the logicBagg object, and must specify the set to which a variable belongs
either by an integer between 1 and the number of sets, or by a set name. If a
variable should not be included in any of the sets, set the corresponding entry of
set to NA. Using this specification of set it is not possible to assign a variable
to more than one sets. For such a case, set set to a list (as follows).
If set is a list, then each object in this list represents a set of variables. There-
fore, each object must be either a character or a numeric vector specifying either
the names of the variables that belongs to the respective set or the columns of
data that contains these variables. If names(set) is NULL, generic names
will be employed as names for the sets. Otherwise, names(set) are used.

useN logical specifying if the number of correctly classified out-of-bag observations
should be used in the computation of the importance measure. If FALSE, the
proportion of correctly classified oob observations is used instead. If NULL
(default), then the specification of useN in object is used.

iter integer specifying the number of times the values of the variables in the respec-
tive set are permuted in the computation of the importance of this set. If NULL
(default), the values of the variables are not permuted, but all variables belong-
ing to the set are removed from the model

standardize should a standardized version of the importance measure for a set of variables
be returned? For details, see mu.

mu a non-negative numeric value. Ignored if standardize = FALSE. Other-
wise, a t-statistic for testing the null hypothesis that the importance of the re-
spective set is equal to mu is computed.

addMatImp should the matrix containing the improvements due to each of the sets in each
of the logic regression models be added to the output?

prob.case a numeric value between 0 and 1. If the logistic regression approach of logic re-
gression has been used in logic.bagging, then an observation will be clas-
sified as a case (or more exactly, as 1), if the class probability of this observation
is larger than prob.case. Otherwise, prob.case is ignored.

rand an integer for setting the random number generator in a reproducible case.

Value

An object of class logicFS containing

vim the importances of the sets of variables,

prop NULL,

primes the names of the sets of variables,

type the type of model (1: classification, 2:linear regression, 3: logistic regression),

vim.set 27

param further parameters (if addInfo = TRUE in the previous call of logic.bagging),
or NULL (otherwise),

mat.imp either a matrix containing the improvements due to the sets of variables for
each of the models (if addMatImp = TRUE), or NULL (if addMatImp =
FALSE),

measure the name of the used importance measure,

threshold NULL if standardize = FALSE, otherwise the 1− 0.05/m quantile of the
t-distribution with B−1 degrees of freedom, where m is the number of sets and
B is the number of logic regression models composing object,

mu mu (if standardize = TRUE), or NULL (otherwise),

iter iter.

Author(s)

Holger Schwender, 〈holger.schwender@udo.edu〉

References

Holger Schwender (2007). Measuring the Importances of Genotypes and Sets of Single Nucleotide
Polymorphisms. Technical Report, SFB 475, Department of Statistics, University of Dortmund.
Appears soon.

See Also

logic.bagging, logicFS, vim.logicFS, vim.set, vim.ebam, vim.chisq

Index

∗Topic datasets
data.logicfs, 1

∗Topic hplot
plot.logicFS, 14

∗Topic htest
logic.oob, 9
vim.chisq, 17
vim.ebam, 19
vim.individual, 20
vim.logicFS, 22
vim.norm, 23
vim.set, 25

∗Topic internal
logicFS-internal, 5

∗Topic logic
logic.pimp, 10
minDNF, 11
vim.chisq, 17
vim.ebam, 19
vim.individual, 20
vim.logicFS, 22
vim.norm, 23
vim.set, 25

∗Topic manip
make.snp.dummy, 10

∗Topic multivariate
logicFS, 6

∗Topic optimize
minDNF, 11

∗Topic print
minDNF, 11
print.logicFS, 17

∗Topic regression
logic.bagging, 2
logicFS, 6
mlogreg, 12
predict.logicBagg, 15
predict.mlogreg, 16

∗Topic tree
logic.bagging, 2
logicFS, 6
mlogreg, 12

∗Topic utilities

getMatEval, 1
logic.oob, 9
logic.pimp, 10

check.listprimes
(logicFS-internal), 5

check.mat.imp (logicFS-internal),
5

checkDataCl (logicFS-internal), 5
checkNewTree (logicFS-internal), 5
checkSet (logicFS-internal), 5
cl.logicfs (data.logicfs), 1
compLarger (logicFS-internal), 5
compMatImpIndividual1

(logicFS-internal), 5
compMatImpIndividual3

(logicFS-internal), 5
compMatImpSet1

(logicFS-internal), 5
compMatImpSet3

(logicFS-internal), 5
compMatProbMLR

(logicFS-internal), 5
contr.none (logicFS-internal), 5
contr.snps (logicFS-internal), 5
correctPreds1 (logicFS-internal),

5
correctPredsPermute1

(logicFS-internal), 5
correctPredsPermute2

(logicFS-internal), 5
correctPredsPermute3

(logicFS-internal), 5
correctPredsRemove1

(logicFS-internal), 5
correctPredsRemove2

(logicFS-internal), 5
correctPredsRemove3

(logicFS-internal), 5
correctSetPermute1

(logicFS-internal), 5
correctSetPermute2

(logicFS-internal), 5

28

INDEX 29

correctSetPermute3
(logicFS-internal), 5

correctSetRemove1
(logicFS-internal), 5

correctSetRemove2
(logicFS-internal), 5

correctSetRemove3
(logicFS-internal), 5

cyclic.covering
(logicFS-internal), 5

data.logicfs, 1

generateTruthTab
(logicFS-internal), 5

getKnots (logicFS-internal), 5
getMatEval, 1
getMatPrime (logicFS-internal), 5
getNames (logicFS-internal), 5
getNewProbsMLR

(logicFS-internal), 5
getNewTree (logicFS-internal), 5
getPerms (logicFS-internal), 5
getPImps (logicFS-internal), 5
getTree (logicFS-internal), 5
getVarInTree (logicFS-internal), 5
getXy (logicFS-internal), 5
getXyPred (logicFS-internal), 5
getY (logicFS-internal), 5

ia.samp (logicFS-internal), 5

logic.bagging, 1, 2, 8–10, 13, 15, 16, 18,
20, 22–26

logic.oob, 9
logic.pimp, 10, 12
logicFS, 1, 5, 6, 10, 13, 15, 17, 18, 20,

22–26
logicFS-internal, 5

make.snp.dummy, 3, 6, 10, 12, 25
makeContrastList

(logicFS-internal), 5
minDNF, 11
minimizePI (logicFS-internal), 5
mlogreg, 3, 6, 7, 12, 16
mlogreg.factor

(logicFS-internal), 5
modelMat (logicFS-internal), 5

oobMLR (logicFS-internal), 5

pimpMLR (logicFS-internal), 5
plot.logicBagg, 5

plot.logicBagg (plot.logicFS), 14
plot.logicFS, 8, 14
predict.logicBagg, 5, 15
predict.logregmodel

(logicFS-internal), 5
predict.mlogreg, 13, 16
predictMLB (logicFS-internal), 5
prime.implicants, 10
prime.implicants (minDNF), 11
print.logicBagg (logic.bagging), 2
print.logicFS, 17
print.minDNF (minDNF), 11
print.mlogreg (mlogreg), 12
print.primeImp (minDNF), 11

rm.dom (logicFS-internal), 5

standardizeMatImp
(logicFS-internal), 5

vim.chisq, 17, 20, 22, 25, 26
vim.ebam, 18, 19, 22, 25, 26
vim.individual, 20
vim.lm (logicFS-internal), 5
vim.logicFS, 17–20, 22, 22, 24–26
vim.MLR (logicFS-internal), 5
vim.multiple (logicFS-internal), 5
vim.norm, 4, 7, 18–20, 22, 23, 23
vim.perm, 4, 7, 18, 19, 22, 23
vim.perm (vim.norm), 23
vim.set, 22, 25, 26
vim.singleBoth

(logicFS-internal), 5
vim.singleRemove

(logicFS-internal), 5

	data.logicfs
	getMatEval
	logic.bagging
	logicFS-internal
	logicFS
	logic.oob
	logic.pimp
	make.snp.dummy
	minDNF
	mlogreg
	plot.logicFS
	predict.logicBagg
	predict.mlogreg
	print.logicFS
	vim.chisq
	vim.ebam
	vim.individual
	vim.logicFS
	vim.norm
	vim.set
	Index

